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Appendix

A Task Description

Figure 8: Snapshot of all tasks and test visual scenarios.

Lift Cube: This task involves a URS arm equipped with a Robotiq gripper. A red cube is placed on
the table. The agents arerequired to grasp the cube and lift it off the table. A reward greater than
250 is considered a success. We lock 3 out of the 6 DoFs of the URS arm to restrict unnecessary
movements and reduce the action space, facilitating more efficient RL learning.

Pull Drawer: This task contains a URS arm equipped with a Robotiq gripper. A drawer is placed on
the table. The agents need to approach the handle and pull the drawer open. A reward greater than
230 is considered a success. We lock 3 out of the 6 DoFs of the URS arm.

Pick Cube To Bowl: Except for the red cube, we additionally place a bowl on the table. The agent
needs to lift the cube and place it into the bowl. A reward greater than 230 is considered a success.
We lock 3 out of the 6 DoFs of the URS arm.

Button with Dex: This task involves a Franka arm equipped with an Allegro Hand. The agent is
required to press the button to receive the reward. A reward greater than 250 is considered a success.
We lock 3 out of the 7 DoFs of the Franka arm and the DoFs of Allegro Hand.

Close-Laptop Dex: This task is equipped with a Leap Hand, an XArm, and a Ranger Mini 2 base
from AgileX. The agent requires to close the laptop on the table. We lock the DoFs of Leap hand and
4 DoFs of Franka Arm. When the joint of the laptop is smaller than 1.7 rad, we consider it a success.

LiftCube Dex: This task involves a Franka arm equipped with an Allegro Hand. The agent is
required to grasp the cube and lift it off the table. A reward greater than 50 is considered a success.
We lock 3 out of the 7 DoFs of the Franka arm and use 4 DoFs of Allegro Hand (The rest of the DoFs
will be set to a default value to keep a proper gesture).

PickPlace Dex: This task involves a Franka arm equipped with an Allegro Hand. The agent is
required to grasp the cube and lift it off the table and place it to the box. A reward greater than 50
is considered a success. We lock 3 out of the 7 DoFs of the Franka arm and use 4 DoFs of Allegro
Hand (The rest of DoFs will be set to a default value to keep a proper gesture). Additionally, we use
the moving average technique to smooth the motion.

Handover Dex: We utilize two Franka arms, one equipped with a gripper and the other with an
Allegro hand. This task requires cooperation between the two arms; the gripper must grasp a spatula
and pass it to the hand. Success is determined if the distance between the hand and the object is less
than 0.03 meters.
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B Implementation Details

B.1 Environment Randomization Parameters

Table 5: Domain randomization parameters in Maniwhere.

Attribute Value
URS joint armature 0.1-(140.1) kgm?
URS shoulder pan joint damping 360 - (1 £0.1) Ns/m
URS5 shoulder lift joint damping 280 - (1£0.1) N s/m
URS5 elbow joint damping 250 - (1£0.1) N s/m
URS5 wrist joint damping 280-(1£0.1) N s/m
Franka joint armature 0.1-(1+0.1) kgm?
Franka joint damping 1-(1+£0.1) Ns/m
XArm joint damping 15-(14+0.1) N s/m
XArm joint frictionloss 4-(1+£0.1)
Object Cube Size 0.05-(1£0.1)m
Table height [—0.01,0.01] m
Camera Pitch [10.5, 30.5]°
Camera Yaw [—60, 60]°
Camera Fov [38,46]°
Camera Distance [1.12,1.54] m
Action-delay [0, 2] timesteps
Control timestep [0.016,0.024] s

B.2 Curriculum Randomization

For each task, a threshold of 2e5 steps is established as the initial frame for domain randomization.
The randomization parameters will vary exponentially within the ranges specified in Table 5 starting
from the 2e5-step mark (the Close Laptop task beginning at 7e4 step). Concurrently, the stabilizing
objective described in Eq 4 will process augmented images from the fixed view prior to this threshold,
and will incorporate augmented images from the moving view thereafter.

B.3 Hyper-Parameters

We list the training hyper-parameters used in Maniwhere in Table 6.

C Additional Results

C.1 Real-world Experiments

Real-world setup. Due to the limitation that a single PC cannot control two Franka arms simulta-
neously, we developed a control logic framework using zmq to coordinate three PCs. In this setup,
one PC is regarded as the client, while the other two serve as servers. The client PC receives visual
input and performs network inference, subsequently transmitting the inferred actions via socket
connections to the two server PCs. The server PCs are responsible for controlling the Franka arms
and executing the received actions. This process is iterative, with the servers sending new visual
input back to the client for continuous processing. Given that MV-MWM has a large model size and
requires substantial memory for loading, we deployed it on a desktop equipped with an RTX 3090
GPU. In contrast, the deployment of Maniwhere demands significantly less hardware, allowing it to
perform inference even on CPU desktops. Regarding the camera setup, we establish the evaluation
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Table 6: Hyper-parameters in Maniwhere.

Hyper-parameters Value
Input size 128 x 128
Discount factor ~y 0.99
Replay Buffer size int(1e7)
Feature dim 256
Action repeat 1
N-step return 3
Optimizer Adam
Frame stack 3
Temperature of InfoNCE 0.1
Learning Rate of STN le-4
A 200

Simulation Sim2Real Transfer

Figure 9: More real-world snapshots.. We exhibit more real-world snapshots in challenging real-
world visual scenarios.

viewpoints at three yaw angular ranges: [0, 5°], [10, 25°], and [40, 55°], on both the left and right
sides. Additionally, across the five trials conducted at each viewpoint, the camera height will be
varied within a range of -3 to 3 cm.

Instance generalization. Thanks to the general grasping capabilities of the dexterous hand, Figure 10
shows that Maniwhere is not limited to a single object when executing the lifting behaviours and can
generalize across different instances with various shapes and sizes.

C.2 Cross Embodiment

Figure 11 illustrates that when we first select a pixel point on the URS original image (marked with
a red pentagram) and extract its feature (enclosed in the orange square) after passing through the
convolutional layer, we compute its normalized cosine similarity with the image feature of Franka
arm to obtain a similarity map. The point with the highest value in this map is identified as the most
similar point between two images (marked with a red pentagram). As shown in Figure 11, Maniwhere
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Figure 10: Instance Generalization. We find that Maniwhere won’t overfit to the specific object size

and shape.
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Figure 11: Feature Correspondence. Maniwhere can find the feature correspondence between

different embodiments.

can effectively recognize semantically consistent positions between the two different embodiments.
With respect to randomization, to enable the agent to capture the correspondence information through
the multi-view representation objective, we do not augment the moving view image in Eq 4.

C.3 View Generalization

We further investigate how Maniwhere’s performance varies across different camera view ranges. We
divide the randomized camera view range into three parts, within each of which the camera’s pitch
and field of view are randomly altered as well. The value for each range is calculated as the average
of both the left and right sides. Due to the excessive angular range in handover task potentially
obscuring the other arm, we confined the range for this task to 0-30 degrees. Table 7 illustrates that,
although Maniwhere’s performance exhibits a slight decline as the angle increases, it still retains the

capability to handle these scenarios effectively.

Table 7: Generalization across different camera view ranges. Maniwhere retains the generalization capability
to handle these scenarios effectively. We evaluate 20 episodes in each range.

Method / Task  LiftCube Dex PickPlace Pickplace dex Button dex Handover
range [0, 15]° 91.3% 91.0% 82.5% 97.5% 94.0%
range [20, 35]° 88.3% 88.0% 81.5% 97.5% 94.0%
range [45, 60]° 86.9% 84.0% 65.0% 94.4% 92.0%

C.4 Depth information helps sim2real transfer

To ensure the depth images closely resemble real-world conditions, we first pre-process the depth
image. We introduce Gaussian noise A (0,0.01) and depth-dependent noise N'(0, depth_scale),
where the depth_scale equals np.abs(depth_image) * 0.05. Then, we apply GaussianBlur
to smooth the noise. Additionally, the depth values are clipped to within 2 meters and normalized
to the range [0, 255]. During sim2real, we find that depth image can largely help to alleviate the
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Figure 12: Spatial illusion. These two figures are captured at the same timestep. Without depth
information, we lose the front-to-back positional relationship between the object and the gripper in
the three-dimensional world.

ambiguity situation. Figure 12 shows that when encountering large camera viewpoints, the agent
cannot accurately determine the grasping position since RGB information alone does not provide
the necessary front-to-back positional relationship between the object and the gripper in the 3D
world. However, by incorporating depth images, we observe a significant improvement in real-world
scenarios.

C.5 MV-MWM with data augmentation

We also apply the data augmen-

tation method on MV-MWM. As Task Success Success
shown in Table 8, MV-MWM Rate(w/o DA)  Rate (w/DA)
suffers a significant performance Button Dex T7.6414.2 % 1.3+2.3%
drop while facing data augmen- PickPlace Dex 34.0428.9% 8.7+13.3%

tation. These results are consis- - -
tent with the recent works [9, 12]. Table 8: MV-MWM with data augmentation.

Naively applying data augmentation can cause instability and large variance during training. In turn,
the results also prove that simultaneously handling multiple types of generalization is non-trivial and
highlights the superiority of Maniwhere.

C.6 Regarding target object color

Figure 13: Visualization of the agent’s attention by Grad-CAM.

Although we found that the agent demonstrates strong generalization capabilities when the visual
scene is altered, including changes to the table, background, and the introduction of colorful dis-
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tractors, it fails the task when the color of the target object is changed. Figure 13 exhibits that
during executing a trajectory, the agent focuses more attention on the target object while ignoring
task-irrelevant information, making it more sensitive to changes in the color of the target object. We
use the Grad-CAM [53] to visualize the agent’s attention.
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