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ABSTRACT
Multimedia content is of predominance in the modern Web era.
Many recommender models have been proposed to investigate how
to incorporate multimodal content information into traditional col-
laborative filtering framework effectively. The use of multimodal
information is expected to provide more comprehensive informa-
tion and lead to superior performance. However, the integration
of multiple modalities often encounters the modal imbalance prob-
lem: since the information in different modalities is unbalanced,
optimizing the same objective across all modalities leads to the
under-optimization problem of the weak modalities with a slower
convergence rate or lower performance. Even worse, we find that
in multimodal recommendation models, all modalities suffer from
the problem of insufficient optimization. To address these issues,
we propose a Counterfactual Knowledge Distillation (CKD) method
which could solve the imbalance problem and make the best use of
all modalities. Through modality-specific knowledge distillation,
CKD could guide the multimodal model to learn modality-specific
knowledge from uni-modal teachers.We also design a novel generic-
and-specific distillation loss to guide the multimodal student to
learn wider-and-deeper knowledge from teachers. Additionally, to
adaptively recalibrate the focus of the multimodal model towards
weaker modalities during training, we estimate the causal effect
of each modality on the training objective using counterfactual
inference techniques, through which we could determine the weak
modalities, quantify the imbalance degree and re-weight the distil-
lation loss accordingly. Our method could serve as a plug-and-play
module for both late-fusion and early-fusion backbones. Extensive
experiments on six backbones show that our proposed method can
improve the performance by a large margin.

CCS CONCEPTS
• Information systems→ Recommender systems; Personal-
ization; Multimedia and multimodal retrieval.

KEYWORDS
Multimedia Recommendation, BalancedMultimodal Learning, Knowl-
edge Distillation

1 INTRODUCTION
Online platforms rely heavily on recommendation systems to sug-
gest products, services, and content based on users’ preferences
and behaviors. Nowadays, a large portion of Internet content is
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Figure 1: A pilot study of differentmodel variants onAmazon-
Clothing. The shaded area indicates the degree of under-
optimization of each modality (best viewed in color). With
the use of early stopping, the training terminates at different
steps, which results in the different lengths of curves.

represented in multiple modalities, including images, texts, videos,
etc. Multimedia recommendation has garnered increasing attention
from researchers in recent years. Many early researches [11, 18, 31,
37, 43] follow late-fusion paradigm, which models user preferences
towards each modality individually and then fuse them through
summation or concatenation. Recent researchers [1, 12, 44, 52] try
to adopt early-fusion which could model fine-grained inter-modal
interactions and achieve better performance. For example, EgoGCN
[1] performs edge-wise modulation fusion, adaptively distilling the
most informative inter-modal messages to spread while preserving
intra-modal processing.

The use of multimodal information is expected to provide a more
comprehensive understanding of user preferences and subsequently
yielding superior recommendation performance. However, recent
researches [24, 32] find that optimizing the same objective for differ-
ent modalities leads to the under-optimization problem of the weak
modalities with slower converge rate or lower performance, which
is named as modal imbalance problem. In multimedia recommen-
dation, this phenomenon still exists and is even more pronounced
since the information contained in different modalities is highly un-
balanced. Taking the e-commerce scenario of the Amazon dataset
[21] as an example, since the textual modality contains more de-
tailed information such as the titles, categories, and descriptions of
items, it converges faster with better performance compared with
the visual modality [44]. This gap leads to significant under-
optimization issues in multimodal recommendation models.
We conduct a pilot study to validate this. Based on Figure 1 (please
refer to Section 2.3 for more experiment details and findings), we
could find that both visual and textual performance within the
multimodal model is worse than that in the uni-modal models, i.e.,
visual-only and textual-only model, respectively.

1
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To this end, recent researches [24, 32] try to modulate the learn-
ing speed of different modalities. However, these methods require
an explicit distinction between the parameters of the different mod-
els and thus are only applied to late-fusion models. In this work, we
propose Counterfactual Knowledge Distillation framework, CKD
for brevity, to solve the imbalance problem and make the best use
of all modalities for both late-fusion and early-fusion models. The
overall framework of our proposed CKD is shown in Figure 2. (1)
We first utilize uni-modal models as teachers to guide the multi-
modal student through modality-specific knowledge distillation.
(2) Secondly, we design generic-and-specific distillation losses to
guide the multimodal student models to learn wider-and-deeper
knowledge about both universal and training triples from teachers.
(3) Finally, to adaptively focus more on weaker modalities with slow
converge rate, we employ counterfactual inference techniques to
estimate the causal effect of each modality on the training objective,
through which we could determine the weak modalities, quantify
the imbalance degree and re-weight the distillation loss accordingly.
Since the above operations only involve the input and output of
the backbone models, CKD treats them as black-boxes, which is
model-agnostic and could be served as a plug-and-play module for
any existing multimedia recommendation backbones.

We conduct extensive experiments to verify the effectiveness of
our proposed method on four public real-world recommendation
datasets. Experimental results demonstrate that our proposed CKD
gains significant improvements when plugged into six state-of-the-
art models.

To summarize, the main contribution of this work is threefold:

• We argue that the existingmultimodal recommendationmod-
els suffer severely from the modality imbalance problem and
all modalities are under-optimized and far from reaching the
upper bound of their capabilities.

• We propose a novel Counterfactual Knowledge Distillation
framework which could serve as a plug-and-play module
for any existing multimedia recommendation backbones to
solve the imbalance problem and make the best use of all
modalities.

• We perform extensive experiments on four public datasets
when plugged into six backbones. The empirical results vali-
date the effectiveness of our proposed model.

2 PRELIMINARIES
In this section, we first introduce the notations and formulate the
multimedia recommendation task. Then, to motivate our model
design, we conduct simple and intuitive experiments to show that
multimodal models suffer from the imbalance problem. Finally, we
analyze the imbalance problem from the optimization perspective.

2.1 Notations
We use the notation U and I to represent the sets of users and
items, respectively. The number of items is denoted as 𝑛 = |I |. Each
user 𝑢 ∈ U has interacted with some items I𝑢 , indicating that the
preference score 𝑦𝑢𝑖 = 1 for 𝑖 ∈ I𝑢 . We represent the input ID
embedding of user 𝑢 and item 𝑖 as 𝒙𝑢 and 𝒙𝑖 , respectively, where
𝒙𝑢 , 𝒙𝑖 ∈ R𝑑 and 𝑑 is the embedding dimension.

In addition to user-item interactions, each item is associated
with multimodal content information. We represent the feature
vector of item 𝑖 and the preference vector of user 𝑢 for modality
𝑚 as 𝒆𝑚

𝑖
∈ R𝑑𝑚 and 𝒑𝑚𝑢 ∈ R𝑑 , where 𝑑𝑚 represents the dimension

of the features and𝑚 ∈ M represents the modality. For example,
the visual and textual modalities are represented by 𝑚 = 𝑣 and
𝑚 = 𝑡 , respectively. It should be noted that our method is not
limited to two modalities and can accommodate multiple modalities.
The goal of multimedia recommendation approach is to predict
users’ preferences 𝑦𝑢𝑖 accurately by considering both user-item
interactions and item multimodal content information.

2.2 Multimedia Recommender Framework
In this subsection, we introduce the general framework of multi-
media recommender models. Our proposed method can serve as a
flexible plug-and-play module for any multimedia recommender
backbones. For multimedia recommender models, the calculation
of the preference score of user 𝑢 on item 𝑖 can be generalized as:

𝑦𝑢𝑖 = 𝑓Θ (𝒙𝑢 , 𝒙𝑖 ,𝒑𝑚𝑢 , 𝒆𝑚𝑖 ), 𝑚 ∈ M, (1)

where 𝑓Θ (·) represents different methods to model user-item in-
teractions and item multimodal content information. Θ are the
trainable parameters of the models.

Multimedia recommender models adopt Bayesian Personalized
Ranking (BPR) loss [27] to conduct the pair-wise ranking, which
encourages the prediction of an observed entry to be higher than
its unobserved counterparts:

LBPR = −
∑︁

(𝑢,𝑖, 𝑗 ) ∈D
ln𝜎

(
𝑦𝑢𝑖 − 𝑦𝑢 𝑗

)
, (2)

where D = {(𝑢, 𝑖, 𝑗) |𝑖 ∈ I𝑢 , 𝑗 ∉ I𝑢 } denotes the training set. I𝑢

indicates the observed items associated with user 𝑢 and (𝑢, 𝑖, 𝑗)
denotes the pairwise training triples where 𝑖 ∈ I𝑢 is the positive
item and 𝑗 ∉ I𝑢 is the negative item sampled from unobserved
interactions. 𝜎 (·) is the sigmoid function.

2.3 Modality Imbalance Problem
We conduct a pilot study on Amazon-Clothing datasets [21] to show
that both late-fusion method VBPR [11] and early-fusion method
EgoGCN [1] suffer from the modality imbalance problem and are
not fully optimized. We show the experimental performances of
multimodal model and uni-modal model (image-only and text-only
models) with the same architecture. During the training phase, for
multimodal models, we trained it using both textual and visual input.
For uni-modal models, we ablate the input of the other modality
with the average feature vector (this keeps the other modality in-
distribution, but renders them uninformative). During the inference
phase, for multimodal models, we report both multimodal perfor-
mances and uni-modal performances (dashed lines in Figure 1) that
are obtained by ablating the input of other modality.

The experimental results are shown in Figure 1 (performance
comparison of all backbones and datasets is shown in Table 3), and
note that all methods utilize early stopping which results in the
different length of curves. There are three phenomena regarding
the modality imbalance problem. 1) The performance of visual and
textual modality within them is worse than that of their corre-
sponding uni-modal models, which suggests that both modalities

2
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are under-optimized and far from reaching the upper bound of their
capabilities. 2) Even worse, the text-only VBPR outperforms the
multi-modal VBPR. It shows that in the multi-modal joint training
process, there is a strong mutual inhibition phenomenon between
the modalities, resulting in 1 + 1 < 2. 3) Weak modals with poor
performance (visual modality in the example) suffer from more
serious under-optimization problems.

2.4 Analysis
In this subsection, we introduce the analysis of the modality imbal-
ance problem from the optimization perspective. We show that in
the multimodal joint training, the dominant modality which con-
verges faster and has better performance would reduce the updating
step and thus suppress the optimization of other modalities.

Taking VBPR [11] as an example, it simply concatenates different
modalities and we can formulate the representations of users and
items:

𝒙𝑢 = 𝒙𝑢 ∥ 𝒑𝑚𝑢 , 𝒙𝑖 = 𝒙𝑖 ∥ 𝒆𝑚, 𝑚 ∈ M, (3)
and we can re-formulate the score function as:

𝑦𝑢𝑖 = 𝒙⊤𝑢 𝒙𝑖 +
∑︁

𝑚∈M
𝒑𝑚𝑢

⊤𝒆𝑚𝑖 , (4)

andwe can also re-write the BPR loss in equation 2. For convenience,
we only consider the BPR loss of one training triple (𝑢, 𝑖, 𝑗):
L𝑢𝑖 𝑗 = − ln𝜎

(
𝑦𝑢𝑖 − 𝑦𝑢 𝑗

)
= − ln𝜎

(
𝒙⊤𝑢 𝒙𝑖 +

∑︁
𝑚∈M

𝒑𝑚𝑢
⊤𝒆𝑚𝑖 − 𝒙⊤𝑢 𝒙 𝑗 −

∑︁
𝑚∈M

𝒑𝑚𝑢
⊤𝒆𝑚𝑗

)
= − ln𝜎

(
𝒙⊤𝑢 𝒙𝑖 − 𝒙⊤𝑢 𝒙 𝑗 +

∑︁
𝑚∈M

(
𝒑𝑚𝑢

⊤𝒆𝑚𝑖 − 𝒑𝑚𝑢
⊤𝒆𝑚𝑗

))
= − ln𝜎

(
𝒙⊤𝑢 𝒙𝑖 − 𝒙⊤𝑢 𝒙 𝑗 +

∑︁
𝑚∈M

𝑆𝑚𝑢𝑖 𝑗

)
,

(5)
we denote 𝑆𝑚

𝑢𝑖 𝑗
= 𝒑𝑚𝑢

⊤𝒆𝑚
𝑖

− 𝒑𝑚𝑢
⊤𝒆𝑚

𝑗
= 𝒑𝑚𝑢

⊤𝑾𝑚 (𝒆𝑚
𝑖

− 𝒆𝑚
𝑗
), where

𝒑𝑚𝑢
⊤𝑾𝑚 are trainable parameters and can be regarded as a whole

in brief. With the Gradient Descent optimization, the parameters
are updated as:

(𝒑𝑚𝑢 ⊤𝑾𝑚) (𝑡+1) = (𝒑𝑚𝑢 ⊤𝑾𝑚) (𝑡 ) − 𝜂
𝜕L𝑢𝑖 𝑗

𝜕𝑆𝑚
𝑢𝑖 𝑗

𝜕𝑆𝑚
𝑢𝑖 𝑗

𝜕(𝒑𝑚𝑢 ⊤𝑾𝑚) (𝑡 )

= (𝒑𝑚𝑢 ⊤𝑾𝑚) (𝑡 ) − 𝜂
𝜕L𝑢𝑖 𝑗

𝜕𝑆𝑚
𝑢𝑖 𝑗

(𝒆𝑚𝑖 − 𝒆𝑚𝑗 )
(6)

where 𝜂 is the learning rate. According to equation 5, the gradient
𝜕L𝑢𝑖 𝑗

𝜕𝑆𝑚
𝑢𝑖 𝑗

can be written as:

𝜕L𝑢𝑖 𝑗

𝜕𝑆𝑚
𝑢𝑖 𝑗

=
1

1 + 𝑒
𝒙⊤
𝑢 𝒙𝑖−𝒙⊤

𝑢 𝒙 𝑗+
∑

𝑚∈M 𝑆𝑚
𝑢𝑖 𝑗

. (7)

We can find that for any two modalities 𝑚1 and 𝑚2, we have
𝜕L𝑢𝑖 𝑗

𝜕𝑆
𝑚1
𝑢𝑖 𝑗

=
𝜕L𝑢𝑖 𝑗

𝜕𝑆
𝑚2
𝑢𝑖 𝑗

and thus this term forms a “brigde” between the op-

timization of different modalities. We can infer that if one modality
𝑚1 works particularly well with superior performance, it will result
in a large 𝑆𝑚1

𝑢𝑖 𝑗
, that is, a large denominator in Equation 7, thereby

resulting in a smaller 𝜕L𝑢𝑖 𝑗

𝜕𝑆𝑚
𝑢𝑖 𝑗

. According to equation 6, the other
modalities could obtain a smaller updating step. As a result, when
the training of the multimodal model is about to converge, the other
modality could still suffer from under-optimized representation and
need further training.

3 THE PROPOSED METHOD
Motivated by the above analysis, in this section, we present our pro-
posed method CKD to alleviate the imbalance problem and make
each modality fully optimized. The overall framework is shown
in Figure 2. Firstly, we introduce our modality-specific knowledge
distillation framework to minimize the gap between uni-modal
teachers and multi-modal students. We design a generic-to-specific
distillation loss to help the student model learn deeper-and-wider
knowledge from teachers. Finally, inspired by the counterfactual in-
ference techniques, we propose to quantify the degree of imbalance
by estimating the causal effect of each modality, through which
we can adaptively re-weight the distillation losses and thus guide
the student model to focus more on the weak modalities with the
under-optimization problem.

3.1 Modality-specific Distillation
CKD proposes to utilize uni-modal models as teachers to guide the
multimodal student to avoid the imbalance problem during training.
Due to the different modalities inputted, the uni-modal and multi-
modal models may significantly differ in their outputs. To ease the
gap between teachers and students, we propose modality-specific
knowledge distillation by dividing the multimodal model into uni-
modal channels and only transferring modality-specific knowledge
from the corresponding teacher model.

3.1.1 Uni-modal Teachers. We first introduce how we train uni-
modal teacher models. A direct solution is constructing specific
uni-modal models. For example, we can use the most powerful
uni-modal models as teachers which will undoubtedly lead to a
very powerful multimodal student model. However, it is unfair for
the performance comparison. In this paper, we aim to solve the
imbalance problem, so we only consider training uni-modal teach-
ers with the same model architecture as the multimodal student
models, without introducing additional powerful models.

To make CKD model-agnostic which could serve as a play-and-
plug module for any existing multimedia recommendation back-
bones, we treat backbone models as black-boxes and train uni-
modal teachers by only ablating the input. Specifically, when train-
ing a teacher of modality𝑚1, we ablate the input of other modalities
M − {𝑚1} by replacing it with its average feature vector, which
could keep these modalities in-distribution, but renders them unin-
formative. Assuming that the backbone multimodal is represented
by 𝑓 (·), we can formulate the prediction of uni-modal teacher of
modality𝑚1 according to equation 1 as:

𝑡
𝑚1
𝑢𝑖

= 𝑓Θ𝑚1
(𝒙𝑢 , 𝒙𝑖 ,𝒑𝑚1

𝑢 , 𝒆𝑚1
𝑖

, �̄�𝑚, 𝒆𝑚),𝑚 ∈ M − {𝑚1}, (8)

where we ablate the input of other modalities by with the average
feature vector: �̄�𝑚 = 1

|U |
∑
𝑢∈U 𝒑𝑚𝑢 and 𝒆𝑚 = 1

| I |
∑
𝑖∈I 𝒆𝑚

𝑖
. We

also adopt BPR loss in equation 2 to conduct pair-wise ranking for
3
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(a) The overall framework.

(b) The illustration of distillation loss.

(c) The illustration of learning speed estimation.

ℒ𝒗

ℒ𝒕

𝝀𝒗

𝝀𝒕

Figure 2: (a) An illustration of CKD model architecture. Through modality-specific knowledge distillation, CKD could guide
the multimodal model to learn modality-specific knowledge from uni-modal teachers and thus alleviate competition between
modalities(§3.1). (b) On the training triples, hinge distillation loss encourages the student model to perform better than
teachers(§3.1.3) while on universal triples without supervision, CE distillation loss encourages the student model to imitate
teachers (§3.1.4). (c) Through counterfactual inference, we can estimate the learning speed of eachmodality within the black-box
multimodal models (§3.2).

uni-modal teachers:

min
Θ𝑚1

−
∑︁

(𝑢,𝑖, 𝑗 ) ∈D
ln𝜎

(
𝑡
𝑚1
𝑢𝑖

− 𝑡
𝑚1
𝑢 𝑗

)
. (9)

Similarly, we can obtain the uni-modal teacher Θ𝑚 for each modal-
ity.

3.1.2 Multi-modal Student. Since we aim to only transfer modality-
specific knowledge from uni-modal teachers to the multi-modal
student, we also ablate the input of the multi-modal model to obtain
the modality-specific prediction:

𝑠
𝑚1
𝑢𝑖

= 𝑓Θ (𝒙𝑢 , 𝒙𝑖 ,𝒑𝑚1
𝑢 , 𝒆𝑚1

𝑖
, �̄�𝑚, 𝒆𝑚),𝑚 ∈ M − {𝑚1}. (10)

We then employ a prediction-level distillation paradigm which
provides a more compact representation of the teacher model’s
knowledge, allowing for efficient transfer without requiring the
entire feature space. We design two distillation losses: (1) specific
distillation loss to transfer the specific knowledge conveyed by
the triples in the training set, and (2) generic distillation loss to
transfer the deeper dark knowledge conveyed by the universal
triples and achieve better generalization.

3.1.3 Specific Distillation Loss. The triples in training set (𝑢, 𝑖, 𝑗)
exhibit explicit supervision signals that positive pair score 𝑦𝑢𝑖
should be larger than negative pair score 𝑦𝑢 𝑗 . To utilize the super-
vision signals, firstly, instead of directly comparing the point-wise
prediction 𝑦𝑢𝑖 , we compare the pair-wise ranking result Δ𝑡𝑚

𝑢𝑖 𝑗
=

𝑡𝑚
𝑢𝑖
−𝑡𝑚

𝑢𝑗
and Δ𝑠𝑚

𝑢𝑖 𝑗
= 𝑠𝑚

𝑢𝑖
−𝑠𝑚

𝑢𝑗
, which could capture the relative user

preferences. Furthermore, we hope that the student model not only
imitates the teacher model but could surpass the teacher model by
modeling the interaction between modalities. To this end, instead of

utilizing the common-used KL-divergence or Mean Squared Error
loss function, we employ hinge loss to guide the student to make
more informed predictions on the training triples. Hinge loss en-
courages the student model to perform better than the uni-model
teacher on the training triple (𝑢, 𝑖, 𝑗), i.e, Δ𝑠𝑚

𝑢𝑖 𝑗
> Δ𝑡𝑚

𝑢𝑖 𝑗
, instead of

just imitating it, i.e, Δ𝑠𝑚
𝑢𝑖 𝑗

= Δ𝑡𝑚
𝑢𝑖 𝑗

. Specifically, for modality𝑚1, the
specific distillation loss can be formulated as:

L𝑚
𝑆𝐷 =

∑︁
(𝑢,𝑖, 𝑗 ) ∈D

max
(
Δ𝑡𝑚𝑢𝑖 𝑗 − Δ𝑠𝑚𝑢𝑖 𝑗 , 0

)
, (11)

where D = {(𝑢, 𝑖, 𝑗) |𝑖 ∈ I𝑢 , 𝑗 ∉ I𝑢 } denotes the triples in the
training set. (𝑢, 𝑖, 𝑗) denotes the pairwise training triples where
𝑖 ∈ I𝑢 is the positive item and 𝑗 ∉ I𝑢 is the negative item sampled
from unobserved interactions.

3.1.4 Generic Distillation Loss. In addition to the explicit knowl-
edge implied by training triples, CKD also proposes generic distil-
lation loss to learn the wider knowledge from teacher models and
achieve better generalization. Unlike specific distillation which
pairs each user with one positive item and one negative item,
generic distillation aims to transfer knowledge about (𝑢, 𝑗, 𝑘) where
𝑣 𝑗 and 𝑣𝑘 are uniformly sampled from the item set and not paired
with the user 𝑢. Since 𝑣 𝑗 and 𝑣𝑘 are not fixed to be positive and
negative, (𝑢, 𝑗, 𝑘) does not convey supervision signals and thus we
cannot hope student model to perform better than teachers follow-
ing equation 11. Therefore, following [40], we optimize the cross
entropy-based distillation loss to align them:

L𝑚
𝐺𝐷 = −

∑︁
(𝑢,𝑗,𝑘 )

(
Δ𝑡𝑚

𝑢𝑗𝑘
· log(Δ𝑠𝑚

𝑢𝑗𝑘
) + (1 − Δ𝑡𝑚

𝑢𝑗𝑘
) · log(1 − Δ𝑠𝑚

𝑢𝑗𝑘
)
)
,

(12)
4
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where Δ𝑡𝑚
𝑢𝑗𝑘

and Δ𝑠𝑚
𝑢𝑗𝑘

are ranking results processed by sigmoid
function 𝜎 (·) with temperature 𝜏 :

Δ𝑡𝑚
𝑢𝑗𝑘

= 𝜎 (Δ𝑡𝑚
𝑢𝑗𝑘

/𝜏), Δ𝑠𝑚
𝑢𝑗𝑘

= 𝜎 (Δ𝑠𝑢 𝑗𝑘/𝜏), (13)

the overall distillation loss of modality𝑚 can be formulated:

L𝑚 = 𝜆𝑔L𝑚
𝐺𝐷 + L𝑚

𝑆𝐷 , (14)

where 𝜆𝑔 is the hyper-parameter that balances the two distillation
losses. Through specific-to-generic distillation, the multi-modal stu-
dent can learn both deeper-and-wider knowledge from uni-modal
teachers.

3.2 Counterfactual Learning Speed Estimation
In this subsection, we introduce counterfactual conditional learning
speed to estimate the causal effect of each modality on the joint-
training objective, through which we could quantify the imbalance
degree and adaptively re-weight the distillation loss of different
modalities and thus guide the student model to focus more on the
weak modalities with the under-optimization problem.

Since the multimodal model is trained jointly and thus the param-
eters are learned based on multimodal inputs, we cannot directly
use the trained parameters to infer the model’s casual behavior
under a specific modality, especially for early-fusion methods. The
counterfactual inference [28] is to answer the counterfactual ques-
tion based on factual observations. For example, when we estimate
the contribution of visual modality, we want to answer the ques-
tion “How much improvement can the introduction of visual modality
bring when other modalities remain unchanged?”

From a causal perspective, we can define the outcome, denoted
as 𝑍 , as the prediction of pairwise rankings Δ𝑠𝑢𝑖 𝑗 . The treatment,
labeled as 𝑇 , pertains to the incorporation of visual modality in-
put. Specifically, we assign 𝑇 = 0 to signify the absence of visual
modality input and 𝑇 = 1 to denote its inclusion. 𝑍 (𝑇 = 1) rep-
resents the hypothetical outcome that would be observed if all
modalities were incorporated. Conversely, 𝑍 (𝑇 = 0) represents
the hypothetical outcome if all other modalities were held con-
stant while excluding the visual modality input. By contrasting
the potential outcomes 𝑍 (𝑇 = 1) and 𝑍 (𝑇 = 0), we can assess the
causal impact of integrating visual modality input on the learning
objective. This comparative analysis enables us to comprehend the
treatment’s influence and ascertain whether the inclusion of visual
modality input yields any notable changes in the predicted outcome.
The individual treatment effect (ITE) 𝛿𝑚(𝑢,𝑖, 𝑗 ) of triple (𝑢, 𝑖, 𝑗) can be
formulated:

𝛿𝑚(𝑢,𝑖, 𝑗 ) = 𝑍 (𝑇 = 1) − 𝑍 (𝑇 = 0)

= Δ𝑠 (𝑢,𝑖, 𝑗 ) − Δ𝑠�̄�(𝑢,𝑖, 𝑗 ) ,
(15)

where Δ𝑠�̄�(𝑢,𝑖, 𝑗 ) denotes the ranking prediction where the input
modality𝑚 is masked with its average feature vector. We can obtain
the Average Treatment Effect (ATE) as the casual contribution by
taking an average over the ITEs:

𝛾𝑚 = E(𝑢,𝑖, 𝑗 ) ∈B [𝛿𝑚(𝑢,𝑖, 𝑗 ) ]

=
1
|B|

∑︁
(𝑢,𝑖, 𝑗 )

𝛿𝑚(𝑢,𝑖, 𝑗 ) ,
(16)

Table 1: Statistics of the datasets

Dataset #Users #Items #Interactions Density

Clothing 39,387 23,033 237,488 0.00026
Sports 35,598 18,357 256,308 0.00039
Beauty 22,363 12,101 172,188 0.00064
Baby 19,445 7,050 139,110 0.00101

where B denotes the triple set in batch. When we consider the
modality imbalance problem, another factor is that modalities con-
vey different types of information, and the capability upper bound
usually varies from different modalities. Therefore, we cannot sim-
ply compare ATEs to decide on insufficiently optimized modali-
ties. To this end, we modify the ATE with the approximate perfor-
mance upper bound, i.e. the performance of the uni-modal teacher
model, to represent the relative degree of under-optimization of
each modality:

𝜌𝑚 =
𝛾𝑚∑

(𝑢,𝑖, 𝑗 ) ∈B 𝑡𝑚(𝑢,𝑖, 𝑗 )
, (17)

where a lower 𝜌𝑚 indicates that the modality𝑚 is under-optimized
and suffers more from the imbalance problem. We propose to re-
weight the distillation loss of different modalities according to:

𝜆𝑚1 = 1 − 𝜌𝑚1∑
𝑚∈M 𝜌𝑚

, (18)

where we emphasize the distillation loss of modalities with lower
𝜌 . In this way, the overall optimization objective is presented:

L = L𝐵𝑃𝑅 + 𝜆𝑘𝑑

∑︁
𝑚∈M

𝜆𝑚L𝑚 . (19)

where 𝜆𝑘𝑑 is the hyper-parameter that balances the learning rate
between BPR loss and distillation losses.

4 EXPERIMENTS
In this section, we conduct experiments on four widely used real-
world datasets. We first describe the experimental settings, in-
cluding datasets, baselines, evaluation, and implementation details.
Then, we report and discuss the experimental results to answer the
following research questions:

• RQ1: How does CKD perform when plugged into different
multimedia recommendation methods?

• RQ2: Does CKD achieve balanced multimodal learning?
• RQ3: How do different components impact CKD ’s perfor-
mance

Some other experiments such as hyper-parameter sensitive analysis
are shown in supplementary material.

4.1 Experiments Settings
4.1.1 Datasets. We conduct experiments on four categories of
widely used Amazon review dataset introduced by McAuley et al.
[21]: ‘Beauty’, ‘Baby’, ’Clothing, Shoes and Jewelry’, ’Sports and
Outdoors’, which are named asBeauty,Baby,Clothing and Sports
in brief. We use the 5-core version of Amazon datasets where each
user and item have 5 interactions at least. The statistics of these
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Table 2: Performance comparison of CKD when plugged into different backbones. The best performance is highlighted in bold.
Δ𝐼𝑚𝑝𝑟𝑜𝑣 . indicates relative improvements over backbones in percentage. All improvements are significant with 𝑝-value ≤ 0.05.

Model
Baby Sports Clothing Beauty

R@20 NDCG@20 P@20 R@20 NDCG@20 P@20 R@20 NDCG@20 P@20 R@20 NDCG@20 P@20

VBPR 0.0462 0.0208 0.0025 0.0493 0.0219 0.0026 0.0492 0.0221 0.0025 0.0977 0.0474 0.0055
+GB 0.0482 0.0022 0.0026 0.0564 0.0253 0.0030 0.0551 0.0241 0.0028 0.0105 0.0523 0.0061
+OGM 0.0448 0.0199 0.0024 0.0513 0.0221 0.0028 0.0533 0.0231 0.0026 0.0962 0.0464 0.0055
+CKD 0.0568 0.0261 0.0031 0.0621 0.0285 0.0033 0.0604 0.0260 0.0029 0.1169 0.0572 0.0065

Δ𝐼𝑚𝑝𝑟𝑜𝑣 . 23.03% 25.29% 24.00% 26.02% 30.27% 26.92% 22.70% 17.65% 16.00% 19.61% 20.65% 18.18%

DeepStyle 0.0425 0.0190 0.0023 0.0471 0.0211 0.0025 0.0450 0.0192 0.0023 0.0891 0.0418 0.0050
+GB 0.0439 0.0191 0.0023 0.0581 0.0262 0.0031 0.0504 0.0222 0.0026 0.0101 0.0478 0.0055
+OGM 0.0445 0.0194 0.0024 0.0483 0.0214 0.0026 0.0474 0.0021 0.0025 0.0913 0.0435 0.0051
+CKD 0.0613 0.0279 0.0033 0.0684 0.0309 0.0037 0.0655 0.0290 0.0035 0.1214 0.0579 0.0065

Δ𝐼𝑚𝑝𝑟𝑜𝑣 . 44.24% 47.03% 43.48% 45.24% 46.37% 48.00% 45.60% 50.99% 51.78% 36.25% 38.54% 30.46%

MMGCN 0.0585 0.0247 0.0031 0.0483 0.0213 0.0026 0.0272 0.0113 0.0014 0.0704 0.0316 0.0036
+GB 0.0594 0.0251 0.0031 0.0493 0.0217 0.0027 0.0283 0.0119 0.0015 0.0724 0.0323 0.0037
+OGM 0.0601 0.0255 0.0033 0.0488 0.0215 0.0027 0.0293 0.0126 0.0015 0.0719 0.0330 0.0042
+CKD 0.0643 0.0279 0.0035 0.0578 0.0255 0.0032 0.0345 0.0146 0.0017 0.0820 0.0368 0.0042

Δ𝐼𝑚𝑝𝑟𝑜𝑣 . 9.93% 12.86% 13.29% 19.67% 19.84% 23.93% 26.91% 29.27% 21.43% 16.46% 16.57% 16.98%

GRCN 0.0790 0.0359 0.0042 0.0834 0.0378 0.0044 0.0637 0.0280 0.0032 0.1321 0.0647 0.0075
+GB 0.0794 0.0364 0.0042 0.0855 0.0387 0.0045 0.0632 0.0275 0.0032 0.1303 0.0640 0.0074
+OGM 0.0807 0.0366 0.0043 0.0851 0.0388 0.0044 0.0634 0.0276 0.0032 0.1317 0.0639 0.0075
+CKD 0.0866 0.0389 0.0047 0.0922 0.0424 0.0048 0.0667 0.0288 0.0034 0.1355 0.0659 0.0077

Δ𝐼𝑚𝑝𝑟𝑜𝑣 . 9.66% 8.42% 12.20% 10.50% 12.24% 9.32% 4.77% 3.00% 6.66% 2.57% 1.84% 2.28%

EgoGCN 0.0808 0.0366 0.0043 0.0969 0.0456 0.0051 0.0597 0.0270 0.0030 0.1391 0.0693 0.0080
+GB 0.0799 0.0362 0.0042 0.0968 0.0454 0.0050 0.0621 0.0283 0.0032 0.1390 0.0690 0.0080
+OGM 0.0811 0.0368 0.0043 0.0971 0.0454 0.0052 0.0600 0.0261 0.0030 0.1384 0.0689 0.0079
+CKD 0.0856 0.0375 0.0045 0.1004 0.0463 0.0053 0.0651 0.0289 0.0033 0.1440 0.0704 0.0083

Δ𝐼𝑚𝑝𝑟𝑜𝑣 . 5.89% 2.47% 4.93% 3.61% 1.55% 4.35% 9.06% 7.21% 9.27% 3.52% 1.54% 3.87%

MGCN 0.0638 0.0292 0.0034 0.0903 0.0430 0.0048 0.0745 0.0348 0.0038 0.1306 0.0636 0.0073
+GB 0.0633 0.0290 0.0033 0.0883 0.0423 0.0046 0.0733 0.0344 0.0036 0.1298 0.0631 0.0072
+OGM 0.0640 0.0294 0.0034 0.0899 0.0429 0.0048 0.0739 0.0346 0.0037 0.1310 0.0638 0.0074
+CKD 0.0710 0.0327 0.0038 0.0937 0.0445 0.0049 0.0770 0.0363 0.0040 0.1349 0.0651 0.00757

Δ𝐼𝑚𝑝𝑟𝑜𝑣 . 11.29% 11.99% 12.76% 3.72% 3.39% 3.33% 3.36% 4.40% 5.85% 3.29% 2.36% 3.70%

datasets are summarized in Table 1. Amazon dataset includes vi-
sual modality and textual modality. The 4,096-dimensional visual
features have been extracted and published1. We also extract sen-
tence embeddings as textual features by concatenating the title,
descriptions, categories, and brand of each item and then utilize
sentence-transformers [26] to obtain 1,024-dimensional sentence
embeddings.

4.1.2 Backbone Models. To evaluate the effectiveness of our pro-
posed model, we plug it into several state-of-the-art recommenda-
tion models, including late-fusion methods VBPR[11], DeepStyle
[18],MMGCN[37], GRCN[36] and early-fusionmethods EgoGCN[1]
and MGCN[42].

4.1.3 Baseline Models. We also conduct experiments on two state-
of-the-art baseline methods that aim to solve the imbalance prob-
lem:

1http://jmcauley.ucsd.edu/data/amazon/links.html

• GB [32] optimizes both uni-modal and multimodal losses
simultaneously, and reweights the losses according to the
overfitting-to-generalization-ratio.

• OGM [24] alleviates the optimization imbalance problem
with on-the-fly gradient modulation to adaptively control
the optimization of each modality.

Both the baselines require an explicit distinction between the pa-
rameters of the different modalities and thus are only applied to
late-fusion models. For early-fusion method EgoGCN and MGCN,
we implement them by roughly dividing the parameters into two
parts.

4.1.4 Evaluation and Implementations. For each dataset, we select
80% of the historical interactions of each user to constitute the
training set, 10% for validation, and the remaining 10% for the test
set.We adopt three widely usedmetrics to evaluate the performance
of preference ranking: Recall@𝑘 , NDCG@𝑘 , and Precision@𝑘 . By
default, we set 𝑘 = 20 and report the averaged metrics for all users
in the test set. We implemented our method in PyTorch and the

6

http://jmcauley.ucsd.edu/data/amazon/links.html


697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Modality-Balanced Learning for Multimedia Recommendation ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

0 50 100 150 200 250
Epoch

0.01

0.02

0.03

0.04

0.05

0.06

Re
ca

ll@
20

VBPR

0 50 100 150
Epoch

0.050

0.055

0.060

EgoGCN

textual w/ CKD
textual w/o CKD

visual w/ CKD
visual w/o CKD

multimodal w/ CKD
multimodal w/o CKD

Figure 3: The performance curves during training on
Amazon-Clothing dataset. The shaded area indicates the im-
provement of our method (best viewed in color).

embedding dimension 𝑑 is fixed to 64 for all models to ensure fair
comparison. The optimal hyper-parameters were determined via
grid search on the validation set: the learning rate is tuned amongst
{0.0001, 0.0005, 0.001, 0.005}, the coefficient of 𝐿2 normalization is
searched in {1e-5, 1e-4, 1e-3, 1e-2}, the dropout ratio in {0.0, 0.1, · · · ,
0.8}, the 𝜆𝑔 in {0.1, 0.5, 1, 5} and 𝜆𝑘𝑑 in {1e-3, 1e-2, 1e-1, 5e-1}. We set
the temperature 𝜏 = 0.1 in Equation 13. Besides, we stop training if
recall@20 on the validation set does not increase for 10 successive
epochs.

4.2 Overall Performance Comparison (RQ1)
We start by conducting experiments to evaluate the overall perfor-
mance when baselines and our method are plugged into different
backbone models. The results are reported in Table 2, from which
we have the following observations:

• Our method CKD significantly outperforms baselines when
plugged into different backbone models, verifying the effec-
tiveness of our methods. Specifically, our method improves
over the backbone multimedia recommendation models by
18.6%, 20.1%, 20.9%, and 15.7% in terms of Recall@20 on aver-
age on Baby, Sports, Clothing and Beauty, respectively. This
indicates that our proposed method successfully mitigates
the modality imbalance problem, leading to enhanced opti-
mization of parameters for each modality in the multi-modal
backbone model. Consequently, the overall recommendation
performance experiences a substantial boost.

• When applied to the early-fusion backbone model EgoGCN,
both GB and OGM do not yield significant improvements.
In contrast, our approach not only achieves performance
gains in simple late-fusion models but also demonstrates im-
provements in complex early-fusion models. By treating the
backbone model as a black box and only applying ablating at
the input end and distillation at the output end, our method
is model-agnostic, offering greater flexibility.

4.3 Efficacy of CKD (RQ2)
4.3.1 Uni-modal Performance Comparison. In this subsection, we
show the experimental results of each individual modality to verify
the effectiveness of our method in alleviating the modality im-
balance problem. We report the uni-modal performances within

Table 3: Performance comparison of individual modality of
different backbones in terms of Recall@20. The best perfor-
mance is highlighted in bold.

Model
Baby Sports Clothing Beauty

textual visual textual visual textual visual textual visual

VBPR 0.0442 0.0352 0.0482 0.0210 0.0376 0.0202 0.0737 0.0596
uni-teacher 0.0476 0.0362 0.0543 0.0342 0.0477 0.0283 0.0955 0.0827

GB 0.0459 0.0361 0.0550 0.0256 0.0437 0.0219 0.0916 0.0707
OGM 0.0419 0.0362 0.0465 0.0216 0.0385 0.0216 0.0766 0.0550
Ours 0.0550 0.0471 0.0611 0.0445 0.0484 0.0319 0.0994 0.0914

DeepStyle 0.0221 0.0293 0.0327 0.0190 0.0283 0.0195 0.0500 0.0478
uni-teacher 0.0420 0.0332 0.0459 0.0318 0.0514 0.0304 0.0856 0.0774

GB 0.0267 0.0301 0.0434 0.0338 0.0382 0.0307 0.0614 0.0668
OGM 0.0233 0.0305 0.0327 0.0179 0.0299 0.0199 0.0513 0.0498
Ours 0.0593 0.0449 0.0519 0.0406 0.0622 0.0429 0.1031 0.0971

MMGCN 0.0474 0.0511 0.0514 0.0263 0.0231 0.0156 0.0580 0.0382
uni-teacher 0.0481 0.0377 0.0454 0.0339 0.0146 0.0218 0.0616 0.0569

GB 0.0548 0.0521 0.0511 0.0431 0.0226 0.0178 0.0655 0.0620
OGM 0.0510 0.0531 0.0433 0.0307 0.0239 0.0164 0.0594 0.0445
Ours 0.0569 0.0529 0.0476 0.0367 0.0311 0.0236 0.0770 0.0624

GRCN 0.0740 0.0614 0.0772 0.0613 0.0490 0.0416 0.1182 0.1039
uni-teacher 0.0770 0.0718 0.0803 0.0746 0.0547 0.0448 0.1031 0.1167

GB 0.0755 0.0739 0.0796 0.0784 0.0534 0.0488 0.1257 0.1202
OGM 0.0728 0.0611 0.0779 0.0646 0.0497 0.0418 0.1150 0.1011
Ours 0.0781 0.0760 0.0819 0.0794 0.0551 0.0498 0.1262 0.1215

EgoGCN 0.0787 0.0796 0.0949 0.0945 0.0579 0.0571 0.1370 0.1372
uni-teacher 0.0794 0.0801 0.0958 0.0967 0.0589 0.0591 0.1377 0.1370

GB 0.0772 0.0761 0.0964 0.0956 0.0595 0.0586 0.1389 0.1374
OGM 0.0801 0.0803 0.0953 0.0941 0.0571 0.0566 0.1385 0.1374
Ours 0.0841 0.0840 0.0970 0.0970 0.0608 0.0600 0.1393 0.1383

MGCN 0.0622 0.0625 0.0881 0.0895 0.0734 0.0722 0.1289 0.1292
uni-teacher 0.0631 0.0633 0.0900 0.0911 0.0742 0.0739 0.1300 0.1303

GB 0.0615 0.0618 0.0871 0.0883 0.0731 0.0719 0.1286 0.1288
OGM 0.0633 0.0640 0.0890 0.0904 0.0733 0.0720 0.1293 0.1299
Ours 0.0708 0.0704 0.0922 0.0931 0.0760 0.0755 0.1340 0.1344

each multimodal backbone model, the performances of uni-modal
teachers, and the uni-modal performances within baselines and our
proposed method. The experimental results are shown in Table 3,
from which we have the following observations:

• As the phenomenon in Figure 1, the uni-modal channels
within multimodal backbones exhibit sub-optimal perfor-
mance in comparison to their respective uni-modal teachers.
This observation suggests that despite the intended capabil-
ity of multimodal models to capture complementary infor-
mation across modalities, they fall short of fully harnessing
the potential inherent in each modality. Consequently, both
the overall performance and the performance of individual
uni-modal channels fail to attain their maximum potential.

• While baseline methods have shown some enhancement in
uni-modal performance, they still fall significantly short of
reaching their maximum potential. This is evident from the
substantial performance disparity between baselines and
uni-modal teacher models.

• The uni-modal channels within CKD significantly outper-
form those within the vanilla backbone models, especially
for the modalities that are optimized insufficiently in joint
multimodal training. For example, when plugged into VBPR,
our method improves 28.7% and 64.3% for textual modal-
ity and visual modality, respectively. Through knowledge
distillation, we can make up for the under-optimization of
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the visual modality in joint multimodal training, thereby
greatly improving the information utilization rate of the vi-
sual modality and the overall recommendation performance.

• Our proposed CKD also outperforms the uni-modal teach-
ers in most cases. Through generic and specific distillation
losses, our knowledge distillation framework does not simply
imitate uni-modal teachers, but improves the information
utilization rate of each modality under their guidance, cap-
tures complementary information between modalities and
thus can obtain recommendation performance beyond them.

4.3.2 Performance Curves During Training. We additionally illus-
trate the performance curves during the training process, as de-
picted in Figure 3, akin to the representation in Figure 1. It is dis-
cernible that both the overall multimodal performance and uni-
modal performances of our proposed methods surpass that of the
backbone models. This observation serves to substantiate the effi-
cacy of CKD.

4.4 Ablation Study (RQ3)
To further analyze CKD, in this subsection, we conduct component
analyses by repeatedly assessing and comparing the models after
removing each component. Specifically, we design the following
variants of CKD:

• w/o Gen. removes the generic distillation loss and only
retains the specific distillation loss.

• w/o re-weight removes the counterfactual conditional learn-
ing speed loss re-weight.

• repl. KL-divergence/MSE Loss replaces the hinge loss with
KL-diverge or MSE loss in the specific distillation module.

Due to limited space, we only present the results of VBPR[11],
MMGCN[37] and EgoGCN[1] in Table 4 and leave others in supple-
mentary material. We can observe that each of these key compo-
nents contributes substantially. The generic distillation considers
more general triplets in addition to traditional triplets with posi-
tive and negative items, which greatly facilitates the deeper dark
knowledge distillation. Additionally, the counterfactual conditional
learning speed can monitor the discrepancy of each unimodal’s
contribution to the overall learning objective, which could reflect
the degree of imbalance in the training process. By dynamically in-
creasing the distillation weight of weak modalities, the optimization
process of each modality is controlled and the imbalance problem
can be alleviated. Finally, compared to KL-divergence and MSE
losses, our proposed hinge loss could encourage the student to
make more informed predictions.

5 RELATEDWORK
5.1 Multimedia Recommendation
Recommendation systems have achieved significant success through
the implementation of Collaborative Filtering (CF) methods. How-
ever, they face challenges in handling sparse data characterized
by limited user-item interactions, as their predictive models tra-
ditionally depend on substantial interactions to generate accurate
recommendations based on user preferences. To overcome this
obstacle, recent researchers have incorporated diverse types of aux-
iliary information, such as visual images, textual descriptions, and

Table 4: Ablation study results in terms of Recall@20. The
best performance is highlighted in bold.

Model Baby Sports Clothing Beauty

VBPR + CKD 0.0568 0.0621 0.0604 0.1169
w/o. Gen. 0.0549 0.0580 0.0550 0.1084

w/o. re-weight 0.0541 0.0594 0.0591 0.1120
repl. KL-divergence Loss 0.0475 0.0517 0.0520 0.1059

repl. MSE Loss 0.0487 0.0526 0.0592 0.1053

MMGCN + CKD 0.0643 0.0578 0.0345 0.0820
w/o. Gen. 0.0566 0.0493 0.0297 0.0731

w/o. re-weight 0.0605 0.0551 0.0322 0.0783
repl. KL-divergence Loss 0.0621 0.0573 0.0330 0.0747

repl. MSE Loss 0.0632 0.0564 0.0340 0.0796

EgoGCN + CKD 0.0856 0.1004 0.0651 0.1440
w/o. Gen. 0.0836 0.0972 0.0630 0.1422

w/o. re-weight 0.0833 0.0981 0.0622 0.1403
repl. KL-divergence Loss 0.0841 0.0915 0.0651 0.1362

repl. MSE Loss 0.0834 0.0857 0.0633 0.1312

videos [5, 6, 38]. This integration has given rise to multimedia rec-
ommendation systems, leveraging extensive multimedia content
details associated with items [2–4, 8–11, 13–20, 22, 23, 25, 29, 33–
37, 41, 43–51, 53]. Traditional research in multimedia recommen-
dation [2, 3, 11, 13, 18, 47] extends the basic CF framework by
incorporating multimodal content alongside item representations.
More recently, there is a growing interest in GNN-based multime-
dia recommendation systems [15, 19, 20, 36, 37, 43] and integrating
contrastive learning [10, 25, 33, 35, 41, 44, 45].

5.2 Balanced Multimodal Learning
Multimodal models, though expected to outperform single-modal
ones by incorporating more information, have shown counter-
intuitive results in previous experiments, sometimes performing
even worse [24, 30, 32]. The heterogeneity of modalities poses a
challenge for unified training strategies to fully exploit their po-
tential. Recent approaches aim to address this by balancing opti-
mization across modalities [7, 24, 30, 32, 39]. Wang et al. (2020)
proposed adaptively mixing gradients from different modalities to
mitigate overfitting [32]. Du et al. (2021) introduced well-trained
single-modal teachers to guide outputs, recognizing sub-optimal
performance in single-modal networks after joint training [7]. Peng
et al. (2022) addressed the tendency of models to favor dominant
modalities by balancing learning rates during training [24].

6 CONCLUSION
In this paper, we have proposed CKDwhich aims to solve the modal
imbalance problem and make the best use of all modalities, which
could easily serve as a plug-and-play module for any existing mul-
timedia recommendation models. Extensive experiments on four
real-world datasets and six state-of-the-art multimedia recommen-
dation backbones have been conducted to demonstrate that CKD
achieves superior performance.
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