
A Adaptive Measurements

A.1 k-way marginals sensitivity

Typically, iterative private query release algorithms assume that the query class Q contains sensitivity
1 queries [21, 19, 40, 5, 26]. However, recall that a k-way marginal query is defined by a subset of
features S ⊆ [d] and a target value y ∈

∏
i∈S Xi (Definition 1). Given a feature set S (with |S| = k),

we can define a workload WS as the set of queries defined over the features in S.

WS =

{
qS,y : y ∈

∏
i∈S
Xi

}

Then for any dataset D, the workload’s answer is given by WS(D) = {qS,y(D)}y∈∏i∈S Xi , where
WS has `2-sensitivity equal to

√
2. Therefore to achieve more efficient privacy accounting for k-way

marginals in Adaptive Measurements, we can use the exponential mechanism to select an entire
workload ŴS that contains the max error query and then obtain measurements for all queries in ŴS

using the Gaussian mechanism, adding noise

z ∼ N

0,

(√
2

n(1− α)ε0

)2
 .

to each query in WS .

In appendix D.4, we show that using this marginal trick significantly improves the performance
of GEM and therefore recommend this type of privacy accounting when designing query release
algorithms for k-way marginal queries.

A.2 Choices of loss functions and distributional families

We provide additional details about each iterative algorithm, including the loss function L and and
distributional family D (under the Adaptive Measurements framework).

MWEM from Hardt et al. [22] The traditional MWEM algorithm samples one query each round,
where after t rounds, the set of queries/measurements is Q̃t = {q̃1, . . . , q̃t}, Ãt = {ã1, . . . , ãt}. Let
the t− 1 previous solutions be D1, . . . Dt−1. Then MWEM solves an entropy regularized problem
in which it finds Dt that minimizes the following loss:

LMWEM(D, Q̃1:t, Ã1:t) =

t∑
i=1

∑
x∈X

D(x)q̃i(x) (ãi − q̃i(Di−1)) +
∑
x∈X

D(x) logD(x)

We can show that if Dt = arg minD∈∆(X) LMWEM(D, Q̃t, Ãt) then Dt evaluates to Dt(x) ∝
exp

(
−
∑t
i=1 q̃i(x)(ãi − q̃i(Di−1))

)
which is the exactly the distribution computed by MWEM.

See A.3 for derivation. We note that MWEM explicitly maintains (and outputs) a distribution D ∈ D
where D includes all distributions over the data domain X , making it computationally intractable for
high-dimension settings.

DualQuery from Gaboardi et al. [19] DualQuery is a special case of the
Adaptive Measurements framework in which the measurement step is skipped (abusing
notation, we say α = 1). Over all iterations of the algorithm, DualQuery keeps track of a
probability distribution over the set of queries Q via multiplicative weights, which we denote here by
Qt ∈ ∆(Q). On round t, DualQuery samples s queries (Q̃t = {q̃t,1, . . . q̃t,s}) from Qt and outputs
Dt that minimizes the the following loss function:

LDualQuery(D, Q̃t) =

s∑
i=1

q̃t,i(D)

15

The optimization problem for LDualQuery(D, Q̃t) is NP-hard. However, the algorithm encodes
the problem as a mix-integer-program (MIP) and takes advantage of available fast solvers. The final
output of DualQuery is the average 1

T

∑T
t=1Dt, which we note implicitly describes some empirical

distribution over X .

FEM from Vietri et al. [40] The algorithm FEM follows a follow the perturbed leader strategy. As
with MWEM, the algorithm FEM samples one query each round using the exponential mechanism,
so that the set of queries in round t is Q̃t = {q̃1, . . . , q̃t}. Then on round t, FEM chooses the next
distribution by solving:

LFEM(D, Q̃1:t) =

t∑
i=1

q̃t(D) + Ex∼D,η∼Exp(σ)d (〈x, η〉)

Similar to DualQuery, the optimization problem for LFEM also involves solving an NP-hard
problem. Additionally, because the functionLFEM does not have a closed form due to the expectation
term, FEM follows a sampling strategy to approximate the optimal solution. On each round, FEM
generates s samples, where each sample is obtained in the following way: Sample a noise vector η ∼
Exp(σ)d from the exponential distribution and use a MIP to solve xt,i ← arg minx∈X

∑t
i=1 q̃t(D) +

〈x, η〉 for all i ∈ [s]. Finally, the output on round t is the empirical distribution derived from the s
samples: Dt = {xt,1, . . . , xt,s}. The final output is the average 1

T

∑T
t=1Dt.

RAPsoftmax adapted from Aydore et al. [5] At iteration t, RAPsoftmax solves the following opti-
mization problem:

LRAP(D, Q̃1:t, Ã1:t) =
∑
i,j

(q̃i,j(D)− ãi,j)2

As stated in Section A, we apply the softmax function such that RAPsoftmax outputs a synthetic
dataset drawn from some probabilistic family of distributions D =

{
σ(M)|M ∈ Rn′×d

}
.

A.3 MWEM update

Given the loss function:

LMWEM(D, Q̃t, Ãt) =

t∑
i=1

∑
x∈X

D(x)q̃i(x) (ãi − q̃i(Di−1)) +
∑
x∈X

D(x) log (D(x)) (6)

The optimization problem becomes Dt = arg minD∈∆(X) Lmwem(D, Q̃t, Ãt). The solution D is
some distribution, which we can express as a constraint

∑
x∈X D(x) = 1. Therefore, this problem

is a constrained optimization problem. To show that (6) is the MWEM’s true loss function, we can
write down the Lagrangian as:

L =

t∑
i=1

∑
x∈X

D(x)q̃i(x) (ãi − q̃i(Di−1)) +
∑
x∈X

D(x) log (D(x)) + λ

(∑
x∈X

D(x)− 1

)

Taking partial derivative with respect to D(x):

∂L
∂D(x)

=

t∑
i=1

q̃i(x) (ãi − q̃i(Di−1)) + (1 + logD(x)) + λ

Setting ∂L
∂D(x) = 0 and solving for D(x):

D(x) = exp

(
−1− λ−

t∑
i=1

q̃i(x) (ãi − q̃i(Di−1))

)

16

Finally, the value of λ is set such that D is a probability distribution:

D(x) =
exp

(
−
∑t
i=1 q̃i(x) (ãi − q̃i(Di−1))

)
∑
x∈X exp

(
−
∑t
i=1 q̃i(x) (ãi − q̃i(Di−1))

)
This concludes the derivation of MWEM loss function.

17

B GEM

We show the exact details of GEM in Algorithms 2 and 3. Note that given a vector of queries
Qt = 〈q1, . . . , qt〉, we define fQt(·) = 〈fq1(·), . . . , fqt(·)〉.

Algorithm 2: GEM
Input: Private dataset P , set of differentiable queries Q
Parameters: privacy parameter ρ, number of iterations T , privacy weighting parameter α, batch

size B, stopping threshold γ
Initialize generator network G0

Let ε0 =
√

2ρ

T(α2+(1−α)2)
for t = 1 . . . T do

Sample: Sample z = 〈z1 . . . zB〉 ∼ N (0, IB)
Choose q̃t using the exponential mechanism with score

Pr [qt = q] ∝ exp
(αε0n

2
|q(P)− q(Gt−1 (z))|

)
Measure: Let ãt = q̃t(P) +N

(
0,
(

1
n(1−α)ε0

)2
)

Update: Gt = GEM-UPDATE (Gt−1, Qt, ãt, γ) where Qt = 〈q̃1, . . . , q̃t〉 and
ãt = 〈ã1, . . . , ãt〉

end
Let θout = EMA

(
{θj}Tj=T

2

)
where θj parameterizes Gj

Let Gout be the generator parameterized by θout
Output Gout (z)

Algorithm 3: GEM-UPDATE
Input: Generator G parameterized by θ, queries Q, noisy measurements ã, stopping threshold γ
Parameters: max iterations Tmax, batch size B
Sample z = 〈z1 . . . zB〉 ∼ N (0, IB)

Let c = ã− 1
B

∑B
j=1 fQ (G (zj)) be errors over queries Q

Let i = 0
while i < Tmax and ‖c‖∞ ≥ γ do

Let J = {j | |cj | ≥ γ}
Update G to minimize the loss function with the stochastic gradient∇θ 1

|J|
∑
j∈J |cij |

Sample z = 〈z1 . . . zB〉 ∼ N (0, IB)

Let c = ã− 1
B

∑B
j=1 fQ (G (zj))

Let i = i+ 1
end
Output: G

B.1 Loss function (for k-way marginals) and distributional family

For any z ∈ R, G(z) outputs a distribution over each attribute, which we can use to calculate the
answer to a query via fq. In GEM however, we instead sample a noise vector z = 〈z1 . . . zB〉 and
calculate the answer to some query q as 1

B

∑B
j=1 fq (G (zj)). One way of interpreting the batch size

B is to consider each G (zj) as a unique distribution. In this sense, GEM models B sub-populations
that together comprise the overall population of the synthetic dataset. Empirically, we find that our
model tends to better capture the distribution of the overall private dataset in this way (Figure 3).
Note that for our experiments, we choose B = 1000 since it performs well while still achieving good
running time. However, this hyperparameter can likely be further increased or tuned (which we leave
to future work).

18

Figure 3: Error comparison of GEM using different batch sizes B on ADULT (workloads=286),
evaluated on 3-way marginals with privacy budgets ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 .
The x-axis uses a logarithmic scale. Results are averaged over 5 runs, and error bars represent one
standard error.

Therefore, using this notation, GEM outputs then a generator G ∈ D by optimizing `1-loss at each
step t of the Adaptive Measurements framework:

LGEM
(
G, Q̃1:t, Ã1:t

)
=

t∑
i=1

∣∣∣∣∣∣ 1

B

B∑
j=1

fq̃i (G (zj))− ãi

∣∣∣∣∣∣ (7)

Lastly, we note that we can characterize family of distributions D = {Gθ(z)|z ∼ N (0, 1)} in GEM
by considering it as a class of distributions whose marginal densities are parameterized by θ and
Gaussian noise z ∼ N (0, 1) We remark that such densities can technically be characterized as
Boltzmann distributions.

B.2 Additional implementation details

EMA output We observe empirically that the performance of the last generator GT is often
unstable. One possible solution explored previously in the context of privately trained GANs is to
output a mixture of samples from a set of generators [8, 30]. In our algorithm GEM, we instead
draw inspiration from Yazıcı et al. [43] and output a single generator Gout whose weights θout
are an exponential moving average (EMA) of weights θt obtained from the latter half of training.
More concretely, we define θout = EMA

(
{θj}Tj=T

2

)
, where the update rule for EMA is given by

θEMA
k = βθEMA

k−1 + (1− β)θk for some parameter β.

Stopping threshold γ To reduce runtime and prevent GEM from overfitting to the sampled queries,
we run GEM-UPDATE with some early stopping threshold set to an error tolerance γ. Empirically,
we find that setting γ to be half of the max error at each time step t. Because sampling the max query
using the exponential mechanism provides a noisy approximation of the true max error, we find that
using an exponential moving average (with β = 0.5) of the sampled max errors is a more stable
approximation of the true max error. More succinctly, we set γ = EMA({ci}ti=0) where ci is max
error at the beginning of iteration i.

Resampling Gaussian noise. In our presentation of GEM and in Algorithms 2 and 3, we assume
that GEM resamples Gaussian noise z. While resampling z encourages GEM to train a generator to
output a distribution for any z ∼ N (0, IB) for some fixed batch size B, we find that fixing the noise
vector z at the beginning of training leads to faster convergence. Moreover in Figure 4, we show that
empirically, the performance between whether we resample z at each iteration is not very different.
Since resampling z does not induce any benefits to generating synthetic data for the purpose of query
release, in which the goal is output a single synthetic dataset or distribution, we run all experiments
without resampling z. However, we note that it is possible that in other settings, resampling the noise

19

Figure 4: Error comparison of GEM with and without resampling z at each step on ADULT (work-
loads=286), evaluated on 3-way marginals with privacy budgets ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1}
and δ = 1

n2 . The x-axis uses a logarithmic scale. Results are averaged over 5 runs, and error bars
represent one standard error.

vector at each step makes more sense and warrants compromising per epoch convergence speed and
overall runtime. We leave further investigation to future work.

B.3 Optimizing over arbitrary query classes

To optimize the loss function for GEM (Equation 3) using gradient-based optimization, we need to
have access to the gradient of each q̃i with respect to the input distribution Gθ(z) for any z (once
we compute this gradient, we can then derive the gradient of the loss function with respect to the
parameters θ via chain rule). Given any arbitrary query function q, we can rewrite it as (2), which is
differentiable w.r.t. θ.

More specifically, for z ∼ N(0, Ik), we write Pθ(x) = Ez∼N(0,Ik) [Pθ,z(x)], where

Pθ,z(x) =
1

k

k∑
i=1

d′∏
j=1

(Gθ(zi)j)
xj

Then

∇θ[q(Pθ)] = ∇θ
∑
x∈X

φ(x)Pθ(x)

=
∑
x∈X

φ(x)∇θPθ(x)

=
∑
x∈X

φ(x)∇θ
[
Ez∼N(0,Ik) [Pθ,z(x)]

]
= Ez∼N(0,Ik)

[∑
x∈X

φ(x)∇θ [Pθ,z(x)]

]

However, while this form allows us to compute the gradient ∇θq even when φ itself may not be
differentiable w.r.t. x or have a closed form, this method is not computationally feasible when the
data domain X is too large because it requires evaluating φ on all x ∈ X . One possible alternative is
to construct an unbiased estimator. However, this estimator may suffer from high variance when the
number of samples is insufficiently large, inducing a trade-off between computational efficiency and
the variance of the estimator.

Incorporating techniques from reinforcement learning, such as the REINFORCE algorithm [41],
may serve as alternative ways for optimizing over non-differentiable queries. Specifically, we can
approximate (2) in the following way:

20

∇θ[q(Pθ)] = Ez∼N(0,Ik)

[∑
x∈X

φ(x)∇θPθ,z(x)

]

= Ez∼N(0,Ik)

[∑
x∈X

φ(x)
Pθ,z
Pθ,z
∇θPθ,z(x)

]

= Ez∼N(0,Ik)

[∑
x∈X

φ(x)Pθ,z(x)∇θ logPθ,z(x)

]

We can then approximate this gradient by drawing m samples {x1 . . . xm} from Pθ,z(x), giving us

Ez∼N(0,Ik)

[
1

m

k∑
i=1

φ(xi)∇θ logPθ,z(xi)

]

Further work would be required to investigate whether optimizing such surrogate loss functions is
effective when differentiable, closed-form representations of a given query class (e.g., the product
query representation of k-way marginals) are unavailable.

21

C PEP

In the following two sections, we first derive PEP’s loss function and and in the next section we
derive PEP’s update rule (or optimization procedure) that is used to minimize it’s loss function.

C.1 PEP loss function

In this section we derive the loss function that algorithm PEP optimizes over on round t. Fixing
round t, we let Q̃t ⊂ Q be a subset of queries that were selected using a private mechanism and and
let Ãt be the noisy measurements corresponding to Q̃t. Then algorithm PEP finds a feasible solution
to the problem:

minimize: RE (D ‖ U) (8)

subject to: ∀i∈[t] |ãi − q̃i(D)| ≤ γ,
∑
x∈X

D(x) = 1

The Lagrangian of (8) is :

L = RE (D ‖ U) +

t∑
i=1

λ+
i (ãi − q̃i(D)− γ) +

t∑
i=1

λ−i (q̃i(D)− ãi − γ) + µ

(∑
x

D(x)− 1

)

Let λ ∈ Rt be a vector with, λi = λ−i − λ
+
i . Then

L = RE (D ‖ U) +

t∑
i=1

λiq̃i(D)−
t∑
i=1

λiãi − γ
t∑
i=1

(
λ+
i + λ−i

)
+ µ

(∑
x

D(x)− 1

)
(9)

where ‖λ‖1 =
∑t
i=1

(
λ+
i + λ−i

)
. Taking the derivative with respect to D(x) and setting to zero, we

get:

0 =
∂L

∂D(x)
= log

(
D(x)

U(x)

)
+ 1 +

t∑
i=1

λiq̃i(x) + µ

Solving for D(x), we get

D(x) = U(x) exp

(
−

t∑
i=1

λiq̃i(x)− µ− 1

)

The slack variable µ must be selected to satisfy the constraint that
∑
x∈X D(x) = 1. Therefore have

that the solution to (8) is a distribution parameterized by the parameter λ, such that for any x ∈ X we
have

D(x) =
U(x)

Z
exp

(
−

t∑
i=1

λiq̃i(x)

)

22

where Z =
∑
x∈X U(x) exp

(
−
∑t
i=1 λiq̃i(x)

)
. Plugging into (9), we get

L =
∑
x∈X

D(x) log

(
D(x)

U(x)

)
+

t∑
i=1

λiq̃i(D)−
t∑
i=1

λiãi − γ‖λ‖1

=
∑
x∈X

D(x)

(
−

t∑
i=1

λiq̃i(x)

)
− log(Z) +

t∑
i=1

λiq̃i(D)−
t∑
i=1

λiãi − γ‖λ‖1

= −
t∑
i=1

λiq̃i(D)− log(Z) +

t∑
i=1

λiq̃i(D)−
t∑
i=1

λiãi − γ‖λ‖1

= − log(Z) +

t∑
i=1

λiãi − γ‖λ‖1

= − log

 Z

exp
(∑t

i=1 λiãi

)
− γ‖λ‖1

Substituting in for Z, we get:

L = − log

∑x∈X exp
(∑t

i=1 λiq̃i(x)
)

exp
(∑t

i=1 λiãi

)
− γ‖λ‖1

= − log

(∑
x∈X

exp

(
t∑
i=1

λi (q̃i(x)− ãi + γ)

))
− γ‖λ‖1

Finally, we have that the dual problem of (8) finds a vector λ = (λ1, . . . , λt) that maximizes L. We
can write the dual problem as a minimization problem:

L(λ) = min
λ

log

(∑
x∈X

exp

(
t∑
i=1

λi (q̃i(x)− ãi)

))
+ γ‖λ‖1

C.2 PEP optimization using iterative projection

In this section we derive the update rule in algorithm 4. Recall that the ultimate goal is to solve (8).
Before we describe the algorithm, we remark that it is possible the constraints in problem 8 cannot be
satisfied due to the noise we add to the measurements ã1, . . . ãt. In principle, γ can be chosen to be a
high-probability upper bound on the noise, which can be calculated through standard concentration
bounds on Gaussian noise. In that case, every constraint |ãi − q̃i(D)| ≤ γ can be satisfied and the
optimization problem is well defined. However, we note that our algorithm is well defined for every
choice of γ ≥ 0. For example, in our experiments we have γ = 0, and we obtain good empirical
results that outperform MWEM. In this section we assume that γ = 0.

To explain how algorithm 4 converges, we cite an established convergence analysis of adaboost from
[35, chapter 7] . Similar to adaboost, Algorithm 2 is running iterative projection, where on each
iteration, it projects the distribution to satisfy a single constraint. As shown in [35, chapter 7], this
iterative algorithm converges to a solution that satisfies all the constraints. The PEP algorithm can be
seen as an adaptation of the adaboost algorithm to the setting of query release. Therefore, to solve
(8), we use an iterative projection algorithm that on each round selects an unsatisfied constraint and
moves the distribution by the smallest possible distance to satisfy it.

Let Q̃1:t and Ã1:t be the set of queries and noisy measurements obtained using the private selection
mechanism. Let K be the number of iterations during the optimization and let Dt,0, . . . , Dt,K be the
sequence of projections during the K iteration of optimization. The goal is that Dt,K matches all the
constraints defined by Q̃1:t, Ã1:t. Our initial distribution is the uniform distribution Dt,0 = U . Then

23

on round k ∈ [K], the algorithm selects an index ik ∈ [t] such that the ik-th constraint has high error
on the current distribution Dt,k−1. Then the algorithm projects the distribution such that the ik-th
constraint is satisfied and the distance to Dt,k−1 is minimized. Thus, the objective for iteration k is:

minimize: RE (D ‖ Dt,k−1) subject to: ãik = q̃ik(D),
∑
x∈X

D(x) = 1 (10)

Algorithm 4: Exponential Weights Projection

Input: Error tolerance γ, linear queries Q̃1:T = {q̃1, . . . , q̃T }, and noisy measurements
Ã1:T = {ã1, . . . , ãT }.

Objective: Minimize RE (D ‖ U) such that ∀i∈[T] |q̃i(D)− ãi| ≤ γ.
Initialize D0 to be the uniform distribution over X , and t← 0.
while maxi∈[T] |âi − q̃i(Dt)| > γ do

Choose: i ∈ [T] with i← arg maxj∈[T] |ãj − q̃j(Dt)|.
Update: For all x ∈ X , set Dt+1(x)← Dt(x)e−λtq̃i(x), where −λt = ln

(
ãi(1−q̃i(Dt))
(1−ãi)q̃i(Dt)

)
.

t← t+ 1
end
Output: DT

Then the Lagrangian of objective (10) is:

L(D,λ) = RE (D ‖ Dk−1) + λ (q̃ik(D)− ãik) + µ

(∑
x∈X

D(x)− 1

)
(11)

Taking the partial derivative with respect to D(x), we have

∂L(D,λ)

∂D(x)
= ln

(
D(x)

Dk−1(x)

)
+ 1 + λq̃ik(x) + µ = 0 (12)

Solving (12) for D(x), we get

D(x) = Dk−1(x) exp (−λq̃ik(x)− 1− µ) = Dk−1(x)
Z exp (−λq̃ik(x)) (13)

where µ is chosen to satisfy the constraint
∑
x∈X D(x) = 1 and Z is a regularization factor. Plugging

(13) into (11), we get:
L(D,λ) = RE (D ‖ Dk−1) + λ (q̃ik(D)− ãik)

=
∑
x

D(x) log

(
D(x)

Dk−1(x)

)
+ λ (q̃ik(D)− ãik)

=
∑
x

D(x) log

(
1

Z

Dk−1(x)e−λqik (x)

Dk−1(x)

)
+ λ (q̃ik(D)− ãik) (13)

= −λ
∑
x

D(x)q̃ik(x)− log(Z) + λ (q̃ik(D)− ãik)

= −λq̃ik(D)− log(Z) + λ (q̃ik(D)− ãik)

= − log(Z)− λãik

= − log

(∑
x∈X

Dk−1(x) exp (−λq̃ik(x))

)
− λãik

The next step is to find the optimal value of λ. Therefore we calculate the derivative of L(D,λ) with
respect to λ:

∂L(D,λ)

∂λ
=

e−λq̃ik(Dk−1)∑
x∈X Dk−1(x) exp (−λq̃ik(x))

− ãik

=
e−λq̃ik(Dk−1)

e−λq̃ik(Dk−1) + (1− q̃ik(Dk))
− ãik

24

Setting ∂L(D,λ)
∂λ = 0, we can solve for λ.

e−λq̃ik(Dk−1)

e−λq̃ik(Dk−1) + (1− q̃ik(Dk))
= ãik

e−λq̃ik(Dk−1) = ãik
(
e−λq̃ik(Dk−1) + (1− q̃ik(Dk))

)
e−λq̃ik(Dk−1)− e−λãik q̃ik(Dk−1) = ãik (1− q̃ik(Dk))

e−λq̃ik(Dk−1) (1− ãik) = ãik (1− q̃ik(Dk))

Finally we obtain

−λ = ln

(
ãik (1− q̃ik(Dk−1))

(1− ãik)q̃ik(Dk−1)

)

25

D Additional empirical evaluation

D.1 Experimental details

We present hyperparameters used for methods across all experiments in Tables 1, 2, 3, 4, and
5. To limit the runtime of PEP and PEPPub, we add the hyperparameter, Tmax, which controls
the maximum number of update steps taken at each round t. Our implementations of MWEM,
DualQuery, and PMWPub are adapted from https://github.com/terranceliu/pmw-pub. We
implement RAP and RAPsoftmax ourselves using PyTorch since the code for RAP. All experiments
are run using a desktop computer with an Intel® Core™ i5-4690K processor and NVIDIA GeForce
GTX 1080 Ti graphics card.

We obtain the ADULT and ACS datasets by following the instructions outlined in https://github.
com/terranceliu/pmw-pub. Our version of ADULT used to train GEMPub (reduced) (Figure 2b
and 7) uses the following attributes: sex, race, relationship, marital-status, occupation, education-num,
age.

Table 1: PEP hyperparameters
Dataset Parameter Values

All Tmax 25

ACS (red.) T
20, 30, 40, 50, 75

100, 125, 150, 175, 200

ADULT (red.) T
20, 30, 40, 50, 75

100, 125, 150, 175, 200

Table 2: GEM hyperparameters
Dataset Parameter Values

All

hidden layer sizes (512, 1024, 1024)
learning rate 0.0001
B 1000
α 0.67
Tmax 100

ACS T
100, 150, 200, 250, 300,

400, 500, 750, 1000

ACS (red.) T
50, 75, 100, 125, 150,

200, 250, 300

ADULT, ADULT (red.),
T

30, 40, 50, 60, 70,
ADULT (orig), 80, 90, 100, 125, 150,
LOANS 175, 200

Table 3: PEPPub hyperparameters
Dataset Parameter Values

All Tmax 25

ACS T
20, 40, 60, 80, 100

120, 140, 160, 180, 200

D.2 Main experiments with additional metrics

In Figures 5, 6, and 7, we present the same results for the same experiments described in Section
7.1 (Figures 1 and 2), adding plots for mean error and root mean squared error (RMSE). For our

26

https://github.com/terranceliu/pmw-pub
https://github.com/terranceliu/pmw-pub
https://github.com/terranceliu/pmw-pub

Table 4: GEMPub hyperparameters
Dataset Parameter Values

All

hidden layer sizes (512, 1024, 1024)
learning rate 0.0001
B 1000
α 0.67
Tmax 100

ACS T
30, 40, 50, 75, 100,

150, 200, 300, 400, 500

ADULT T
2, 3, 5, 10, 20, 30, 40, 50,

60 70 80 90 100

Table 5: Baseline hyperparameters
Method Parameter Values

RAP

learning rate 0.001
n′ 1000
K 5, 10, 25, 50, 100
T 2, 5, 10, 25, 50, 75, 100

RAPsoftmax

learning rate 0.1
n′ 1000
K 5, 10, 25, 50, 100
T 2, 5, 10, 25, 50, 75, 100

MWEM T
100, 150, 200, 250, 300

400, 500, 750, 1000

MWEM (/w past queries) T 50, 75, 100, 150, 200, 250, 300

DualQuery η 2, 3, 4, 5
samples 25 50, 100, 250, 500

experiments on ACS PA-18 with public data, we add results using 2018 data for Ohio (ACS OH-18),
which we note also low best-mixture-error. Generally, the relative performance between the methods
for these other two metrics is the same as for max error.

In addition, in Figure 6, we present results for PEPPub, a version of PEP similar to PMWPub that is
adapted to leverage public data (and consequently can be applied to high dimensional settings). We
briefly describe the details below.

PEPPub. Like in Liu et al. [26], we extend PEP by making two changes: (1) we maintain a
distribution over the public data domain and (2) we initialize the approximating distribution to that of
the public dataset. Therefore like PMWPub, PEPPub also restricts D to distributions over the public
data domain and initializes D0 to be the public data distribution.

We note that PEPPub performs similarly to PMWPub, making it unable to perform well when using
ACS CA-18 as a public dataset (for experiments on ACS PA-18). Similarly, it cannot be feasibly run
for the ADULT dataset when the public dataset is missing a significant number of attributes.

D.3 Comparisons against RAP

In Figure 8, we show failures cases for RAP. Again, we see that RAPsoftmax outperforms RAP in
every setting. However, we observe that aside from ADULT (reduced), RAP performs extremely
poorly across all privacy budgets.

To account for this observation, we hypothesize that by projecting each measurement to Aydore et al.
[5]’s proposed continuous relaxation of the synthetic dataset domain, RAP produces a synthetic

27

Figure 5: Max, mean, and root mean squared errors for 3-way marginals evaluated on ADULT and
ACS PA-18 using privacy budgets ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 . The x-axis uses
a logarithmic scale. We evaluate using the following workload sizes: ACS (reduced) PA-18: 455;
ADULT (reduced): 35; ACS PA-18: 4096; ADULT: 286. Results are averaged over 5 runs, and error
bars represent one standard error.

dataset that is inconsistent with the semantics of an actual dataset. Such inconsistencies make it more
difficult for the algorithm to do well without seeing the majority of high error queries.

Consider this simple example comparing GEM and RAP. Suppose we have some binary attribute
A ∈ {0, 1} and we have P (A = 0) = 0.2 and P (A = 1) = 0.8. For simplicity, suppose that the
initial answers at t = 0 for both algorithms is 0 for the queries qA=0 and qA=1. Assume at t = 1
that the privacy budget is large enough such that both algorithms select the max error query qA=1

(error of 0.8), which gives us an error or 0.8. After a single iteration, both algorithms can reduce the
error of this query to 0. In RAP, the max error then is 0.2 (for the next largest error query qA=0).
However for GEM to output the correct answer for qA=1, it must learn a distribution (due to the
softmax activation function) such that P (A = 1) = 0.8, which naturally forces P (A = 0) = 0.2. In
this way, GEM can reduce the errors of both queries in one step, giving it an advantage over RAP.

In general, algorithms within the Adaptive Measurements framework have this advantage in that
the answers it provides must be consistent with the data domain. For example, if again we consider the
two queries for attribute A, a simple method like the Gaussian or Laplace mechanism has a nonzero
probability of outputting noisy answers for qA=0 and qA=1 such that P (A = 0) + P (A = 1) 6= 1.
This outcome however will never occur in Adaptive Measurements.

Therefore, we hypothesize that RAP tends to do poorly as you increase the number of high error
queries because the algorithm needs to select each high error query to obtain low error. Synthetic
data generation algorithms can more efficiently make use of selected query measurements because
their answers to all possible queries must be consistent. Referring to the above example again, there

28

Figure 6: Max, mean, and mean squared error for 3-way marginals on ACS PA-18 (workloads =
4096) with privacy budgets ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 . We evaluate public-data-
assisted algorithms with the following public datasets: Left: 2018 California (CA-18); Center: 2010
Pennsylvania (PA-10); Right: 2018 Ohio (PA-10). The x-axis uses a logarithmic scale. Results are
averaged over 5 runs, and error bars represent one standard error.

Figure 7: Max, mean, and mean squared error for 3-way marginals on ADULT (workloads = 286)
with privacy budgets ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 . We evaluate GEM using both the
complete public data (GEMPub) and a reduced version that has fewer attributes (GEMPub (reduced)).
The x-axis uses a logarithmic scale. Results are averaged over 5 runs, and error bars represent one
standard error.

may exist two high error queries qA=0 and qA=1, but only one needs to be sampled to reduce the
errors of both.

29

Figure 8: Comparison of RAP and RAPsoftmax w.r.t max error for 3-way marginals evaluated on
ADULT and ACS PA-18 using privacy budgets ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 . The
x-axis uses a logarithmic scale. We evaluate using the following workload sizes: ACS (reduced)
PA-18: 455; ACS PA-18: 4096; ADULT (reduced): 286; ADULT: 35. Results are averaged over 5
runs, and error bars represent one standard error.

We refer readers to Appendix D.7, where we use the above discussion to account for how the way in
which the continuous attributes in ADULT are preprocessed can impact the effectiveness of RAP.

D.4 Marginal trick

While this work follows the literature in which methods iteratively sample sensitivity 1 queries, we
note that the marginal trick approach (Appendix A.1) can be applied to all iterative algorithms under
Adaptive Measurements. To demonstrate this marginal trick’s effectiveness, we show in Figure 9
how the performance of GEM improves across max, mean, and root mean squared error by replacing
the Update and Measure steps in Adaptive Measurements.

In this experiment, given that the number of measurements taken is far greater when using the
marginal trick, we increased Tmax for GEM from 100 to 10000 and changed the loss function from
`1-loss to `2-loss. Additional hyperparameters used can be found in Table 6. Note that we reduced
the model size for G simply to speed up runtime. Overall, we admit that leveraging this trick was not
our focus, and so we leave designing GEM (and other iterative methods) to fully take advantage of
the marginal trick to future work.

D.5 Discussion of HDMM

HDMM [28] is an algorithm designed to directly answer a set of workloads, rather than some arbitrary
set of queries. In particular, HDMM optimizes some strategy matrix to represent each workload of
queries that in theory, facilitates an accurate reconstruction of the workload answers while decreasing
the sensitivity of the privacy mechanisms itself. In their experiments, McKenna et al. [28] show strong
results w.r.t. RMSE, and the U.S. Census Bureau itself has incorporated aspects of the algorithm into
its own releases [24].

We originally planned to run HDMM as a baseline for our algorithms in the standard setting, but after
discussing with the original authors, we learned that currently, the available code for HDMM makes
running the algorithm difficult for the ACS and ADULT datasets. There is no way to solve the least
square problem described in the paper for domain sizes larger than 109, and while the authors admit

30

Table 6: GEM (marginal trick) hyperparameters
Dataset Parameter Values

All

hidden layer sizes (256, 512)
learning rate 0.0001
B 1000
α 0.5
Tmax 10000

ACS T
50, 100, 150, 200,
250, 300, 400, 500

ACS (red.) T
50, 100, 150, 200,

250, 300, 450

ADULT T
30, 40, 50, 75,

100, 125, 150, 200

ADULT (red.) T
5, 10, 15, 20
25, 30, 35

Figure 9: Error comparison of GEM with and without the marginal trick , evaluated on 3-way
marginals with privacy budgets ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 . The x-axis uses a
logarithmic scale. Results are averaged over 5 runs, and error bars represent one standard error.

that HDMM could possibly be modified to use local least squares for general workloads (outside of
those defined in their codebase), this work is not expected to be completed in the near future.

We also considered running HDMM+PGM [29], which replaces the least squares estimation problem
a graphical model estimation algorithm. Specifically, using (differentially private) measurements to
some set of input queries, HDMM+PGM infers answers for any workload of queries. However, the

31

Figure 10: Comparison of max, mean, and root mean squared errors against HDMM on ACS (reduced)
PA-18 (workloads=455) and ADULT (reduced) (workloads=35), evaluated on 3-way marginals with
privacy budgets ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 . The x-axis uses a logarithmic scale.
Results are averaged over 5 runs, and error bars represent one standard error.

memory requirements of the algorithm scale exponentially with dimension of the maximal clique
of the measurements, prompting users to carefully select measurements that help build a useful
junction tree that is not too dense. Therefore, the choice of measurements and cliques can be seen as
hyperparameters for HDMM+PGM, but as the authors pointed out to us, how such measurements
should be selected is an open problem that hasn’t been solved yet. In general, cliques should be
selected to capture correlated attributes without making the size of the graphical model intractable.
However, we were unsuccessful in finding a set of measurements that achieved sensible results
(possibly due to the large number of workloads our experiments are designed to answer) and decided
stop pursuing this endeavor due to the heavy computational resources required to run HDMM+PGM.
We leave finding a proper set of measurements for ADULT and ACS PA-18 as an open problem.

Given such limitations, we evaluate HDMM with least squares on ACS (reduced) PA-18 and
ADULT (reduced) only (Figure 10). We use the implementation found in https://github.com/
ryan112358/private-pgm. We compare to GEM using the marginal trick, which HDMM also
utilizes by default. While GEM outperforms HDMM, HDMM seems to be very competitive on low
dimensional datasets when the privacy budget is higher. In particular, HDMM slightly outperforms
GEM w.r.t. max error on ACS (reduced) when ε = 1. We leave further investigation of HDMM and
HDMM+PGM to future work.

D.6 Effectiveness of optimizing over past queries

One important part of the adaptive framework is that it encompasses algorithms whose update step
uses measurements from past iterations. In Figure 11, we verify claims from Hardt et al. [22] and
Liu et al. [26] that empirically, we can significantly improve over the performance of MWEM when
incorporating past measurements.

32

https://github.com/ryan112358/private-pgm
https://github.com/ryan112358/private-pgm

Figure 11: Comparison of max, mean, and root mean squared errors against vanilla MWEM that
does not use queries sampled during past iterations, evaluated on 3-way marginals with privacy
budgets ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 . The x-axis uses a logarithmic scale. Results
are averaged over 5 runs, and error bars represent one standard error.

D.7 Evaluating on ADULT* and LOANS

In Figure 12, we reproduce the experiments on the ADULT (which we denote as ADULT*) and
LOANS datasets presented in Aydore et al. [5]. Like Aydore et al. [5], we obtain the datasets from
https://github.com/giusevtr/fem. Empirically, we find that GEM outperforms all baseline
methods. In addition, while RAP performs reasonably well, we observe that by confining D to{
σ(M)|M ∈ Rn′×d

}
with the softmax function, RAPsoftmax performs better across all privacy

budgets.

To account for why RAP performs reasonably well with respect to max error on ADULT* and
LOANs but very poorly on ADULT and ACS, we refer back to our discussion about the issues of
RAP presented in Appendix D.3 in which argue that by outputting synthetic data that is inconsistent
with any real dataset, RAP performs poorly when there are many higher error queries. ADULT*
and LOANs are preprocessed in a way such that continous attributes are converted into categorical
(technically ordinal) attributes, where a separate categorical value is created for each unique value
that the continuous attribute takes on in the dataset (up to a maximum of 100 unique values). When
processed in this way, k-way marginal query answers are sparser, even when k is relatively small

33

https://github.com/giusevtr/fem

Figure 12: Max, mean, and root mean squared errors for 3-way marginals with a workload
size of 64. Methods are evaluated on ADULT* and LOANS datasets using privacy budgets
ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 . The x-axis uses a logarithmic scale. Results are
averaged over 5 runs, and error bars represent one standard error.

(≤ 5). However, Liu et al. [26] preprocess continuous variables in the ADULT and ACS dataset by
constructing bins, resulting in higher error queries.

For example, suppose in an unprocessed dataset (with n rows), you have 3 rows where an attribute
(such as income) takes on the values 16, 587, 15, 984, and 18, 200. Next, suppose there exists datasets
A and B, where dataset A maps each unique value to its own category, while dataset B constructs a
bin for values between 15, 000 and 20, 000. Then considering all 1-way marginal queries involving
this attribute, dataset A would have 3 different queries, each with answer 1

N . Dataset B however
would only have a single query whose answer is 3

N . Whether a dataset should be preprocessed as
dataset A or dataset B depends on the problem setting.6 However, this (somewhat contrived) example
demonstrates how dataset B would have more queries with high value answers (and therefore more
queries with high initial errors, assuming that the algorithms in question initially outputs answers that
are uniform/close to 0).

In our experiments with 3-way marginal queries, ADULT (where workload is 286) and ADULT*
(where the workload is 64) have roughly the same number queries (334, 128 vs. 458, 996 respectively).
However, ADULT has 487 queries with answers above 0.1 while ADULT* only has 71. Looking up
the number of queries with answers above 0.2, we count 181 for ADULT and only 28 for ADULT*.
Therefore, experiments on ADULT* have fewer queries that RAP needs to optimize over to achieve
low max error, which we argue accounts for the differences in performance on the two datasets.

Finally, we note that in Figure 8, RAP has relatively high mean error and RMSE. We hypothesize that
again, because only the queries selected on each round are optimized and all other query answers need
not be consistent with the optimized ones, RAP will not perform well on any metric that is evaluated
over all queries (since due to privacy budget constraints, most queries/measurements are never seen
by the algorithm). We leave further investigation on how RAP operates in different settings to future
work.

6We would argue that in many cases, dataset B makes more sense since it is more likely for someone to
ask—"How many people make between 15, 000 and 20, 000 dollars?"—rather than—"How many people make
15, 984 dollars?".

34

