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This supplementarymaterial discusses further details of the reference-
based burst super-resolution (RefBSR). In Section A, we explain
more details of the proposed architecture. In Section B, we provide
more analysis of our proposed method and dataset. Section C shows
more results of our model with the state-of-the-art methods.

A DETAIL OF REFBSR ARCHITECTURE
In this section, we describe our proposed network architecture
in detail. Firstly, our model contains an encoder that takes the
burst frames I𝑏 as input. The encoder extracts the feature of the
burst frames and aligns each burst frame 𝐼𝑏𝑖 to the base frame
𝐼𝑏1 grid. Specifically, we extract each burst feature using a Swin
transformer group comprising six Swin transformer blocks [5].
Since burst features are not aligned, we estimate the flow and then
align each burst feature as following in [6]. Accordingly, we obtain
the aligned burst features {𝐹𝑏𝑖→𝑏1 }𝑁𝑖=1. On the other hand, our
network contains a decoder to aggregate all fused Ref-burst features
𝐹 𝑖
𝑓
and generate the final output. All Ref-burst features {𝐹 𝑖

𝑓
}𝑁
𝑖=1 are

concatenated and then fused via point-wise convolution. After
that, the pixelshuffle upsampling operation following five Swin
transformer groups reconstructs the final output.

B ADDITIONAL ANALYSIS
More Analysis of BRTT. We discuss more detailed results to
generate the burst feature-aware aligned Ref feature in the BRTT
module. we build the three variations to further verify the burst
feature-aware aligned Ref feature. In Table 4, ‘+𝐹𝑟→𝑏1 ’ model indi-
cates the model only without the aligned burst feature 𝐹𝑏𝑖→𝑏1 in the
main manuscript (4). In other words, there is no awareness of the
burst features to align the Ref feature. Another variant, ‘+𝐹𝑏𝑖→𝑏1 ’ is
the model without the flow-based aligned Ref feature 𝐹𝑟→𝑏1 in (4).
Finally, ‘+𝐹𝑟→𝑏1 + 𝐹𝑏𝑖→𝑏1 ’ is the final model. Our model demon-
strates enhanced performance when employing the aligned burst
and the flow-based aligned Ref feature.
More Analysis of RBAF.We provide additional analysis on the
adaptive fusion weight map 𝐴 in the RBAF module. We build the
variant that explicitly utilizes the confidence map instead of apply-
ing the weight map𝐴 in the RBAF module. The Ref confidence map
can be derived by applying a max operation to the correlations in
the base and reference matching step. In contrast, the Ref confi-
dence map is inverted for the burst confidence map. Table 5 shows
the ‘Confidence’ model, which replaces the weight map 𝐴 in (6)
with two confidence maps. Another variant, the ‘Confidence+Conv’
model, applies a convolutional layer to each confidence map. The
last method is our proposedmethodwith the adaptive fusion weight
map 𝐴. As indicated in Table 5, the RBAF module with the adaptive
fusion weight map 𝐴 demonstrates better performance.
Effectiveness of RefBSR Dataset. To further substantiate the
effectiveness of our dataset, we train our model with each dataset

Table 1: Effectiveness of multiple reference images.

Dataset RefBSR Dataset
Method PNSR SSIM LPIPS
1 Ref 42.63 0.960 0.034
2 Refs 43.09 0.964 0.033
3 Refs 43.22 0.965 0.033

Table 2: Effectiveness of burst frames.

Dataset RefBSR Dataset
Method PNSR SSIM LPIPS

RefSR 43.64 0.965 0.066
Burst 3 + Ref 44.92 0.972 0.043
Burst 7 + Ref 46.08 0.976 0.032
Burst 14 + Ref 46.49 0.980 0.030

Table 3: Computational cost.

Method Params(M) GMac RT(ms)
C2-Matching [4] 7.6 220 56

LMR [7] 23.7 647 73
DBSR [1] 13.0 236 430
MFIR [2] 12.1 220 420

Burstormer [3] 3.5 185 70
Ours 10.6 881 188

and test it on the RefBSR dataset. In Table 6, ‘Only synthetic’ indi-
cates our model is trained using only synthetic dataset and tested
on the RefBSR dataset. In contrast, ‘Only RefBSR’ is our model
trained with only the RefBSR dataset and evaluated on the Ref-
BSR dataset. The last row is our proposed training strategy that
trains our model with the synthetic dataset and then finetunes with
the RefBSR dataset. The results indicate that training solely on
the RefBSR dataset yields considerable improvement. Notably, our
proposed training strategy shows the most superior performance.
Effectiveness of Burst Frames.We further investigate the per-
formance of our model based on the number of burst frames. As
indicated in Table 2, ‘RefSR’ denotes the utilization of the base
frame with the Ref image. ‘Burst3+Ref’ means the usage of three
burst frames and the Ref image as inputs. Similarly, ‘Burst7+Ref’
indicates the input comprises seven burst frames and the Ref image.
Lastly, ‘Burst14+Ref’ denotes the model utilizing all burst frames
and the Ref image. Table 2 shows that as the number of frames
increases, generally the performance also increases.
Effectiveness of Multiple References. We investigate the effec-
tiveness of multiple Ref images. We manually construct a subset
containing multiple Ref images from the RefBSR dataset. To build
the subset, multiple Ref images are selected from a similar scene in
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Table 4: More analysis of BRTT.

Dataset RefBSR Dataset
Method PNSR SSIM LPIPS

+𝐹𝑟→𝑏1 46.37 0.977 0.031
+𝐹𝑏𝑖→𝑏1 46.40 0.978 0.032
+𝐹𝑟→𝑏1+𝐹𝑏𝑖→𝑏1 46.49 0.980 0.030

Table 5: More analysis of RBAF.

Dataset RefBSR Dataset
Method PNSR SSIM LPIPS

Confidence 46.36 0.978 0.035
Confidence + Conv 46.37 0.979 0.034
Weight map 𝐴 46.49 0.980 0.030

Table 6: Effectiveness of RefBSR dataset.

Dataset RefBSR Dataset
Method PNSR SSIM LPIPS

Only synthetic 38.98 0.922 0.081
Only RefBSR 44.40 0.969 0.074
Ours 46.49 0.980 0.030

the RefBSR dataset. Thus, a single set consists of 14 burst frames, 3
Ref images and a ground-truth image. The subset provides a total of
10 sets. The multiple Ref images in the single set are concatenated
as the input. We evaluate the performance improvements based
on the number of Ref images. As shown in Table 1, ‘1 Ref’ is only
the usage of the single Ref image and 14 burst frames. Similarly, ‘2
Refs’ denotes that 2 Ref images and 14 burst frames are the inputs.
Finally, ‘3 Refs’ indicates that 3 Ref images and 14 burst frames are
the inputs. It is observed that as the number of Ref images increases,
performance also improves.
Computational Cost. Furthermore, we compare computational
cost with𝐶2-Matching [4], LMR [7], DBSR [1],MFIR [2], Burstormer [3].
We measured the complexity of the model in terms of parameters,
MACs, and runtime. As shown in Table 3, our model requires fewer
parameters compared to the state-of-the-art RefSR models such as
LMR and MFIR.

C MORE QUALITATIVE COMPARISON
In this part, we visualize more results with state-of-the-art models.
We compare our model with SwinIR [5], MRefSR [7], MFIR [2]
and Burstormer [3]. As shown in Figure 1 Figure 2 Figure 3, it

can be observed that the base frame and the Ref image differ in
brightness and viewpoint. In a comparison between the outputs of
our model and other models, our results demonstrate a relatively
higher detail of the textures. These results prove that our model
leverages information from the burst frames and the Ref image.
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Figure 1: More qualitative comparison with SwinIR [5], LMR [7], MFIR [2] and Burstormer [3] on RefBSR dataset.
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Figure 2: More qualitative comparison with SwinIR [5], MRefSR [7], MFIR [2] and Burstormer [3] on RefBSR dataset.
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Figure 3: Qualitative comparison with SwinIR [5], MRefSR [7], MFIR [2] and Burstormer [3] on RefBSR dataset.
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