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A  ADDITIONAL RELATED WORK

Object Detection with Transformers. 2D object detectors (Girshick, 2015; Ren et al., 2015; Lin
et al., 2017a;b; Tian et al., 2019) have achieved excellent performance in recent years, but count on
cumbersome non-maximum suppression (NMS) post-processing and rule-based label assignment.
To circumvent it, the seminal work DETR (Carion et al., 2020b) constructs a novel framework
by adapting the powerful transformer (Vaswani et al., 2017) in natural language processing into
computer vision for 2D detection. DETR detects objects on the image by an encoder-decoder archi-
tecture and conducts set prediction aided by Hungary Matching Algorithm (Carion et al., 2020b).
However, due to the quadratic computational complexity of attention, DETR requires the expen-
sive 500 epochs to be fully trained. To accelerate the convergence, Deformable DETR (Zhu et al.,
2020) designs sparse deformable attention mechanisms and achieves better performance with only
50-epoch training. ACT (Zheng et al., 2020) boosts the time efficiency by introducing adaptive
clustering algorithms during inference. SMCA (Gao et al., 2021) proposes Gaussian-modulated co-
attention mechanisms that refocus the attention of each query into object-centric areas. Besides,
DETR is further enhanced by placing anchors (Wang et al., 2021), redesigning as two stages (Sun
etal., 2021a;b), setting conditional attention (Meng et al., 2021), embedding dense priors (Yao et al.,
2021), introducing query denoising (Li et al., 2022a) and so on (Dai et al., 2021; Misra et al., 2021).
For image-based 3D object detection, DETR3D (Wang et al., 2022) and PETR (Liu et al., 2022a)
adopt vanilla transformers with 3D object queries to aggregate surrounding visual features in an end-
to-end way. BEVFormer (Li et al., 2022b) utilizes a spatiotemporal transformer to generate BEV
representations from multi-view images. In contrast, our MonoDETR equip the vanilla transformer
with depth guidance for adaptive scene-level depth understanding, and can tackle both single-view
and multi-view circumstances.

B DETAILS OF ATTRIBUTE PREDICTION AND LOSS FUNCTIONS

After the depth-guided transformer, we adopt detection heads to estimate six attributes for each
object query: object category, 2D size (I, r,t,b), projected 3D center (z3p, y3p), depth dyeq, 3D
size (hsp,wsp,lsp) and orientation «. All queries share the head weights for the same attribute.
Specifically, we utilize one linear projection layer for the object category, and two-layer MLP for
depth, 3D size and orientation, and three-layer MLP for 2D size and projected 3D center.

Projected 3D Center (x3p,ysp). We directly output the coordinate (z3p,ysp) of each query’s
projected 3D center on the image, which thus discards two types of widely-adopted offsets. The
first is the 2D-to-3D offset for recovering the projected 3D center from the predicted 2D center. The
other is the quantization offset caused by the downsampled heatmap, which is a requisite for existing
center-guided methods. By this, we can obtain the projected 3D center of each object in one step
without the error of intermediate offsets, contributing to better localization accuracy. We adopt L1
loss for the center estimation and denote it as Lgy3p.

Object Category and 2D Size (I,r,t,b). We detect objects of three categories, car, pedestrian
and cyclist, in KITTI (Geiger et al., 2012), and adopt Focal loss (Lin et al., 2017b) for optimization,
denoted as L;45s. Referring to FCOS (Tian et al., 2019), we obtain the 2D bounding box of an object
by predicting the distances from its four sides, [, r, ¢, b, to the projected 3D center (z3p, y3p). Both
(I,7,t,b) and (x3p,ysp) are normalized from O to 1 by the image size. We apply L1 loss for the
distances and GIoU loss (Rezatofighi et al., 2019) for the recovered 2D bounding box following
DETR (Carion et al., 2020a), denoted as L;,+; and Lg1,u, respectively.
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3D Size (hsp, wsp,lsp) and Orientation c. Instead of predicting the residuals to the mean shape
values, we follow MonoDLE (Ma et al., 2021) to use the 3D IoU oriented loss for 3D sizes. We
divide the heading angle into multiple bins with residuals and adopt MultiBin loss (Chen et al.,
2020; Zhou et al., 2019) to optimize the prediction of orientation. The two losses are respectively
denoted as L;.e3p and Lo ien.-

Depth d,.q. To estimate the final object depth d,,.q more accurately, we average three predicted
values: d,.q regressed by the detection head, dy., converted by the predicted 2D and 3D sizes, and
dmap(3D, y3p) interpolated from Dy,. We formulate as

h
dgeo - f tj_iDb; dpred - (dreg + dgeo + dmap(xSDa y3D))/37 (1)

where h3p and t + b denote the predicted heights of 3D and 2D sizes, and f denotes the camera
focal length. We then adopt Laplacian aleatoric uncertainty loss (Chen et al., 2020) for the overall
dpred, formulated as

V2
7||dgt — dpreallr +1og(o), )

where o denotes the standard deviation predicted together with d,..4, and dg; denotes the ground-
truth depth label of the object.

Edepth =

Bipartite Matching. To correctly match each query with a ground-truth object, we calculate the
loss for each query-label pair and utilize Hungarian algorithm (Carion et al., 2020a) to find the
globally optimal matching. For each pair, we integrate the losses of six attributes into two groups.
The first group contains object category, 2D size and the projected 3D center, since these attributes
mainly concern 2D visual appearances of the image, formulated as

Lop = MLeass + AaLayyzp + A3Liry + MLarov, 3)

where we set A\1.4 as 2, 10, 5, 2, respectively. The second group consists of the depth, 3D size and
orientation, which are 3D spatial properties of the object, formylated as

['3D = »CsizeSD + ['orien + ﬁdeptfp 4

As the network generally predicts less accurate 3D attributes than 2D attributes, especially at the
beginning of training, the value of L3p is unstable and would disturb the matching process. We
only utilize £op as the matching cost for matching each query-label pair.

Overall Loss. After the matching, we obtain Ny, valid pairs out of IV queries, where N, denotes
the number of ground-truth objects. Then, the overall loss of a training image is formulated as

Ngt

1 9
£o’ue7'a = L L L map- 5
1 N, nz::l( oD + L3p) + Lamap )

Lamap represents the loss of the predicted categorical foreground depth map D, for which we also
utilize Focal loss (Lin et al., 2017b).

C ADDITIONAL RESULTS

Car Category on KITTI val Set. We list more results of the car category on KITTI val set un-
der different IoU thresholds in Table 1, where our MonoDETR all achieves the highest detection
accuracy. Compared to the second-best MonoDTR (Huang et al., 2022) that is a center-guided
method with external depth supervision, our MonoDETR only requires object-wise depth labels and
surpasses it by significant gains for the easy level, e.g., +4.53% APgpy @IoU=0.7 and +4.83%
AP3D @IoU=0.5.

Pedestrian and Cyclist Categories. In Table 2, we report the scores for pedestrian and cyclist
categories on KITTI fest set both under the IoU threshold of 0.5. As these two categories contain
much fewer training samples than car, it is more challenging for the network to accurately detect
them. As shown, MonoDETR achieves superior AP3p to other methods without additional data,
indicating our superior generalization ability on other categories.
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Table 1: Performance of the car category on KITTI val sets under different IoU thresholds. We
utilize bold numbers to highlight the best results, and blue for the second-best ones.

Method APBEV @IoU=0.7 AP3D @IoU=0.5 APBEV @IoU=0.5
Easy Mod. Hard | Easy Mod. Hard | Easy Mod. Hard
SMOKE (Liu et al., 2020) 19.99 15.61 15.28

MonoPair (Chen et al., 2020) 2412 18.17 15.76 | 5538 4239 37.99 | 61.06 47.63 41.92
MonoRCNN (Shi et al., 2021) 2529 19.22  15.30 - - - - - -
MonoDLE (Ma et al., 2021) 2497 1933 17.01 | 5541 4342 37.81 | 60.73 46.87 41.89

TIAFA (Zhou et al., 2020) 2275 19.60 19.21 - - - - - -

MonoGeo (Zhang et al., 2021a) | 27.15 21.17 1835 | 56.59 43.70 3937 | 61.96 47.84 43.10
RTM3D (Li et al., 2020) 2474 22,03 18.05 | 52.59 4096 3495 | 56.90 44.69 41.75
GUPNet (Lu et al., 2021) 31.07 2294 19.75 | 57.62 4233 3759 | 61.78 47.06 40.88
MonoDTR (Huang et al., 2022) | 33.33 2535 21.68 | 64.03 47.32 4220 | 69.04 5247 4590
MonoDETR (Ours) | 37.86 26.95 22.80 | 68.86 48.92 43.57 | 72.30 53.10 46.62
Improvement | +453 +1.60 +1.12 | +4.83 +1.60 +1.37 | +3.26 +0.63 +0.72

Table 2: Performance of the pedestrian and cyclist categories on KITTI zest set. We utilize bold
numbers to highlight the best results, and blue ones for the second-best ones.

Pedestrian, APsp Cyclist, APsp
Easy Mod. Hard | Easy Mod. Hard
Movi3D (Simonelli et al., 2020) | 8.99 5.44 4.57 1.08 0.63 0.70
MonoGeo (Zhang et al., 2021a) | 8.00 5.63  4.71 4.73 2.93 2.58
MonoFlex (Zhang et al., 2021b) | 9.43 6.31 5.26 4.17 235 2.04
MonoDLE (Ma et al., 2021) 9.64 6.55 5.44 4.59 2.66 245
MonoPair (Chen et al., 2020) 10.02  6.68 5.53 379 212 1.83

MonoDETR (Ours) 12.54 7.89 6.65 \ 7.33 418 292
+2.52  +1.21 +1.12\+2.60 +1.25 +0.34

Method

Improvement

D ADDITIONAL ABLATION STUDY

Depth Discretization. We explore different depth discretization methods for the foreground depth
map dy, in Table 3. ‘UD’, ‘SID’ and ‘LID’ denote uniform, spacing-increasing, and linear-
increasing discretizations, respectively. Instead of the weighted summation of depth bins, ‘LID
+ argmax’ outputs the depth value of the most confident bin. For ‘Continuous Rep.’, we directly
regress the continuous depth value and optimize it by L1 loss. As reported, ‘LID’ performs the best
than other discretization methods, since the linear-increasing intervals can suppress the larger esti-
mation errors of farther objects. Also, ‘LID’ with weighted summation outperforms ‘LID + argmax’
for aggregating more depth cues from the predicted confidence of other depth bins.

Bipartite Matching. Our best solution only utilizes Lo as the matching cost for each query-label
pair. We investigate how it performs to append more 3D losses into the matching cost. As reported in
Table 4, adding Lg;.e3p or Lorien, Would adversely influence the performance due to their unstable
prediction during training. Further, adding Lg.p¢p, or the whole L3p even leads to training collapse,
which is caused by the ill-posed depth estimation from monocular images.

Transformer Blocks and FFN Channels. In Table 5, we experiment different block numbers
of the visual encoder and depth-guided decoder, along with the latent channels of feed-forward
neural network (FFN). As reported, MonoDETR achieves the best performance with the 3-block vi-
sual encoder, 3-block depth-guided decoder, and 256-channel FFN. Different from DETR’s (Carion
et al., 2020a) 6-block encoder, 6-block decoder, and 1024-channel FFN for COCO (Lin et al., 2014)
dataset, MonoDETR adopts a lighter-weight transformer architecture because of the limited training
samples in KITTI (Geiger et al., 2012) dataset.
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Table 3: The design of depth discretization in Table 4: The design of bipartite matching.
the foreground depth map. ‘Continuous Rep.” ‘w’ denotes adding the loss to the matching
denotes the continuous representation of depth.  cost. ‘-’ denotes training collapse.

Settings | Easy Mod. Hard Matching Cost | Easy ~Mod. Hard
LID ‘ 28.84 20.61 16.38 Lap ‘ 28.84 20.61 16.38
UuD 25.61 1890 15.49 W Lsize3D 27.13  19.21 15.93
SID 26.05 1895 15.59 W Lorien 2578 18.63 15.12

LID + argmax 21.61 1521 12.13 W Ldepth - - -
Continuous Rep. | 24.36 17.24 14.48 w L3p - - -

Table 5: Transformer blocks and FFN channels. FEN denotes the feed-forward neural network.

| Set. | Easy Mod. Hard

26.72 18.73 1543
28.84 20.61 16.38
27.37 20.04 16.09

25.55 18.58 1541
28.84 20.61 16.38
2531 1829 15.11

256 | 28.84 20.61 16.38
FFN Channels 512 2724 1893 1554
1024 | 26.77 19.07 15.87

Visual
Encoder Blocks

Depth-guided
Decoder Blocks

EENNUV I (O 2 NN )

E IMPLEMENTATION DETAILS

Monocular Experiments on KITTT (Geiger et al., 2012). We adopt ResNet-50 (He et al., 2016)
as our feature backbone. To save GPU memory, we apply deformable attention mechanisms (Zhu
et al., 2020) for the visual encoder and visual cross-attention layers, and utilize the vanilla atten-
tion (Carion et al., 2020a) to better capture global spatial structures for the depth encoder and depth
cross-attention layers. We utilize 8 heads for all attention modules and set the number of queries N
as 50. We set the channel C' and all MLP’s latent feature dimension as 256. For the foreground depth
map, we set [dpmin, dmaz] as [0m, 60m] and the number of bins & as 80. On a single GeForce RTX
3090 GPU, we train MonoDETR for 195 epochs with batch size 16 and the learning rate 2 x 10~
We adopt AdamW (Loshchilov & Hutter, 2018) optimizer with weight decay 10~ and decrease the
learning rate at 125 and 165 epochs by 0.1. For data augmentation on KITTI test set, we adopt ran-
dom flip and photometric distortion following previous works (Zhang et al., 2021b; Ma et al., 2021;
Zhou et al., 2019), but for the val set, we also use random crop to further boost the performance. For
training stability, we discard the training samples with depth labels larger than 65 meters or smaller
than 2 meters. During inference, we simply filter out the object queries with the category confidence
lower than 0.2 without NMS post-processing, and recover the 3D bounding box using the predicted
six attributes following previous works.

Multi-view Experiments on nuScenes (Caesar et al., 2019). For fair comparison with existing
multi-view methods, MonoDETR-MYV follows most of the settings in (Liu et al., 2022a;b), including
VoVNetV2 (Lee & Park, 2020) feature backbone, 3D object queries, 3D position embeddings, tem-
poral information, loss functions and data augmentation. We utilize 2 blocks for the depth encoder to
better encode multi-view depth embeddings, and apply the depth cross-attention layer at the end of
each decoder block for training stability. The number of queries N for 6-view images is set as 900,
which predict 10 object categories. The configurations of depth predictor, e.g., [dmin, dmaz] and
k are the same as monocular experiments. We train MonoDETR-MYV for 24 epochs (2x schedule)
on 8 NVIDIA A100 GPUs with a batch size of 8. We adopt AdamW (Loshchilov & Hutter, 2018)
optimizer with weight decay 10~2 and utilize the learning rate 2 x 10~ with the cosine scheduler.
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F ADDITIONAL VISUALIZATION

In Figure 1, we show the detection results of our MonoDETR and the variant without the depth-
guided transformer on KITTI val set. Benefited from the depth guidance, MonoDETR obtains a
global understanding of the scene-level spatial structure and the inter-object relations. This enables
MonoDETR to well detect the objects occluded by others or truncated by images, and filter out the
objects of ignored categories, e.g., van and truck.

w/o Depth-guided Trans. MonoDETR

Figure 1: Visualization of detection results. We utilize green boxes for the variant without depth-
guided transformer (Left) and yellow boxes for MonoDETR (Right). We use red circles to empha-
size the detection difference.
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Figure 2: Depth errors for different variants Table 6: Quantitative results of depth er-
of MonoDETR. The x axis and y axis denote rors. We construct four network variants of
the AP;p under the moderate level and the mean MonoDETR by removing one of the com-

depth errors on KITTI val set, respectively. ponents at a time. We respectively remove
6 the depth-guided transformer, depth en-
' MonoDETR coder, separate depth cross-attention layer,

X  w/o Depth-guided Trans. (@)

155 and depth positional encodings, denoted as

<

w/o Depth Encoder (b)

E X ©  w/o Separate Depth CA (¢) ‘(a)9 (b)a (0)7 (d)’ We ShOW their AP3D un-
g . © /o Depth Pos. (d) der the moderate level and the mean depth
T © errors with standard deviations.
o
E o145
£ o Architecture | AP;p 1 Depth Error |
314 < MonoDETR | 20.61  1.35+2.07
3]
2 s ) (a) 15.15 1.54+2.29
(b) 18.38 1.4242.10
e (c) 18.41 1.40£2.11
14 16 18 20 22 (d) 18.11 1.49+2.29
Mod. AP;p

G DEPTH ERROR ANALYSIS

To demonstrate the effectiveness of our depth-guided design, we show the depth error comparison
for different variants of MonoDETR. We utilize four network variants, denoted as ‘(a), (b), (c), (d)’
in Figure 2 and Table 6. We calculate their predicted mean depth errors and standard deviations
on KITTI val set. With our depth-guided transformer, the depth estimation can be well benefited,
which reduces the mean error from 1.54 meters to 1.35 meters and improves the APsp by +5.46%
under the moderate level. In addition, our best solution of 20.61% APs;p performs lower error
variance of £2.07 than others, indicating our depth-guided transformer can produce more stable
depth estimation of objects.

H ANONYMOUS CODE RELEASE

For reproducibility, we anonymously release our codes in https://anonymous.4open.
science/r/MonoDETR_anonymous—FFCO/.


https://anonymous.4open.science/r/MonoDETR_anonymous-FFC0/
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