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Reference-based Burst Super-resolution
Anonymous Author(s)

ABSTRACT
Burst super-resolution (BurstSR) utilizes signal information from
multiple adjacent frames successively taken to restore rich textures.
However, due to hand tremors and other image degradation factors,
even recent BurstSR methods struggle to reconstruct finely tex-
tured images. On the other hand, reference-based super-resolution
(RefSR) leverages the high-fidelity reference (Ref) image to recover
detailed contents. Nevertheless, if there is no correspondence be-
tween the Ref and the low-resolution (LR) images, the degraded
output is derived. To overcome the limitations of existing BurstSR
and RefSR methods, we newly introduce a reference-based burst
super-resolution (RefBSR) that utilizes burst frames and a high-
resolution (HR) external Ref image. The RefBSR can restore the HR
image by properly fusing the benefits of burst frames and a Ref
image. To this end, we propose the first RefBSR framework that
consists of Ref-burst feature matching and burst feature-aware Ref
texture transfer (BRTT) modules. In addition, our method adap-
tively integrates features with better quality between Ref and burst
features using Ref-burst adaptive feature fusion (RBAF). To train
and evaluate our method, we provide a new dataset of Ref-burst
pairs collected by commercial smartphones. The proposed method
achieves state-of-the-art performance compared to both existing
RefSR and BurstSR methods, and we demonstrate its effectiveness
through comprehensive experiments. The source codes and the
newly constructed dataset will be made publicly available for fur-
ther research.

CCS CONCEPTS
• Computing methodologies → Computational photography.

KEYWORDS
Low-level vision, Reference-based super-resolution, Burst super-
resolution.

1 INTRODUCTION
Burst photography has become popular in recent years with the in-
creasing use of smartphones. Since burst super-resolution (BurstSR)
utilizes sub-pixels in multi-frames, high-resolution (HR) images
can be obtained. One of the key challenges of BurstSR is to align
and fuse sub-pixels between frames into a base frame (i.e.the first
frame). However, due to different brightnesses or large movements
between frames, sub-pixels can be misaligned, leading to incorrect
results. On the other hand, reference-based super-resolution (RefSR)
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Reference

Base frame

BurstSR RefSR RefBSR

14th Burst frame

…

BurstSR RefSR RefBSR

Figure 1:We visualize the result for eachmethod. (Red dotted
box) The matched region between the Ref image and the LR
base frame. (Yellow dotted box) The region in the base frame
containing no correspondence with the Ref image. When
there are matched areas in the Ref image, our RefBSR pro-
duces results similar to RefSR, otherwise it produces results
similar to BurstSR. For better visualization, we convert the
Raw inputs to RGB format.

aims to reconstruct the low-resolution (LR) image with an extra
HR reference (Ref) image. The Ref image has a similar scene to the
LR image, but it is captured with different environments such as
equipment, location, and time. One of the core ideas in the RefSR
task is to align the Ref image based on the similarities between
the Ref and LR images. However, the results are degraded due to
inaccurate matching between the Ref and LR images. As shown
in Figure 1, the red dotted box in the Ref image corresponds to the
red dotted box in the LR frame. In the yellow dotted box in the
LR frame, there are no correspondences with the Ref image. As
shown in the RefSR result of the red dotted box, in the case there are
overlapping regions, the RefSR generates high-frequency textures
by transferring the detailed textures in the Ref image to the LR
frame. In contrast, the results of BurstSR suffer from a lack of detail.
On the other hand, in case of failed matching, the performance of

1
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the RefSR method is degraded as shown in the yellow dotted box. If
the RefSR method is less helpful due to failed matching, sub-pixels
of the burst frame can be utilized to recover the region as shown
in the yellow dotted box of the BurstSR result. These examples
demonstrate the advantages and disadvantages of each technique.

Based on the above observations, the goal of this paper is to
combine the strengths of each method and mitigate the weak-
nesses of them. In this regard, we introduce a new unexplored task:
reference-based burst super-resolution (RefBSR) that integrates the
two methods. The outcomes of RefBSR showcased in the red dotted
box in Fig. 1 preserve details of the window textures present in
the building. These results closely match the detailed outcomes
obtained from RefSR. On the other hand, the results of RefBSR
presented in the yellow dotted box show the textural details in the
exterior of the building, similar to the detailed results of BurstSR.
Therefore, our proposed RefBSR integrates the high-frequency tex-
ture from the Ref image and the multiple clues from the sub-pixels
in the burst frames.

To achieve a suitable fusion of the two approaches, we propose
the burst feature-aware Ref texture transfer (BRTT) module. The
BRTT module aligns the Ref feature using each burst feature in-
dividually into the grid of the base frame. At this point, Ref-burst
adaptive feature fusion (RBAF) is utilized to fuse the Ref and burst
features with adaptive weighting. Then, each Ref-burst feature is
fused together by the decoder to produce the final result. We have
the advantage of sending the Ref feature to every burst feature to
generate different alignment results. To train and test the proposed
RefBSR task, we provide a new RefBSR dataset. Using a commercial
smartphone camera, we collect a total of 2,287 pairs of datasets
containing burst frames and Ref images. The burst frames consist
of a natural hand tremor and the Ref image contains similar scenes
to the burst frames. Specifically, the Ref images are captured at
a variety of times and locations. We separate 2,002 pairs of im-
ages into a training set and 285 pairs of images into a test set. Our
contributions are summarized as follows.

• We introduce the first framework for reference-based burst
super-resolution (RefBSR).

• For the new RefBSR task, we design the burst feature-aware
Ref texture transfer (BRTT) and Ref-burst adaptive feature
fusion (RBAF) modules to adaptively fuse the Ref and the
burst features.

• We provide the RefBSR dataset containing pairs of RAW
burst frames and Ref images for training and testing.

2 RELATEDWORKS
2.1 Reference-based Super-Resolution
Reference-based super-resolution (RefSR) [9, 10, 18, 24, 27, 31–
34, 36–40], focuses on restoring super-resolution images by trans-
ferring the textures of additional Ref images. Useful textures in the
Ref image can be extracted by matching with the LR image, and it
is important to precisely align the matched Ref features. Zheng et
al. [39] suggested CrossNet estimates the optical flow between the
Ref and LR images and exploits multi-scale warping. To improve
matching performance, Zhang et al. [38] proposed SRNTT that
adopts a patch-matching approach. Furthermore, for better feature
matching and alignment, Yang et al. [32] proposed TTSR based on

a learnable texture transformer while Shim et al. [24] introduced
SSEN using a deformable convolution. For improving matching
efficiency, Lu et al. [18] proposed MASA consisting of coarse-to-
fine matching mechanisms. Based on the knowledge distillation
and contrastive learning, Jiang et al. [10] suggested 𝐶2-Matching
robust to the rotation and scale variations in the matching. Cao et
al.proposed DATSR [4] that replaces the previous multi-scale struc-
ture with the U-net structure and applied the Swin transformer [16].
Also, Huang et al.proposed that TDF [9] separates the two networks
into the SR network and RefSR network to mitigate misalignment
and misuse issues. Recently, Zhang et al.proposed that MRefSR [34]
utilizes the feature mechanism to selectively transfer the alignment
of the Ref image. Although RefSR is able to use the textures of the
Ref image to generate a more detailed result, its performance in the
regions that are not similar to the Ref image is inevitably degraded.

2.2 Burst Super-Resolution
In contrast to RefSR, burst super-resolution (BurstSR) [1–3, 6–
8, 12, 14, 19–22] exploits multiple shifted LR frames that contain
the same contents to recover the high-quality image. Therefore,
it is important to align features from multi-frames and aggregate
them in the BurstSR task. In recent years, many BurstSR approaches
based on deep learning have been proposed. For instance, Deudon et
al.proposed HighResNet [6] using multi-frames for remote sensing
images. Also, Bhat et al. [1] proposed DBSR based on PWC [26]
network for the feature alignment and aggregation using atten-
tion weights. For improving the performance, MFIR [2] using the
deep reparameterization of MAP and EBSR [20] based on the PCD
with multi-scales mechanism were suggested. Furthermore, Luo et
al. [19] introduced BSRT based on an optical flow estimator to
align more robustly with PCD [28] module. Recently, Mehta et
al. [22] proposed GMTNet that utilizes the attention mechanism to
generate the offset for better alignment with the deformable convo-
lution. Dudhane et al. [8] suggested Burstormer which utilizes local
and non-local information at multi-scale to improve alignment.
However, BurstSR can lead to incorrect results due to the large
movement in the scene. Furthermore, the resolution and quality of
RAW burst frames are limited. These drawbacks can be overcome
by utilizing techniques in RefSR, which can exploit high-frequency
textures from non-local and global regions. Therefore, in this paper,
we introduce a new reference-based burst super-resolution (Ref-
BSR) task to effectively fuse the Ref image and burst frames to
restore a high-quality image.

3 METHODS
3.1 Reference-Based Burst SR Framework
Reference-based burst super-resolution (RefBSR) aims to recover
a high-resolution image using burst frames and an external refer-
ence (Ref) image. To achieve this, we newly introduce a RefBSR
framework that integrates the burst frames and the Ref image. As
illustrated in Figure 2, our model takes a RAW Ref image 𝐼𝑟 and
burst frames I𝑏 = {𝐼𝑏𝑖 }𝑁𝑖=1 as inputs, where 𝑁 is the number of
burst frames. Then, it produces a super-resolved output 𝐼𝑠𝑟 that has
the same viewpoint as the first image (i.e. base frame) 𝐼𝑏1 in the
burst frame set I𝑏 .

2
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Figure 2: Overall architecture of reference-based burst super-resolution framework. Our proposed model takes burst frames
with the reference image and generates the super-resolved image. For better visualization, inputs and output are converted to
RGB images.

Figure 3: Illustration of the burst feature-aware Ref texture
transfer (BRTT) module. The BRTT module takes the flow
field 𝑉𝑏1→𝑟 , Ref feature 𝐹𝑟 , and one aligned burst feature
𝐹𝑏𝑖→𝑏1 to yield the burst feature-aware aligned Ref feature
𝐹 𝑖
𝑟→𝑏1

.

In Section 3.2, we first perform the base and reference frame
matching to obtain a flow field 𝑉𝑏1→𝑟 from the base frame to
the reference frame. In Section 3.3, we obtain burst feature-aware
aligned Ref features {𝐹 𝑖

𝑟→𝑏1
}𝑁
𝑖=1 by transferring a Ref feature to the

base frame based on burst frame features using the BRTT module.
The Ref feature 𝐹𝑟 is extracted from 𝐼𝑟 by VGG16 [25], while 𝑁

burst features {𝐹𝑏𝑖→𝑏1 }𝑁𝑖=1, which are aligned to the base frame,
are extracted from I𝑏 by FG-DCN [5, 19]. In Section 3.4, we de-
velop the Ref-burst adaptive feature fusion to combine {𝐹 𝑖

𝑟→𝑏1
}𝑁
𝑖=1

and {𝐹𝑏𝑖→𝑏1 }𝑁𝑖=1 effectively. Last, the decoder generates the super-
resolved frame 𝐼𝑠𝑟 from the fused feature.

3.2 Base and Reference Frame Matching
In order to transfer the texture from the Ref image 𝐼𝑟 to the low-
resolution base frame 𝐼𝑏1 effectively, it needs to find correspon-
dences between 𝐼𝑟 and 𝐼𝑏1 . We first obtain a base frame matching
feature 𝑀𝑏1 = 𝜙 (𝐼𝑏1 ) and a Ref matching feature 𝑀𝑟 = 𝜙 (𝐼𝑟 ) by
employing a feature extractor 𝜙 (·) in [23]. Then, we compute the
patch-based correlation between features𝑀𝑏1 and𝑀𝑟 to obtain the
flow filed𝑉𝑏1→𝑟 for matching from the base frame to the Ref frame.
The correlation at pixel x for a flow vector v is defined as

𝐶 (x, v) =
∑︁

p∈[−𝑘,𝑘 ]×[−𝑘,𝑘 ]
𝑀𝑏1 (x + p)𝑇𝑀𝑟 (x + p + v), (1)

where 2𝑘 + 1 is a patch size. Thus, 𝐶 (x, v) denotes the correlation
between patches centered at x in𝑀𝑏1 and centered at x + v in𝑀𝑟 .
Note that we compute all correlations between every pixel in the
base and Ref frames for global matching. Then, the flow vector
𝑉𝑏1→𝑟 (x) for pixel x is defined as

𝑉𝑏1→𝑟 (x) = argmax
v

(𝐶 (x, v)) . (2)

3.3 Burst Feature-Aware Ref Texture Transfer
The next step is to transfer the rich textures in the Ref image 𝐼𝑟
into the grid of the base frame 𝐼𝑏1 . For this purpose, we introduce
the burst feature-aware Ref texture transfer (BRTT) that exploits
the sub-pixel information in burst features for texture transfer of
the Ref frame. The BRTT module takes the flow filed 𝑉𝑏1→𝑟 , Ref
feature 𝐹𝑟 , and one of the aligned burst features 𝐹𝑏𝑖→𝑏1 as inputs,
as shown in Figure 3.

BRTT first obtains a flow-based aligned Ref feature for each pixel
x through backward warping, which is expressed as

𝐹𝑟→𝑏1 (x) = 𝐹𝑟 (x +𝑉𝑏1→𝑟 (x)) . (3)
3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Reference

Base frame

Fusion Weights for Reference

Burst frame Fusion Weights for Burst

Figure 4: Visualization of the Ref and burst weights. The
correspondence between the Ref and base frame is illustrated
as the red box. No overlapping region is represented with the
yellow box.

Figure 5: Illustration of the Ref-burst adaptive feature fusion
module. The adaptive feature weight map 𝐴 is generated to
fuse aligned Ref and burst features effectively.

Here, 𝐹𝑟 (x +𝑉𝑏1→𝑟 (x)) is computed by bilinear interpolation. Con-
sidering that some pixels in the base framemay not be well matched
to the Ref frame, we refine the flow𝑉 𝑖

𝑏1→𝑟
by exploiting the aligned

burst feature 𝐹𝑏𝑖→𝑏1 . Thus, 𝐹𝑟→𝑏1 and 𝐹𝑏𝑖→𝑏1 are concatenated
and processed by a 3 × 3 convolution layer to obtain the dynamic
flow-based offset (DFO) �̃� 𝑖

𝑏1→𝑟
, which is given by

�̃� 𝑖
𝑏1→𝑟

= Conv( [𝐹𝑟→𝑏1 , 𝐹𝑏𝑖→𝑏1 ]) +𝑉𝑏1→𝑟 , (4)

where Conv(·) and [·, ·] denote the convolution and concatenation
operations. We adopt a deformable convolution to generate a burst
feature-aware aligned Ref feature

𝐹 𝑖
𝑟→𝑏1

= DCN(𝐹𝑟 , �̃� 𝑖
𝑏1→𝑟

) (5)

where DCN is a function for the deformable convolution and the
dynamic flow-based offset �̃� 𝑖

𝑏1→𝑟
is used in the deformable con-

volution. BRTT is repeated for each burst feature, and thus burst
feature-aware aligned Ref features {𝐹 𝑖

𝑟→𝑏1
}𝑁
𝑖=1 are obtained.

3.4 Ref-Burst Adaptive Feature Fusion
We combine the aligned Ref and burst features {(𝐹 𝑖

𝑟→𝑏1
, 𝐹𝑏𝑖→𝑏1 )}𝑁𝑖=1

to integrate the information of high-frequency texture in the Ref
image and multiple clues of the sub-pixels in the burst frames. Even
though the two features can be simply concatenated for the feature
fusion, we expect the feature fusion to be enhanced by assigning

adaptive weights along feature channels for each position. For in-
stance, in Figure 4, a crosswalk in the yellow box in the base frame
is not well visible in the Ref frame unlike another burst frame. For
those regions, it is reliable to assign higher weights to the burst
feature than the Ref feature. In contrast, visible regions such as the
red box should contain higher weights on the Ref feature to exploit
the high-frequency texture information in the Ref frame.

For the adaptive feature fusion of Ref and burst features, we
design multi-scale convolution layers to estimate adaptive fusion
weights as illustrated in Figure 5. Specifically, Ref and burst features
in each pair are concatenated, i.e.[𝐹 𝑖

𝑟→𝑏1
, 𝐹𝑏𝑖→𝑏1 ], and the concate-

nated feature is fed into four branches, where the four branches
deal with different scales (1, 1/2, 1/4, and 1/8 scales). Then, we con-
catenate four branch outputs and apply the point-wise convolution
followed by an activation function to generate the adaptive fusion
weight map 𝐴. Fig. 4 visualize the adaptive fusion weight map for
the Ref frame and one of the burst frame. Here, adaptive fusion
weights for the Ref feature are computed by averaging weights
along the first half of the channels in 𝐴, while the other half of
the channels are used for the burst frame. As illustrated in Fig. 4,
positions near a sculpture in the red box, where it is visible in the
Ref frame, contain higher weights in the Ref frame than the burst
frame. On the other hand, invisible regions such as a crosswalk in
the pink box provide lower weights for the Ref frame.

Next, we compute a weighted feature 𝐹 𝑖𝑤 using the adaptive
fusion weight map 𝐴 as

𝐹 𝑖𝑤 = 𝐴 ⊗ [𝐹 𝑖
𝑟→𝑏1

, 𝐹𝑏𝑖→𝑏1 ] + [𝐹 𝑖
𝑟→𝑏1

, 𝐹𝑏𝑖→𝑏1 ] (6)

where ⊗ denotes an element-wise multiplication operation. To this
end, theweighted feature 𝐹 𝑖𝑤 is processed by a convolution layer and
a residual block to yield a fused Ref-burst feature 𝐹 𝑖

𝑓
. We repeat the

adaptive feature fusion process for all pairs {(𝐹 𝑖
𝑟→𝑏1

, 𝐹𝑏𝑖→𝑏1 )}𝑁𝑖=1,
resulting in 𝑁 fused features {𝐹 𝑖

𝑓
}𝑁
𝑖=1. Finally, the 𝑁 fused features

are concatenated and processed by the decoder to produce the
super-resolved frame 𝐼𝑠𝑟 . A detailed explanation of the decoder is
in the supplementary material.

3.5 RefBSR Dataset
To accomplish our goal of reference-based burst super-resolution,
we construct a new dataset, called RefBSR, for the training and
testing stages.

For dataset construction, we first capture 232 pairs of RAW Ref
and burst images using the custom camera app in iPhone 14 pro.
Specifically, we obtain 14 burst frames for each sample using con-
tinuous shooting. To collect Ref images, we take a picture of scenes
with different locations, viewpoints, and time from the burst frames.
Unlike the BurstSR dataset [1], we collect the dataset by hand with-
out a tripod for realistic hand tremors. In other words, some burst
frames in our dataset may contain motions with each other due to
hand tremors.

Since the captured images are in RAW format, we transform
the first burst frames and Ref images into 3-channel color images
through demosaicking, where the transformed first burst frames
are used as the ground truth (GT). For LR images, the burst frames
are downsampled ×1/4 by bicubic interpolation with the Bayer

4
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Table 1: Qualitative comparison of the proposed method with SISR, RefSR, BurstSR, and RefBSR methods. † indicates the
feature extractor [10] is replaced with [23]. The best result is boldfaced.

Synthetic dataset RefBSR dataset
Method PNSR SSIM LPIPS PSNR SSIM LPIPS

SISR Bicubic 27.24 0.709 0.311 36.19 0.878 0.133
SwinIR [15] 37.39 0.922 0.108 42.97 0.963 0.082

RefSR
𝐶2-Matching [10] 39.15 0.946 0.066 42.23 0.956 0.076

MASA [18] 41.63 0.965 0.043 43.56 0.965 0.066
DATSR [4] 43.36 0.977 0.023 - - -

MRefSR [34] 42.87 0.973 0.023 42.74 0.960 0.068
MRefSR† 43.02 0.976 0.022 43.63 0.965 0.057

BurstSR
DBSR [1] 39.17 0.946 0.081 44.23 0.969 0.076
MFIR [2] 41.56 0.964 0.045 45.04 0.973 0.054

RBSR [30] 42.44 0.970 0.034 45.88 0.977 0.047
Burstormer [8] 42.83 0.970 - 43.83 0.968 0.031

RefVSR RefVSR [13] 39.88 0.954 0.062 44.25 0.969 0.067
RefBSR Ours 44.21 0.978 0.020 46.49 0.980 0.030

pattern, resulting in the scale factor ×8. To construct pairs of Ref
and burst images for the new dataset, the Ref and GT images are
divided into 640×640 patches, while the downsampled burst frames
are divided into 80×80 patches. Then, we only take pairs that satisfy
the sufficient similarity between the GT and Ref images. For this
purpose, we adopt the SIFT [17] algorithm to extract the features
from the GT and Ref images and perform the brute force matching
between a patch from GT and all patches from the Ref image. We
then discard patch pairs whose matched features are fewer than 50.
To this end, our new dataset consists of 2,287 pairs of Ref and burst
images, which are divided into 2,002 training and 285 testing pairs.

4 EXPERIMENTS
4.1 Training Details
Datasets and Evaluation. For both training and testing, we use
the representative synthetic burst dataset [1], as well as our Ref-
BSR dataset as introduced in Section 3.5. Given that the existing
synthetic burst dataset [1] exclusively provides burst frames, we
generate the synthetic Ref images. We apply a random perturbation
to the GT images between 0-20 to create Ref images as introduced
in [10]. The synthetic dataset provides input burst frames of size
4×96×96 with a Bayer pattern and Ref images of size 3×384×384.
The size of GT image is also 3×384×384. In consequence, we utilize
46,839 pairs for the training dataset and 300 pairs for the testing set.
We employ PSNR, SSIM [29], and LPIPS [35] metrics for evaluation.
Note that all methods are evaluated on the linear sensor space.
Results are evaluated on the linear sensor for the metrics.

Implementation details. To ensure smooth training, we first train
the proposed network with the synthetic dataset, and then train
it with the RefBSR dataset. We set epoch to 80 and batch size to
16 for training with the synthetic dataset. We select ADAM [11]
as the optimizer and set the learning rate to 1e-4 and the betas to
𝛽1 = 0.9 and 𝛽2 = 0.99. For training with the RefBSR dataset, we
opt for the same setting with the optimizer, learning rate and betas
as the synthetic dataset, while we set epoch to 130 and batch size

to 8. The proposed model is trained using the 𝐿1 loss

𝐿1 = | |𝐼𝑠𝑟 − 𝐼𝑔𝑡 | |1 (7)

where 𝐼𝑠𝑟 and 𝐼𝑔𝑡 denote the super-resolved result and the ground-
truth, respectively. Our method is trained for about 3 to 4 days with
A6000 GPUs.

4.2 Comparisons with Existing Methods
Quantitative Comparison. We compare our method with the
SISR [15], RefSR [10, 34], BurstSR [1, 2, 8], and RefVSR [13] methods.
Note that RefBSR is a newly unexplored task, and thus we pick
the state-of-the-art SISR, RefSR, and BurstSR, RefVSR to validate
the effectiveness of the proposed network. For fairness, all existing
methods are firstly trained with the synthetic dataset and then
trained on the RefBSR dataset as done in our model training. We
train SISR methods using the base frame only, Also, RefSR methods
are trained with the base and Ref images, while BurstSR methods
are trained with all burst frames.

Table 1 shows quantitative results on the synthetic and the Ref-
BSR datasets. In the RefSR method,𝐶2-Matching [10] and LMR [34]
provide a lower performance than SwinIR [15] on the RefBSR
dataset, and we assume that the feature extractor for matching
in [10] degrades the performance. LMR† indicates another exper-
iment with different feature extractor [23] for matching. When
the feature extractor in LMR is replaced with the more effective
feature extractor [23], LMR† outperforms SwinIR on the RefBSR
dataset. In BurstSR methods, since Burstormer [8] does not utilize
the flow estimator, it yields a lower performance than the previ-
ous BurstSR models [1, 2] on the RefBSR dataset, which contains
realistic movements. Finally, our proposed method outperforms
the existing methods for all metrics on both synthetic and RefBSR
datasets. This indicates that our model effectively combines the
high-frequency texture from the Ref image and the multiple sub-
pixel cues in the burst frames. Comparing our RefBSR model to the
second best method MFIR [2], we achieve a performance improve-
ment of over 1.45dB in terms of PSNR on the RefBSR dataset.
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Figure 6: Qualitative comparison with SwinIR [15], LMR [34], MFIR [2], Burstormer [8], and on RefBSR dataset. The results of
our model have more detailed content. The base frame and the Ref image are converted to RGB for better visualization.

Qualitative Comparison. Figure 6 shows qualitative results of
the proposed method, and the state-of-the-art models including
SwinIR [15], LMR [34], and MFIR [2] on the RefBSR dataset. Our
model faithfully recovers detailed textures by fusing multiple LR
frames and the Ref image. For instance, in the 3rd row, even though
the Ref image and LR base frame contain different brightness, the
textures of the structure in our model are visible more clearly than
in other models. Also, in the last row, our result contains high-
fidelity letters, e.g.‘2023’, as compared with other methods.

4.3 Ablation Study
To demonstrate the effectiveness of our proposed model, we per-
form ablation studies on the synthetic and the RefBSR dataset.
In Table 2, we design the baseline model Base without the aligned
burst feature in (4) in the BRTT module and without the RBAF
module. Thus, in Base, only Ref feature is used to update the flow
filed 𝑉𝑏1→𝑟 in (4) without the information of burst features. Also,
in Base, we concatenate the aligned burst and Ref features and pass
it to the RSB blocks without the RBAF module. Next, DFO+Base
indicates that the dynamic flow-based offsets (DFO) are included in
Base, which is equivalent to the proposed model without the RBAF
module. Finally, RBAF+DFO+Base is the final version of our model.

Table 2: Ablation study for the proposed BRTT and RBAF
modules. Base, DFO and RBAF indicate the baseline, the dy-
namic flow-based offset with the aligned burst feature in
BFTT, and the RBAF module, respectively. The best result is
boldfaced.

Dataset Synthetic Dataset RefBSR Dataset
Method PNSR SSIM LPIPS PNSR SSIM LPIPS

Base 43.72 0.976 0.022 46.33 0.977 0.033
DFO + Base 43.94 0.977 0.021 46.41 0.978 0.031

RBAF + DFO + Base 44.21 0.978 0.020 46.49 0.980 0.030

In Table 2, we observe that the performance gradually increases on
the synthetic and RefBSR datasets as we add each module one by
one. Further analysis of each method is detailed in the following
explanations.
Analysis on BRTT Module.We assert that various aligned ref-
erence features can be obtained by exploiting the burst features,
and those burst feature-aware Ref features transfer rich textures
in the Ref image to the base frame effectively. In Tab. 2, when we
add the aligned burst features to generate the dynamic flow-based
offsets (DFO+Base), there is a performance improvement against
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Figure 7: Visualization of the warped Ref images and SR
results using Base and DFO+Base.
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Figure 8: SR results of the proposedmethod with andwithout
the RBAF module. By using the RBAF module, detailed and
structural textures are better restored.

Base on both synthetic and RefBSR datasets. Also, Figure 7 com-
pares warped Ref images (top row) and SR results (bottom row)
of Base and DFO+Base. The warped Ref images are obtained by
backward warping from the Ref image to the base frame using
estimated offsets in (4). We can observe that the textures of the
letter are well restored by the DFO+Base than Base on both warping
and SR results. It indicates that the proposed BRTT yields more
accurate offsets by exploring burst features, resulting in visually
pleasing SR results.
Analysis on RBAF Module. By applying the adaptive weights
to the aligned Ref feature and the aligned burst feature, the RBAF
module ensures that the two features are fused properly. In Tab. 2,
we verify the effectiveness of the RBAF module in terms of quanti-
tative results on both datasets. As shown in Figure 8, when we add
the RBAF module to DFO+Base, RBAF+DFO+Base exhibits more
faithful restoration. Specifically, the structure of the windows of
Base+DFO+RBAF on two scenes is clearly reconstructed. These vi-
sual results, as well as the quantitative results, demonstrate that the
proposed RBAF module focuses more on the important information
in each feature.

Table 3: Ablation study of fusion method. The individual
fusion method outperforms the group fusion method. The
best result is boldfaced.

Synthetic dataset RefBSR dataset
Method PSNR SSIM LPIPS PSNR SSIM LPIPS
Group fusion 43.81 0.976 0.022 46.03 0.976 0.035

Individual fusion 44.21 0.976 0.020 46.49 0.980 0.030

Reference

Base frame Individual FusionGroup Fusion Ground Truth

Figure 9: Qualitative comparisons between the group fusion
and the individual fusion methods. The individual fusion
method provides more detailed textures.

4.4 Further Analysis
Approach of Ref-Burst Fusion. To combine the aligned burst
and the Ref features, it is an issue “how” to integrate burst and Ref
features. One of the naive approaches is that all burst features are
concatenated and then the Ref feature is fused to the simply aggre-
gated burst feature. We refer to this approach as the group-fusion
method. Specifically, in the group-fusion method, the aligned burst
feature in (4) for BRTT and (6) for RBAF is replaced with the simply
aggregated burst feature. Another option is the individual-fusion
method that fuses the Ref feature to each burst feature, which is
adopted in our model. Table 3 quantitatively compares the SR per-
formance of the group and individual fusion methods. We see that
the individual fusion approach is more effective than the group
method. The advantage of individual fusion over group fusion is
that we can obtain dynamic flow-based offsets using individual
burst features. In contrast, the group fusion provides only one
offset for the alignment of Ref image. These dynamic flow-based
offsets work well to exploit sub-pixel information in multiple burst
frames, and thus remarkable performance is achieved. Furthermore,
Figure 9 illustrates that the individual fusion method produces rela-
tively sharper results than the group method. These observations
demonstrate that the individual fusion method is more effective
than the group fusion method.
Effect of Reference and Burst Frame. To validate our RefBSR
framework, we investigate experiments without the Ref image or
the burst frames. First, we design the modified version of our model
without the Ref image. Therefore, the modified model serves as the
BurstSR model. Second, we construct our model without the burst
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Table 4: Further analysis on RefSR, BurstSR and RefBSR for
our model. BurstSR mode is the model that only takes burst
frames as input. RefSR mode is the model that takes the
base frame and the Ref image. RefBSR mode is the proposed
framework that uses both burst frames and Ref image. The
best result is boldfaced.

Synthetic dataset RefBSR dataset
Mode PSNR SSIM LPIPS PSNR SSIM LPIPS

BurstSR 42.23 0.968 0.035 45.46 0.976 0.048
RefSR 42.04 0.968 0.034 43.64 0.965 0.066

RefBSR 44.21 0.978 0.020 46.49 0.980 0.030

Table 5: Quantitative results based on the similarity of be-
tween the base and Ref images. We divide samples into three
similarity levels according to the random perturbation. The
best result is boldfaced.

Synthetic dataset
Similarity Level PSNR SSIM LPIPS

Hard (20-30) 43.64 0.975 0.024
Medium (10-20) 44.03 0.977 0.021

Easy(0-10) 44.37 0.978 0.020

frames. In this case, the model without burst frames takes only a
single base frame and the Ref image, which is equivalent to RefSR.
In Table 4, we observe that the proposed RefBSR framework, which
fuses the RefSR and BurstSR, achieves the best performance. This
indicates that our RefBSR framework effectively combines the two
approaches.
Effect of Similarity between Base and Reference Images. We
analyze the effect of the similarity between the base and Ref images.
When we construct the synthetic dataset as described in Section 4.1,
we employ a random permutation to the ground-truth image for
generating Ref images. In the Ref image generation process, we
divide the samples into three similarity levels according to the
permutation by following [10]: easy (0-10), medium (10-20), and
hard (20-30). Table 5 shows that the performance of our model
gradually increases as the similarity between base and Ref images
increases. This trend demonstrates that our model exploits the
reference information effectively.
Dual Camera Setting. Our model readily extends to the Dual lens
setting.We conduct analyses on dual rigs. For this system, we collect
a total of 72 sets of datasets by configuring bursts to wide-angle
and utilizing Ref as telephoto image. In the dual camera setting,
RefSR encounters a challenge due to the absence of correspondences
between the wide-angle as the burst frames and the telephoto as
the Ref image, leading to a degradation in quality. One plausible
approach to address this issue is to consider employing burst frames
in regions lacking correspondences. As demonstrated in Table 6,
our model exhibits superior performance compared to previous
RefSR, BurstSR, RefVSR method. Furthermore, in the Figure 10, we
observe remarkably sharp results in the areas overlapping with
Ref. Moreover, in the non-overlapping regions with Ref, there is
sufficient utilization of burst frames to capture detailed information.

Table 6: Quantitative results based on dual camera setting.
The best result is boldfaced.

Dual camera dataset
Method PSNR SSIM LPIPS

MASA [18] 45.89 0.983 0.027
LMR [34] 45.65 0.981 0.029
DBSR [1] 47.58 0.988 0.027
MFIR [2] 48.51 0.990 0.017

Burstormer [8] 47.64 0.989 0.020
RefVSR [13] 47.45 0.987 0.021

Ours 50.75 0.993 0.009

MASA MFIR RefVSR OursBurst(Wide)/Ref(Tele)

Figure 10: Qualitative comparisons on dual camera setting.
The yellow dotted box indicates the tele-photo (Ref). The
entire image represents the wide-angle photo (burst).

These results demonstrate that our model operates robustly in dual
camera system.

5 CONCLUSION
We introduce a new framework for the reference-based super-
resolution (RefBSR) with a new dataset. The proposed RefBSR
framework reconstructs the super-resolved image using the low-
resolution burst frames and the reference image as the inputs. For
this purpose, the burst feature aware Ref texture transfer (BRTT)
module conveys the fine texture in the reference image to each
burst feature. To achieve the reference alignment, we utilize the
burst feature to obtain the wide range of the aligned reference fea-
ture in the BRTT module. The ref-burst adaptive feature Fusion
(RBAF) gives the attention weights to each aligned burst-reference
feature and fuses them. We provide a new dataset for the RefBSR
task consisting of pairs of the RAW burst frames, the reference
image and the ground truth image. Extensive experiments verify
our framework and modules on the proposed dataset.
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