
A Proof of Lemma 4.4: The first stage of Algorithm 1 outputs an entity-level
coreset

For preparation, we first introduce an importance sampling framework for coreset construction, called
the Feldman-Langberg framework [27, 13].

A.1 The Feldman-Langberg framework

We first give the definition of query space and the corresponding coresets.

Definition A.1 (Query space [27, 13]). LetX be a finite set together with a weight function u : X →
R≥0. Let P be a set called queries, and fx : P → R≥0 be a given loss function w.r.t. x ∈ X . The
total cost of X with respect to a query θ ∈ P is f(θ) :=

∑
x∈X u(x) · fx(θ). The tuple (X , u,P, f)

is called a query space. Specifically, if u(x) = 1 for all x ∈ X , we use (X ,P, f) for simplicity.

Intuitively, f represents a linear combination of weighted functions indexed by X , and P represents
the ground set of f . Due to the separability of f , we have the following coreset definition.

Definition A.2 (Coresets of a query space [27, 13]). Let (X , u,P, f) be a query space and ε ∈
(0, 1) be an error parameter. An ε-coreset of (X , u,P, f) is a weighted set S ⊆ X together with a
weight function w : S → R≥0 such that for any θ ∈ P ,

∑
x∈S w(x) · fx(θ) ∈ (1± ε) · f(θ).

Remark A.3. For instance, we set X = [N ], u = 1, P = ∆k × Pkλ and f = f ′ in the GMM
time-series clustering problem. Then by Definition A.2, Lemma 4.4 represents that (IS , w) is an
ε-coreset for the query space ([N ], 1,∆k × Pkλ , f ′).

Another example is to set X = [Ti], u = 1, P = Pλ and f = ψi. Then Lemma 4.5 represents that
(JS,i, w

(i)) is an ε-coreset for the query space ([Ti], 1,Pλ, ψi).

Now we are ready to give the Feldman-Langberg framework.

The Feldman-Langberg framework. Feldman and Langberg [27] show how to construct coresets
by importance sampling and the coreset size has been improved by [13]. For preparation, we first
give the notion of sensitivity which measures the maximum influence for each point x ∈ X .

Definition A.4 (Sensitivity [27, 13]). Given a query space (X , u,P, f), the sensitivity of a point
x ∈ X is s(x) := supθ∈P

u(x)·fx(θ)
f(X ,u,θ) . The total sensitivity of the query space is

∑
x∈X s(x).

We also introduce a notion which measures the combinatorial complexity of a query space.

Definition A.5 (Pseudo-dimension [27, 13]). For a query space (X , u,P, f), we define
range(θ, r) = {x ∈ X : u(x) · fx(θ) ≤ r} for every θ ∈ P and r ≥ 0. The (pseudo-)dimension of
(X , u,P, f) is the largest integer t such that there exists a subset A ⊆ X of size t satisfying that
| {A ∩ range(θ, r) : θ ∈ P, r ≥ 0} | = 2|A|.

Pseudo-dimension plays the same role as VC-dimension [56]. Specifically, if the range of f is {0, 1}
and u = 1, pseudo-dimension can be regarded as a generalization of VC-dimension to function
spaces. Now we are ready to describe the Feldman-Langberg framework.

Theorem A.6 (Feldman-Langberg framework [27, 13]). Let (X , u,P, f) be a given query space
and ε, δ ∈ (0, 1). Let dim be an upper bound of the pseudo-dimension of every query space
(X , u′,P, f) over u′. Suppose s : X → R≥0 is a function satisfying that for any x ∈ X , s(x) ≥
supθ∈P

u(x)·fx(θ)
f(X ,u,θ) , and define G :=

∑
x∈X s(x) to be the total sensitivity. Let S ⊆ X be constructed

by taking O
(
ε−2G(dim · lnG + ln(1/δ))

)
samples, where each sample x ∈ X is selected with

probability s(x)
G and has weight w(x) := G

|S|·s(x) . Then, with probability at least 1 − δ, S is an
ε-coreset of (X , u,P, f).

A.2 Bounding the pseudo-dimension of f ′

Our proof idea is similar to that in [48]. For preparation, we need the following lemma which is
proposed to bound the pseudo-dimension of feed-forward neural networks.
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Lemma A.7 (Restatement of Theorem 8.14 of [4]). Let (X , u,P, f) be a given query space where
fx(θ) ∈ {0, 1} for any x ∈ X and θ ∈ P , and P ⊆ Rm. Suppose that f can be computed by an
algorithm that takes as input the pair (x, θ) ∈ X × P and returns fx(θ) after no more than l of the
following operations:

• the exponent function a→ ea on real numbers.

• the arithmetic operations +,−,×, and / on real numbers.

• jumps conditioned on >,≥, <,≤,=, and 6= comparisons of real numbers, and

• output 0,1.

If the l operations include no more than q in which the exponential function is evaluated, then the
pseudo-dimension of (X , u,P, f) is at most O(m2q2 +mq(l + lnmq)).

Note that the above lemma requires that the range of functions fx is [0, 1]. We have the following
lemma which can help extend this range to R.
Lemma A.8 (Restatement of Lemma 4.1 of [58]). Let (X , u,P, f) be a given query space. Let
gx : P × R→ {0, 1} be the indicator function satisfying that for any x ∈ X , θ ∈ P and r ∈ R,

gx(θ, r) = I [u(x) · f(x, θ) ≥ r] .
Then the pseudo-dimension of (X , u,P, f) is precisely the pseudo-dimension of the query space
(X , u,P × R, gf ).

Now we are ready to prove bound the pseudo-dimension of f ′ by the following lemma.
Lemma A.9 (Pseudo-dimension of f ′). The pseudo-dimension of ([N ], u,∆k×Pkλ , f ′) over weight
functions u : [N ]→ R≥0 is at most O(k4d4 + k3d8).

Proof. Our argument is similar to that in [37, Lemma 5.9]. Fix a weight function u : [N ] → R≥0.
We only need to consider the following indicator function gi : ∆k × Pkλ × R≥0 → {0, 1} where for
any α ∈ ∆k, θ ∈ Pkλ and r ∈ R≥0,

gi(α, θ, r) := I

∑
l∈[k]

αl · exp(− 1

2Ti
ψi(µ

(l),Σ(l),Λ(l))) ≥ r

 .
Note that the parameter space is ∆k × Pkλ which consists of at most m = O(kd2) parameters.
For any (µ,Σ,Λ) ∈ Pλ, function ψi(µ,Σ,Λ) can be represented as a multivariate polynomial
that consists of O(d6) terms µb1c1µ

b2
c2Λb3c3,c3Λb4c4,c4

(
Σ−1

)b5
c5,c6

where c1, c2, c3, c4, c5, c6 ∈ [d], and
b1, b2, b3, b4, b5 ∈ {0, 1}. Thus, gi consists of l = O(kd6) arithmetic operations, q = k exponential
functions, and k jumps. By Lemmas A.7 and A.8, we complete the proof.

A.3 Bounding the total sensitivity of f ′

Next, we prove that function s (Line 6 of Algorithm 1) is a sensitivity function w.r.t. f ′; summarized
as follows.
Lemma A.10 (s is a sensitivity function w.r.t. f ′). For each i ∈ [N ], we have

s(i) ≥ max
α∈∆k,θ∈Pkλ

f ′i(α, θ)

f ′(α, θ)
.

Moreover,
∑
i∈[N ] s(i) ≤ (16D + 12Dk)/λ.

To prove the lemma, we will use a reduction from general Σ to Id and from Λ to 0d (without
both covariances and autocorrelations), which upper bounds the affect of the covariance matrix and
autocorrelation matrices. We define ψ(O)

i : Rd → R≥0 to be

ψ
(O)
i (µ) :=

∑
t∈[Ti]

‖xit − µ‖22 (3)
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for any µ ∈ Rd, and define f (O) : ∆k × Rd×k → R≥0 to be

f (O)(α, θ(O)) :=
∑
i∈[N ]

f
(O)
i (α, θ(O))

= −
∑
i∈[N ]

ln
∑
l∈[k]

αl · exp

(
− 1

2Ti ·minl′∈[k] λmin(Σ(l′))
ψ

(O)
i (µ(l))

)

for any α ∈ ∆k and θ(O) = (µ(l))l∈[k] ∈ Rd×k. Compared to f ′, we note that f (O) does not contain
covariance and autocorrelation matrices.

Clustering cost of entities. By the definition of ψ(O)
i , we have that for any µ ∈ Rd,

1

Ti
ψ

(O)
i (µ) = ‖

∑
t∈[Ti]

xit

Ti
− µ‖22 +

1

Ti

∑
t∈[Ti]

‖xit‖22 −
‖
∑
t∈[Ti]

xit‖22
T 2
i

. (4)

Next, we introduce another function s(O) : [N ]→ R≥0 as a sensitivity function w.r.t. f (O), i.e., for
any i ∈ [N ],

s(O)(i) := max
α∈∆k,θ(O)∈Rd×k

f
(O)
i (α, θ(O))

f (O)(α, θ(O))
.

Define G(O) :=
∑
i∈[N ] s

(O)(i) to be the total sensitivity w.r.t. f (O). We first have the following
lemma.

Lemma A.11 (Relation between sensitivities w.r.t. f (O)
i and f ′i ). For each i ∈ [N ], we have

s(O)(i) ≤ max
α∈∆k,θ∈Pkλ

f ′i(α, θ)

f ′(α, θ)
≤ 4D · s(O)(i)/λ.

Proof. It is easy to verify s(O)(i) ≤ maxα∈∆k,θ∈Pkλ
f ′i(α,θ)
f ′(α,θ) since

max
α∈∆k,θ∈Pkλ

f ′i(α, θ)

f ′(α, θ)

≥ max
α∈∆k,θ∈(Rd×Id×0d)k

f ′i(α, θ)

f ′(α, θ)
(0d ∈ Ddλ, Id ∈ Sd)

= max
α∈∆k,θ(O)∈Rd×k

f
(O)
i (α, θ(O))

f (O)(α, θ(O))
(Defn. of f (O)

i )

= s(O)(i).

For the other side, we have the following claim that for any i ∈ [N ] and θ = (µ,Σ,Λ) ∈ Pλ,

λ

λmax(Σ)
· ψ(O)

i (µ) ≤ ψi(µ,Σ,Λ) ≤ 4

λmin(Σ)
· ψ(O)

i (µ). (5)
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Then for any α ∈ ∆k and θ = (µ(l),Σ(l),Λ(l))l∈[k] ∈ Pkλ , letting θ(O) = (µ(l))l∈[k] ∈ Rd×k and
β = minl′∈[k] λmin(Σ(l′))2, we have

f ′i(α, θ)

f ′(α, θ)
=

− ln
∑
l∈[k] αl · exp(− 1

2Ti
ψi(µ

(l),Σ(l),Λ(l)))

−
∑
j∈[N ] ln

∑
l∈[k] αl · exp(− 1

2Ti
ψj(µ(l),Σ(l),Λ(l)))

(by definition)

≤
− ln

∑
l∈[k] αl · exp(− 2

Tiλmin(Σ(l))
ψ

(O)
i (µ(l)))

−
∑
j∈[N ] ln

∑
l∈[k] αl · exp(− λ

2Tiλmax(Σ(l))
· ψ(O)

j (µ(l)))
(Ineq. (5))

≤ 4f
(O)
i (α, θ(O))

−
∑
j∈[N ] ln

(∑
l∈[k] αl · exp(− 1

2Ti·β · ψ
(O)
j (µ(l)))

) λβ

λmax(Σ(l))

(Defn. of f (O)
i )

≤ 4f
(O)
i (α, θ(O))

−
∑
j∈[N ] ln

(∑
l∈[k] αl · exp(− 1

2Ti·β · ψ
(O)
j (µ(l)))

)λ/D (Assumption 4.1)

=
4D · f (O)

i (α, θ(O))

λ · f (O)(α, θ(O))
. (by definition)

Consequently, we have maxα∈∆k,θ∈Pkλ
f ′i(α,θ)
f ′(α,θ) ≤ 4D · s(O)(i)/λ, which completes the proof.

Proof of Claim (5). It remains to prove Claim (5). For any i ∈ [N ] and θ = (µ,Σ,Λ) ∈ Pλ, we
have

ψi(µ,Σ,Λ)

= (xi,1 − µ)>Σ−1(xi,1 − µ)− (Λ(xi,1 − µ))
>

Σ−1 (Λ(xi,1 − µ))

+

Ti∑
t=2

((xit − µ)− Λ(xi,t−1 − µ))
>

Σ−1 ((xit − µ)− Λ(xi,t−1 − µ))

∈ [
1

λmax(Σ)
,

1

λmin(Σ)
] ·
(

(xi,1 − µ)>(xi,1 − µ)− (Λ(xi,1 − µ))
>

(Λ(xi,1 − µ))
)

+ [
1

λmax(Σ)
,

1

λmin(Σ)
] ·

Ti∑
t=2

((xit − µ)− Λ(xi,t−1 − µ))
>

((xit − µ)− Λ(xi,t−1 − µ)) .

Hence, it suffices to prove that

(xi,1 − µ)>Σ−1(xi,1 − µ)− (Λ(xi,1 − µ))
>

Σ−1 (Λ(xi,1 − µ))

+

Ti∑
t=2

((xit − µ)− Λ(xi,t−1 − µ))
>

((xit − µ)− Λ(xi,t−1 − µ))

∈ [λ, 4] · ψ(O)
i (µ)

Since Λ ∈ Ddλ, we suppose Λ = (∆1, . . . ,∆d). Then we have

(xi,1 − µ)>(xi,1 − µ)− (Λ(xi,1 − µ))
>

(Λ(xi,1 − µ))

+

Ti∑
t=2

((xit − µ)− Λ(xi,t−1 − µ))
>

((xit − µ)− Λ(xi,t−1 − µ))

=
∑
r∈[d]

(1−∆2
r)(xi1r − µr)2

+

Ti∑
t=2

((xitr − µr)−∆r(xi,t−1,r − µr))> ((xitr − µr)−∆r(xi,t−1,r − µr)) .
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On one hand, we have

(1−∆2
r)(xi1r − µr)2 +

Ti∑
t=2

((xitr − µr)−∆r(xi,t−1,r − µr))2

≤ (1−∆2
r)(xi1r − µr)2 +

Ti∑
t=2

2
(
(xitr − µr)2 + ∆2

r(xi,t−1,r − µr)2
)

(Arithmetic Ineq.)

≤ 4
∑
t∈[Ti]

(xitr − µr)2. (∆r ≤ 1)

On the other hand, we have

(1−∆2
r)(xi1r − µr)2 +

Ti∑
t=2

((xitr − µr)−∆r(xi,t−1,r − µr))2

= (xi1r − µr)2 +

Ti∑
t=2

(1 + ∆2
r)(xitr − µr)2 − 2∆r(xitr − µr)(xi,t−1,r − µr)

≥ (1−∆r)
2
∑
t∈[Ti]

(xitr − µr)2 (Arithmetic Ineq.)

≥ λ
∑
t∈[Ti]

(xitr − µr)2. (Assumption 4.1)

This completes the proof.

By the definition of s and the above lemma, it suffices to prove the following lemma that provides an
upper bound for s(O).

Lemma A.12 (Sensitivities w.r.t. f (O)). The following holds:

1. For each i ∈ [N ], we have

s(O)(i) ≤
4‖bi − c?p(i)‖

2
2

OPT(O) +A
+ 3sc(i)

2. G(O) ≤ 4 + 3k.

For preparation, we introduce some notations related to the clustering problem (Definition 4.2). For
any µ ∈ Rd, we define

hci (µ) := ‖c?p(i) − µ‖
2
2,

and for any α ∈ ∆k, θ
(O) ∈ Rd×k,

f ci (α, θ(O)) := − ln
∑
l∈[k]

αk · exp(− 1

2Ti · β
hci (µ

(l))),

where β = minl′∈[k] λmin(Σ(l′))2. Let f c :=
∑
i∈[N ] f

c
i . Then similarly, we can prove that sc (Line

5 of Algorithm 1) is a sensitivity function w.r.t. f c; summarized as follows.

Lemma A.13 (sc is a sensitivity function w.r.t. f c). For each i ∈ [N ],

sc(i) ≥ max
α∈∆k,θ(O)

f ci (α, θ(O))

f c(α, θ(O))
.

Moreover,
∑
i∈[N ] s

c(i) ≤ k.

Proof. This lemma is a direct corollary by the fact that there are only k different centers C?i , which
implies that there are at most k different functions f ci accordingly. We partition [N ] into at most

19



k groups Al where each element i ∈ Al satisfies that c?p(i) = l. Then we observe that f ci = f cj if
i, j ∈ Al. Then for any α, θ(O) ∈ ∆k × Rd×k,

f ci (α, θ(O))

f c(α, θ(O))
≤ f ci (α, θ(O))∑

j∈Al f
c
j (α, θ(O))

=
1

|Al|
≤ sc(i),

which implies the lemma.

To prove Lemma A.12, the main idea is to relate s(O)(i) to sc(i). The idea is similar to [48]. For
preparation, we also need the following key observation.

Lemma A.14 (Upper bounding the projection cost). For a fixed number L > 0 and a fixed
θ = (α, θ(O)) ∈ ∆k × Rd×k and a fixed value a ≥ 0, define πa,θ : Rd → R≥0 as

πa,θ,L(y) = − ln
∑
l∈[k]

αl · exp

(
− 1

2L

(
‖y − µ(l)‖22 + a

))
.

Then, for every y, y′ ∈ Rd it holds that

πa,θ(y) ≤ 2

L
‖y − y′‖22 + πa,θ,L(y′).

Proof. Use the relaxed triangle inequality for l22-norm, we have

πa,θ,L(y) = − ln
∑
l∈[k]

αl · exp

(
− 1

2L

(
‖y − µ(l)‖22 + a

))

≤ − ln
∑
l∈[k]

αl · exp

(
− 2

L
‖y′ − µ(l)‖22 +

1

2L

(
‖y − y′‖22 + a

))
(relaxed triangle ineq.)

≤ − ln

exp

(
− 2

L
‖y − y′‖22

)
·
∑
l∈[k]

αl · exp

(
− 1

2L

(
‖y′ − µ(l)‖22 + a

))
≤ 2

L
‖y − y′‖22 − ln

∑
l∈[k]

αl · exp

(
− 1

2L

(
‖y′ − µ(l)‖22 + a

))

≤ 2

L
‖y − y′‖22 − ln

∑
l∈[k]

αl · exp

(
− 1

2L

(
‖y′ − µ(l)‖22 + a

))2

=
2

L
‖y − y′‖22 + πa,θ,L(y′).

Recall that bi ←
∑
t∈[Ti]

xit

Ti
. Now we are ready to prove Lemma A.12.
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Proof of Lemma A.12. For each i ∈ [N ] and θ = (α, θ(O)) ∈ ∆k × Rd×k, letting β =

minl′∈[k] λmin(Σ(l′))2, we have

f
(O)
i (θ)

= πai,θ,β(bi)

≤ 2

β
‖bi − c?p(i)‖

2
2 + πai,θ,β(c?p(i)) (Lemma A.14)

≤ 2

β
‖bi − c?p(i)‖

2
2 + sc(i) ·

∑
j∈[N ]

πai,θ,β(c?p(j)) (Defns. of sc)

≤ 2

β
‖bi − c?p(i)‖

2
2 + sc(i) ·

∑
j∈[N ]

(
2

β
· ‖bj − c?p(j)‖

2
2 + πai,θ,β(bj)

)
(Lemma A.14)

≤ 2

β
‖bi − c?p(i)‖

2
2 + sc(i) · (2 · OPT(O)

β
+ f (O)(θ)). (Defns. of OPT(O))

(6)

Let OPT := minθ
∑
i∈[N ] f

(O)
i (θ). We have that

OPT

= min
θ

∑
i∈[N ]

f
(O)
i (θ)

= min
θ

∑
i∈[N ]

− ln
∑
l∈[k]

αl · exp

(
− 1

2β

(
‖bi − µ(l)‖22 + ai

))

≥ min
θ

∑
i∈[N ]

− ln
∑
l∈[k]

αl · exp

(
− 1

2β

(
min
l′∈[k]

‖bi − µ(l′)‖22 + ai

))

≥ min
θ

∑
i∈[N ]

− ln
∑
l∈[k]

αl · exp

(
− 1

2β

(
min
l′∈[k]

‖bi − µ(l′)‖22 + ai

))

=
1

2β

min
θ

∑
i∈[N ]

min
l′∈[k]

‖bi − µ(l′)‖22 + ai


≥ 1

2β
·
(
OPT(O) +A

)
. (Defns. of OPT(O) and A)

(7)

Hence, we have

s(O)(i) = max
θ∈∆k×Rd×k

f
(O)
i (θ)

f (O)(θ)

≤
2 · ‖bi − c?p(i)‖

2
2

β · OPT
+
sc(i) · OPT(O)

β · OPT
+ sc(i) (Ineq. (6))

≤
4 · ‖bi − c?p(i)‖

2
2

OPT(O) +A
+ 3sc(i). (Ineq. (7))

The second property is a direct conclusion.

Now we are ready to prove Lemma A.10.

Proof of Lemma A.10. Lemma A.10 is a direct corollary of Lemmas A.11 and A.12 since for each
i ∈ [N ],

max
α∈∆k,θ∈Pkλ

f ′i(α, θ)

f ′(α, θ)
≤ s(O)(i)/λ (Lemma A.11)

≤ 4D

(
4 · ‖bi − c?p(i)‖

2
2

OPT(O) +A
+ 3sc(i)

)
/λ (Lemma A.12)

= s(i). (Line 6 of Algorithm 1)
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By the Feldman-Langberg framework (Theorem A.6), we note that Lemma 4.4 is a direct corollary
of Lemmas A.9 and A.10.

B Proof of Lemma 4.5: The second stage of Algorithm 1 outputs a time-level
coreset

The proof idea is similar to that in Lemma 4.4, i.e., to bound the pseudo-dimension and the total
sensitivity for the query space ([Ti], 1,Pλ, ψi).

B.1 Bounding the pseudo-dimension of ψi

We have the following lemma.
Lemma B.1 (Pseudo-dimension of ψi). The pseudo-dimension of ([Ti], 1,Pλ, ψi) over weight
functions u : [N ]→ R≥0 is at most O(d8).

Proof. The argument is almost the same as in Lemma A.9. The parameter space of ψi consists of at
most m = O(d2) parameters and ψi can be represented by at most l = O(d6) arithmetic operations.
By Lemmas A.7 and A.8, it completes the proof.

B.2 Bounding the total sensitivity of ψi

Next, we again focus on proving si (Line 12 of Algorithm 1) is a sensitivity function w.r.t. ψi;
summarized as follows.
Lemma B.2 (si is a sensitivity function for ψi). For each i ∈ [N ], we have that for each t ∈ [Ti]

si(t) ≥ max
µ∈Rd,Λ∈Pτ,λ

ψit(µ,Σ,Λ)

ψi(µ,Σ,Λ)
.

Moreover,
∑
t∈[Ti]

si(t) = O(D/λ).

Similar to Section A, we introduce another function s(O)
i : [Ti]→ R≥0 as a sensitivity function w.r.t.

ψ
(O)
i , i.e., for any t ∈ [Ti],

s
(O)
i (t) := max

µ∈Rd
ψ

(O)
it (µ)

ψ
(O)
i (µ)

.

Define G(O)
i :=

∑
t∈[Ti]

s
(O)
i (t) to be the total sensitivity w.r.t. ψ(O)

i . We first have the following
lemma, whose proof idea is simply from Lemma A.11 and [37, Lemma 4.4].

Lemma B.3 (Relation between sensitivities w.r.t. ψ(O)
it and ψit). For each t ∈ [Ti], we have

si(t) ≤ 4Dλ−1 ·

s(O)
i (t) +

min{t−1,1}∑
j=1

s
(O)
i (t− j)

 .

Proof. By the same argument as in Lemma A.11, we have that

si(t) ≤ Dλ−1 · max
µ∈Rd,Λ∈Ddλ

ψit(µ, Id,Λ)

ψ
(O)
i (µ)

.

By a similar argument as in [37, Lemma 4.4], we have that

ψit(µ, Id,Λ) ≤ ψ(O)
it (µ) +

min{t−1,1}∑
j=1

ψ
(O)
i,t−q(µ).

Combining the above two inequalities, we complete the proof.
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Then we have the following lemma that relates s(O)
i and sci (Line 11 of Algorithm 1), whose proof

follows from [57, Theorem 7] for the case that k = 1.

Lemma B.4 (Sensitivities w.r.t. ψ(O)
i ). For each i ∈ [N ], the following holds:

1. For each t ∈ [Ti], we have
s

(O)
i (t) ≤ sci (t).

2. G(O)
i ≤ 8.

Note that Lemma B.2 is a direct corollary of Lemmas B.3 and B.4.

C Proof of Theorem 4.3

Proof. Note that the coreset size |S| = ML matches the bound in Theorem 4.3. We first prove the
correctness. For any i ∈ IS , we have

− ln
∑
l∈[k]

αl · exp(− 1

2Ti

∑
t∈JS,i

w(i)(t) · ψit(µ(l),Σ(l),Λ(l)))

≤ − ln
∑
l∈[k]

αl · exp(− 1

2Ti
(1 + ε) · ψi(µ(l),Σ(l),Λ(l))) (Lemma 4.5)

≤ − ln
∑
l∈[k]

(
αl · exp(− 1

2Ti
ψi(µ

(l),Σ(l),Λ(l)))

)1+ε

(x1+ε is convex when x ∈ [0, 1])

≤ (1 + ε) ·

− ln
∑
l∈[k]

αl · exp(− 1

2Ti
ψi(µ

(l),Σ(l),Λ(l)))

 .

Symmetrically, we can also verify that

− ln
∑
l∈[k]

αl · exp(− 1

2Ti

∑
t∈JS,i

w(i)(t) · ψit(µ(l),Σ(l),Λ(l)))

≥ (1− ε) ·

− ln
∑
l∈[k]

αl · exp(− 1

2Ti
ψi(µ

(l),Σ(l),Λ(l)))

 .

Consequently, we have

− ln
∑
l∈[k]

αl · exp(− 1

2Ti

∑
t∈JS,i

w(i)(t) · ψit(µ(l),Σ(l),Λ(l)))

∈ (1± ε) ·

− ln
∑
l∈[k]

αl · exp(− 1

2Ti
ψi(µ

(l),Σ(l),Λ(l)))

 .

(8)

Combining with Lemma 4.4, we have that

f ′S(α, θ)

= −
∑
i∈IS

w(i) · ln
∑
l∈[k]

αl · exp(− 1

2Ti

∑
t∈JS,i

w(i)(t) · ψit(µ(l),Σ(l),Λ(l)))

∈ (1± ε) ·

−∑
i∈IS

w(i) · ln
∑
l∈[k]

αl · exp(− 1

2Ti
ψi(µ

(l),Σ(l),Λ(l)))

 (Ineq. (8))

∈ (1± ε)2 · f ′(α, θ). (Lemma 4.4)

By replacing ε with O(ε), we prove the correctness.
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For the computation time, the computation in Line 2 costs O(d
∑
i∈[N ] Ti) time since each bi

and ai can be computed in O(dTi) time, and A can be computed in O(N) time. In Line 3, it
costs O(Ndk lnN ln k) time to solve the k-means clustering problem by k-means++. Line 4
costs O(Ndk) time since each p(i) costs O(dk) time to compute. Lines 5-6 cost O(Nd) time for
computing sensitivity function s. Lines 7-8 cost O(N) time for constructing IS . Overall, it costs
O(d

∑
i∈[N ] Ti + Ndk lnN ln k) at the first stage. Line 10 costs at most O(dTi) time to compute

OPT
(O)
i . Lines 11-12 cost O(Ti) time to compute si. Lines 13-14 cost O(Ti) time to construct JS,i.

Since |IS | ≤ N , we have that it costs at most O(d
∑
i∈[N ] Ti) time at the second stage. We complete

the proof.

D Discussion on lower bounds

There is no provable lower bound result for our GMM coreset with time series data. We conjecture
that without the first condition in Assumption 4.1, the coreset size should depend exponentially in k
and logarithmic in n. The motivation is from a simple setting that all Ti = 1 (GMM with static data),
in which [26] reduces the problem to projective clustering whose coreset size depends exponentially
in k and logarithmic in n. Moreover, [26] believes that these dependencies are unavoidable for GMM
coreset.
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