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DisenStudio: Customized Multi-subject Text-to-Video Generation
with Disentangled Spatial Control

Anonymous Authors

ABSTRACT
Generating customized content in videos has received increasing
attention recently. However, existing works primarily focus on cus-
tomized text-to-video generation for single subject, suffering from
subject-missing and attribute-binding problems when the video is ex-
pected to contain multiple subjects. Furthermore, existing models
struggle to assign the desired actions to the corresponding sub-
jects (action-binding problem), failing to achieve satisfactory multi-
subject generation performance. To tackle the problems, in this
paper, we propose DisenStudio, a novel framework that can gen-
erate text-guided videos for customized multiple subjects, given
few images for each subject. Specifically, DisenStudio enhances a
pretrained diffusion-based text-to-video model with our proposed
spatial-disentangled cross-attention mechanism to associate each
subject with the desired action. Then themodel is customized for the
multiple subjects with the proposed motion-preserved disentangled
finetuning, which involves three tuning strategies: multi-subject co-
occurrence tuning, masked single-subject tuning, and multi-subject
motion-preserved tuning. The first two strategies guarantee the
subject occurrence and preserve their visual attributes, and the third
strategy helps the model maintain the temporal motion-generation
ability when finetuning on static images. We conduct extensive
experiments to demonstrate our proposed DisenStudio significantly
outperforms existing methods in various metrics. Additionally, we
show that DisenStudio can be used as a powerful tool for various
controllable generation applications.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Video Generation, Customization, Multi-Subject, Disentanglement

1 INTRODUCTION
On the one hand, with the advent of diffusion models [18, 39, 45],
text-to-video generation has witnessed remarkable progress. An
increasing number of pretrained text-to-video diffusion models [5,
9, 15, 47, 55] have been proposed recently, enabling users to gener-
ate temporally consistent photo-realistic videos by providing the
textual descriptions. On the other hand, solely relying on textual
prompts cannot fulfill the user’s specific customization needs, e.g.,
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an anime artist may desire to generate a video of their newly created
character, or a user may expect to generate videos of their beloved
pet dog. It is difficult to determine a textual prompt that can de-
scribe all the visual attributes of the anime character or the pet dog.
Therefore, customized text-to-video generation [8, 23, 24, 50, 58]
has received increasing attention. As shown in Figure 1, given a few
images of specific subjects, customized text-to-image generation
aims to generate videos that include the subjects and conform to
the textual prompts simultaneously.

Subject 1
A S1* dog 

Subject 2
A S2* dog 

A S1* dog is kicking a ball, a S2* dog is sitting, 

on the beach

Given Subjects Customized Video Generation

Figure 1: Illustration for customized multi-subject text-to-
video generation.

However, existing customized text-to-video generationworks [24,
50, 58] mostly focus on single-subject customization, limiting their
application to broader scenarios of generating videos with multi-
ple customized subjects, e.g., we may want to generate a video of
two newly created anime characters dancing together. The single-
subject customization works tend to suffer from subject attribute-
binding (the visual features of different subjects are mixed together)
and subject-missing (one or more of the multiple subjects is missing)
problems when the video is required to contain multiple subjects.
Recently, the Disen-Mix finetuning strategy [8] is proposed to dis-
tinguish the features of the multiple subjects. However, this work
fails to preserve detailed visual attributes of each subject. More
importantly, all the existing methods [8, 24, 50, 58] struggle with
the action-binding problem. They fail to precisely assign the de-
sired actions to the corresponding subjects as the textual prompts
indicate. For instance, when generating a video in which the first
dog is kicking a ball and the second dog is sitting, existing methods
may generate videos where both of them are kicking the ball or
only the second dog is kicking a ball.

To tackle these problems, in this paper we propose DisenStudio,
a novel framework capable of generating text-guided videos for
customized multiple subjects, given only a few images for each
subject. In general, DisenStudio enhances a pretrained diffusion-
based text-to-video model with the proposed spatial-disentangled
cross-attention, and then conducts customization for the multiple
subjects with the proposed motion-preserved disentangled finetun-
ing. Specifically, to tackle the action-binding problem, we propose
to replace the vanilla cross-attention in the diffusion model with the
spatial-disentangled cross-attention, resulting in the spatial disen-
tanglement of the attention maps for different subject-action pairs.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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In addition, to tackle the attribute-binding and subject-missing
problem, our proposed motion-preserved disentangled finetuning
involves two strategies, i.e., the multi-subject co-occurrence tun-
ing and masked single-subject tuning, where the former utilizes
the synthesized multi-subject co-occurrence data during finetun-
ing to avoid subject missing, and the latter guides the model to
preserve the visual attributes of each subject with segmentation
masks. Moreover, to prevent the text-to-video model from losing
temporal motion-generation ability during the finetuning process
which only involves static subject images, we propose a novel multi-
subject motion-preserved tuning strategy. To further evaluate the
performance of different methods, we propose a DisenStudioBench
dataset, and conduct extensive experiments on the dataset to show
that our proposed method significantly outperforms existing works
in various metrics. Our contributions are summarized as follows,

• We propose DisenStudio, a customized multi-subject text-
to-video generation framework with disentangled spatial
control, allowing for precise assignment of actions to their
respective subjects.

• We propose the multi-subject co-occurrence tuning and the
masked single-subject tuning strategies to tackle the subject-
missing and attribute-binding problem, capable of well pre-
serving the visual attributes of each subject.

• We propose the multi-subject motion-preserved tuning strat-
egy, which maintains the temporal motion-generation ability
of the text-to-video model during the process of finetuning.

• We conduct extensive experiments to show that the proposed
DisenStudio framework is able to significantly outperform
existing baselines in subject fidelity, textual alignment, tem-
poral consistency, and human preference, which can serve
as a powerful tool for diverse controllable generation tasks.

2 RELATEDWORK
Text-to-image diffusion models. Text-to-image generation has

emerged as a prominent and highly explored topic recently, thanks
to the advancements of diffusionmodels. Trained on large-scale text-
image pairs, diffusion models [4, 32, 37–39, 42] can generate photo-
realistic images based on textual prompts. GLIDE [32] introduces
classifier-free guidance to achieve better text control on images.
Dall-E 2 [37] and Imagen [42] leverage pretrained text models to
enhance text fidelity. Dall-E 3 tries to improve the generation quality
with higher-quality captions. The series of Stable Diffusion (SD)
models [12, 34, 39] propose to conduct the diffusion process in
the latent space, resulting in improved speed and efficiency while
maintaining high-resolution output.

Text-to-video generation. The increasing attention on text-to-
video generation has been fueled by the success of text-to-image
generation. Both diffusion-based models [9, 15, 17, 21, 24, 29, 44,
47, 55, 60] and non-diffusion models [19, 46, 52] have been devel-
oped, leveraging pretraining on large-scale video datasets [2, 19, 56].
Compared to the text-to-image diffusion models, temporal modules
are designed and pretrained to maintain frame consistency and gen-
erate temporal dynamics for text-to-video diffusion models. More
recently, a surprising work Sora [5] can even generate 1-minute
high-quality videos by applying the transformer structure to the

latent diffusion model. Despite the progress made, the general text-
to-video generation models still struggle to meet the personalized
needs of user-customized subject generation.

Text-guided video editing. Text-guided video editing [24, 27, 31,
35, 48, 53, 57, 59] is related to text-to-video generation, which aims
to edit the content of a reference video with textual prompts. The
difference between text-guided video editing and text-to-video gen-
eration is that the former requires an input video while the latter
does not. Additionally, it is hard for text-guided video editing to
generate new actions. Compared to text-guided video editing, text-
to-video generation is a more challenging task.

Subject customization. Most subject customization works focus
on generating images, which can be categorized into finetuning and
non-finetuning methods. Specifically, [10, 13, 14, 16, 26, 41] require
finetuning several hundreds of steps on a few reference images of
the given subjects, such as DreamBooth [41]. Among these meth-
ods, [13, 26, 41] face the attribute-binding problem when applied to
multiple subjects. [16] solves the attribute binding problem for mul-
tiple subjects by stitching the data but introduces stitching effects.
[14] works for a decentralized scenario for multiple subjects. The
non-finetuning works [1, 11, 30, 43, 51, 54] use additional datasets
to train a visual encoder to provide reference image condition to
the generative model, enabling them to customize the subject in
a zero-shot manner. Among the non-finetuning methods, [30, 54]
consider the multi-subject scenario with attention controls for the
attribute-binding problem. However, these non-finetuning methods
will fail to customize the subjects that are out-of-domain of the
additional datasets, i.e., if the customized subjects do not appear in
the additional datasets, they will generate dissimilar subjects.

For customized text-to-video generation, there have been initial
attempts [23, 50, 58] that customize the text-to-video models with
the reference images of the given subjects. However, these methods
are still limited to the single-subject scenario. More recently, Video-
Dreamer [8] is proposed to tackle the attribute-binding problem
in customized multi-subject text-to-video generation, but it still
suffers in preserving the details of each subject. More importantly,
it struggles to generate videos where we expect different subjects
to take different actions.

3 METHODOLOGY
The overall framework of our proposed DisenStudio is shown in
Figure 2, which is based on the pretrained AnimateDiff text-to-video
generator, whosemain component is Stable Diffusion. Therefore, we
will first introduce some preliminaries about the Stable Diffusion
and AnimateDiff model, and then elaborate on the DisenStudio
framework in detail.

3.1 Preliminaries
Stable Diffusion. Pretrained on large-scale text-image dataset

{(𝑃, 𝑥)}, Stable Diffusion [39] can generate photo-realistic images
that conform to the text prompts, where 𝑥 is an image and 𝑃 is the
text description of the image 𝑥 . Different from the pixel-space dif-
fusion model, Stable Diffusion conducts the forward and denoising
process in the latent space to improve efficiency, with an encoder
E(·) and a decoder D(·). The encoder transforms the image 𝑥 into
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Given Subjects

a 𝑆1
∗ girl

a 𝑆2
∗ dog

a 𝑆3
∗ dog

a girl 
action1

a dog 
action2

a dog
action3

Text Encoder

Q K1 V1

K2 V2

K3 V3

Attention Out

Spatial-disentangled cross-attention
(SDCA)

Text representations

Motion Prior Data

B. Motion Prior Data Self-Generation

✖

✖

➕

➕

＝

＝

A. Co-occurrence Data Synthesizing

U-Net

C. Motion-preserved Disentangled Finetuning

a 𝑆1
∗ girl Text Encoder

(b) Masked single-subject tuning

✖𝐿2

Text Encoder

(c) Multi-subject motion-preserved tuning

𝐿3

a girl plays 
the guitar
a dog plays 
the guitar
a dog walks

LoRA Parameters

Frozen Parameters

Temporal Parameters

D. Video Generation with
Disentangled Spatial Control

a 𝑆1
∗ girl plays the guitar, a 𝑆2

∗ dog, a 
𝑆3
∗ dog in a yellow hat, in the flowers

a 𝑆1
∗ girl plays 

the guitar in 
the flowers

a 𝑆2
∗ dog

In the flowers

a 𝑆3
∗ dog in a 

yellow hat in 
the flowers

Input 
Prompt

Text Encoder

Q K1 V1

K2 V2

K3 V3

Attention Out

Spatial-disentangled cross attention

Insert 
Temporal 
Module

Text Encoder

(a) Multi-subject co-occurrence tuning

a 𝑆1
∗ girl

a 𝑆2
∗ dog

a 𝑆3
∗ dog

𝐿1

SDCA

SDCA

Single-subject 
Mask: 𝑀ask1

SDCA

𝐷𝑚𝑖𝑥

𝐷𝑚𝑜𝑡𝑖𝑜𝑛

𝑥𝑚𝑗

𝑥𝑚𝑗

𝑥mot,𝑗

Text Encoder(𝐸𝑇)

U-Net(𝜖𝜃)

AnimateDiff

Figure 2: The proposed DisenStudio framework is based on the AnimateDiff model that includes the text encoder, and U-Net
with temporal modules. Given few images of each subject, (A) we synthesize themulti-subject co-occurrence data with randomly
generated background and segmented subjects. (B) we generate images where different subjects take a randomly sampled
action, which is used to maintain the motion-generation ability of the model. (C) we finetune the U-Net and text encoder with
LoRA, on the synthesized co-occurrence data and generated motion prior data. (D) we insert the temporal modules to U-Net
and conduct video generation with the spatial-disentangled cross-attention.

the latent space, 𝑧0 = E(𝑥), and the decoder reconstructs the image
from the latent space with 𝑥 ≈ D(𝑧0), where 𝑧0 is the latent code.
Specifically, in the diffusion forward process, the Gaussian noise is
added to the latent code iteratively as follows:

𝑞 (𝑧𝑡 |𝑧𝑡−1 ) = N(𝑧𝑡 ;
√︁
1 − 𝛽𝑡𝑧𝑡−1, 𝛽𝑡 𝐼 ), 𝑡 = 1, · · · ,𝑇 , (1)

where 𝑇 is large so that 𝑧𝑇 is close to a standard Gaussian noise.
In the denoising process, the Stable Diffusion will recover the

image latent code 𝑧0 from the Gaussian noise 𝑧𝑇 step by step. The
denoising process relies on a U-Net [40], which we denote as 𝜖𝜃 (·),
to predict the noise at each step. It receives the noisy latent code
𝑧𝑡 , timestep 𝑡 , and the textual feature 𝐸𝑇 (𝑃) as input, and predicts
the noise 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝐸𝑇 (𝑃)) at timestep 𝑡 , where 𝐸𝑇 (·) is a CLIP text
encoder to encode the text prompt 𝑃 . With the predicted noise at
each step, we can remove the noise step by step with diffusion
samplers [28, 45] until we obtain the clean latent code 𝑧0. More
specifically, to guarantee that the denoised latent code contains
the content described by the prompt 𝑃 , the Stable Diffusion adds
cross-attention modules in the U-Net as follows,

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝑑

) ·𝑉 , (2)

𝑄 =𝑊𝑄 · 𝜙 (𝑧), 𝐾 =𝑊𝑘 · 𝐸𝑇 (𝑃),𝑉 =𝑊𝑉 · 𝐸𝑇 (𝑃),

where the text representation 𝐸𝑇 (𝑃) will be used as the attention
key and value to guide the denoising process. The follow objective
is adopted to train the U-Net 𝜖𝜃 (·) and the text encoder:

min E𝑃,𝑧0,𝜖,𝑡 [ | |𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝐸𝑇 (𝑃 ) ) | |22 ], (3)

where for a randomly sampled noise 𝜖 , we add it to the latent code
𝑧0 and obtain the noisy latent 𝑧𝑡 . What the U-Net 𝜖𝜃 (·) needs to do
is to make the predicted noise close to the sampled noise 𝜖 . This
objective is widely used during finetuning for customization.

AnimateDiff. AnimateDiff [15] is a text-to-video generator based
on Stable Diffusion as shown in the left of Figure 2, which adds
the green temporal modules to the gray Stable Diffusion text-to-
image modules. Specifically, to adapt the original text-to-image
Stable Diffusion model to a series of frames of a video, it merges
the frame dimension with the original batch size dimension. The
merge-dimension operation helps AnimateDiff to utilize the power
of Stable Diffusion to process each frame image. Furthermore, to
guarantee the generated frames are temporally consistent, Animate-
Diff adds a temporal Transformer module after each Stable Diffu-
sion attention block and trains the temporal Transformer modules
on the WebVid [3] text-video dataset. Then the model can gener-
ate temporally consistent videos with high-quality content from
Stable Diffusion prior. In customized multi-subject text-to-video
generation, AnimateDiff is very suitable as the base text-to-video
generator because it has decoupled image and temporal modules,
while we only have few images for each subject. It is very natural to
utilize the images to finetune the image module while leaving the
temporal module fixed to maintain its motion-generation ability.

3.2 A Naive Approach
Based on the preliminaries, a very naive approach for customized
multi-subject text-to-video generation is to directly customize the
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Stable Diffusion model in AnimateDiff with the given multiple
subjects. Specifically, assume that there are 𝑁 user-defined subjects,
and few images for each subject {{𝑥𝑖 𝑗 }𝑀𝑖

𝑗=1}
𝑁
𝑖=1, where 𝑥𝑖 𝑗 is the 𝑗

𝑡ℎ

image of subject 𝑖 and 𝑀𝑖 (usually 3∼5) is the number of images
used for subject 𝑖 . Similar to previous text-to-image customization
work [10, 13, 41], we can bind each subject to a special prompt 𝑃𝑖 =
“a 𝑆∗

𝑖
𝑐𝑎𝑡𝑒𝑖 ” through finetuning, where 𝑆∗𝑖 is a rare token to represent

the subject identity (e.g., “sks”), and 𝑐𝑎𝑡𝑒𝑖 means the category of
subject 𝑖 (e.g., dog). The finetuning objective is similar to Eq.(3):

L𝑛𝑎𝑖𝑣𝑒 =

𝑁∑︁
𝑖=1

(
𝑀𝑖∑︁
𝑗=1
E𝜖,𝑡 [ | |𝜖 − 𝜖𝜃 (𝑧𝑖 𝑗,𝑡 , 𝑡, 𝐸𝑇 (𝑃𝑖 ) ) | |22 ] ), (4)

where 𝑧𝑖 𝑗,𝑡 is the noisy latent code of image 𝑥𝑖 𝑗 at timestep 𝑡 . The
inner sum of the objective means given a subject 𝑖 and its textual
prompt 𝑃𝑖 as the condition of the U-Net, the U-Net model can
denoise for all the images of subject 𝑖 , {𝑥𝑖 𝑗 }𝑀𝑖

𝑗=1. Then the text con-
dition 𝑃𝑖 is successfully tied to subject 𝑖 . In the outer sum, we will
conduct the finetuning process for all the 𝑁 subjects.

After the finetuning process, we can use the finetuned model and
prompts related to 𝑃𝑖 to generate new videos as shown in Figure 3,
where we use two random seeds to generate two videos and show
the frames of the two videos. From Figure 3, we can see that there
are twomain problems. (i)Action-binding problem: the finetuned
model fails to assign the desired action to the corresponding subject,
e.g., the prompt requires the girl to dance and the dog to play the
piano, but in the left frame, the girl plays the piano. (ii) Attribute-
binding and subject-missing problem: the finetuned model fails
to preserve the appearances of the given subjects, e.g., the girl and
the dog in the left frame are not so similar to the given two subjects,
and in the right frame, the dog is even missing. To tackle the two
problems, we propose the DisenStudio framework.

Subject 1

𝑃2 = A S2* dog 𝑃1 =A S1* girl 

Subject 2

Naive 
Finetuning

𝑃𝑛𝑒𝑤 = A S1* girl is dancing, and a S2* 
dog is playing the piano, in the room   

Generated Video Frames

Figure 3: Video frames generated by the naive approach.

3.3 DisenStudio
We first focus on the action-binding problem. As indicated by previ-
ous works [1, 7, 14], the action-binding problem of Stable Diffusion
comes from improper cross-attention results. As shown in Eq.(2),
the text representation 𝐸𝑇 (𝑃) will attend to all the dimensions of
the query 𝑄 (latent code), thus making each textual word has the
possibility to appear in any place of the generated video frame.
Take Figure 3 as an example, the action “playing the piano” can
attend to all the regions of the latent code, and thus the attention
mechanism makes it possible to attend to the region of the girl in-
stead of the dog. Consequently, the generated frame has the wrong
action-binding pattern, “the girl is playing the piano” instead of “the
dog is playing the piano” as given in the text. Based on the analysis,

we introduce the following spatial-disentangled cross-attention
(SDCA) mechanism to tackle the problem.

Spatial-disentangled cross-attention. The difference between the
disentangled-spatial cross-attention and vanilla cross-attention is
shown in Figure 4. Assuming that 𝑁 = 2 is the subject number,
given a textual prompt 𝑃 ′ = “A girl is dancing, and a dog is playing
the guitar” that describes the 2 subjects and their actions, we first
divide it into 2 prompts, 𝑃 ′1 = “A girl is dancing” and 𝑃 ′2 = “A dog is
playing the guitar”, which can be easily processed by rules or large
language models. After that, we use the two prompts to get two
disentangled textual representations, where each representation
is related to only one subject and its action. When conducting the
cross-attention, the two textual representations will attend to two
spatially disentangled regions as follows,

𝑂𝑢𝑡 = [𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄1, 𝐾1,𝑉1); · · · ;𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑁 , 𝐾𝑁 ,𝑉𝑁 )] (5)

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑄𝑖𝐾

𝑇
𝑖√
𝑑

) ·𝑉𝑖 , 𝑖 = 1 · · · , 𝑁

𝑄𝑖 =𝑊𝑄 · 𝜙 (𝑧𝑖 ), 𝐾𝑖 =𝑊𝑘 · 𝐸𝑇 (𝑃 ′𝑖 ),𝑉𝑖 =𝑊𝑉 · 𝐸𝑇 (𝑃 ′𝑖 ),
where we uniformly divide the original features into N parts, only
use one prompt (one subject and its action) to attend to one region,
and finally concatenate the N regions together. Therefore, we can
make sure that the subjects and their actions are correctly related.
Take Figure 4 as an example, “A dog is playing the guitar” will only
attend to the right part, so that the action “playing the guitar” will
not attend to the region of the girl that is on the left.

Text Encoder 𝐸𝑇

Q
K V

Attention Out

A girl is dancing, and a 
dog is playing the guitar

An entangled representation

(i) Cross-attention

a girl is 
dancing

a dog is playing 
the guitar

Text Encoder 𝐸𝑇

Q K1 V1

K2 V2

Attention Out

Disentangled representations

A girl is dancing, and a 
dog is playing the guitar

(ii) Spatial-disentangled cross-attention

Figure 4: Comparison between the Spatial-disentangled cross-
attention and the vanilla cross-attention.

The only problem with the spatial-disentangled cross-attention
is whether it will cause discontinuous background because we use
different prompts to control different regions. Luckily, thanks to the
pretrained knowledge of Stable Diffusion, we find that the images
are still continuous as shown in Figure 5 when we apply SDCA
to the pretrained Stable Diffusion model. The SDCA tackles the
action-binding problem, but we still face the attribute-binding and
subject-missing problems. To tackle the two problems, we propose
the motion-preserved disentangled finetuning strategy.

Motion-preserved Disentangled Finetuning. Themotion-preserved
disentangled finetuning strategy includes the multi-subject co-
occurrence tuning, masked single-subject tuning, and multi-subject
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Figure 5: Generated images from pretrained Stable Diffusion
with SDCA are with the continuous background.

motion-preserved tuning, three components as shown in Part C of
Figure 2. We will next elaborate on them in detail.
Multi-subject co-occurrence tuning. Since we use SDCA for
multi-subject generation, it is consistent for us to adopt SDCA
for multi-subject finetuning. However, the images available only
contain one subject in each image, preventing us from using SDCA
to customize multiple subjects in the same scenario. To tackle the
problem, we propose the co-occurrence data synthesizing process as
shown in Part A of Figure 2, where we use the segmentation model
SAM [25] to segment each subject, and then put them together in
the same background generated by the Stable Diffusion. Then we
can get a small dataset 𝐷𝑚𝑖𝑥 = {𝑥𝑚𝑗 }𝑅𝑗=1 (3∼5 images) where each
image contains all the given multiple subjects. With this dataset,
we can finetune the Stable Diffusion with the following objective:

L1 =
𝑅∑︁
𝑗=1
E𝜖,𝑡 [ | |𝜖−𝜖𝜃 (𝑧𝑚𝑗,𝑡 , 𝑡, [𝐸𝑇 (𝑃1 ) ; · · · ;𝐸𝑇 (𝑃𝑁 ) ];𝑆𝐷𝐶𝐴) | |22 ], (6)

where we change the original cross-attention to SDCA, and use the
𝑁 prompts { “a 𝑆∗

𝑖
𝑐𝑎𝑡𝑒𝑖 ” }𝑁𝑖=1 (e.g., “a 𝑆

∗
1 girl”, “a 𝑆

∗
2 dog”, “a 𝑆

∗
3 dog”

in Figure 2) to respectively attend to the 𝑁 regions. This finetuning
objective ensures that when we use all the special prompts, all
the subjects will co-occur in the same frame, avoiding the subject-
missing problem.
Masked single-subject tuning. To further make each special
prompt 𝑃𝑖 to preserve the visual attributes of subject 𝑖 , we introduce
the masked single-subject customization as follows,

L2 =
𝑅∑︁
𝑗=1

𝑁∑︁
𝑖=1
E𝜖,𝑡 [ | | (𝜖 − 𝜖𝜃 (𝑧𝑚𝑗,𝑡 , 𝑡, [𝐸𝑇 (𝑃𝑖 ) ];𝑆𝐷𝐶𝐴) ) ·𝑀𝑎𝑠𝑘𝑖 | |22 ], (7)

where when we denoise each image in 𝐷𝑚𝑖𝑥 , we only denoise one
subject with one prompt at a time. Specifically, we use prompt 𝑃𝑖 to
attend to the 𝑖𝑡ℎ region, while leaving the other regions conditioned
on a NULL prompt, and the denoising loss is masked with the
subject mask 𝑀𝑎𝑠𝑘𝑖 as shown in Part C.(b) of Figure 2, ensuring
that using 𝑃𝑖 only can generate subject 𝑖 in the 𝑖𝑡ℎ masked region,
for better preserving each subject’s visual details.
Multi-subject motion-preserved tuning. Directly using Eq.(6)
and Eq.(7) to finetune the Stable Diffusion model can well preserve
the attributes of each subject. However, we find it easy to overfit the
images in 𝐷𝑚𝑖𝑥 , and when we insert the temporal motion module
of AnimateDiff, the model will fail to generate videos but a series
of static frames, losing the model’s motion-generation ability. To
tackle the problem, we propose the multi-subject motion-preserved
finetuning. As shown Part B of Figure 2, we will first generate some
motion prior data with SDCA, using prompt 𝑃𝑚𝑜𝑡,𝑖 = {“a 𝑐𝑎𝑡𝑒𝑖
𝑎𝑐𝑡𝑖𝑜𝑛𝑖” }, 𝑖 = 1, · · · , 𝑁 , where 𝑎𝑐𝑡𝑖𝑜𝑛𝑖 is randomly sampled from

“run, jump, play basketball, walk, play the guitar”. Specifically, the
motion prior data is obtained as follows,

𝑥𝑚𝑜𝑡,𝑗 = 𝑆𝐷 (𝜖𝜃 ( [𝐸𝑇 (𝑃𝑚𝑜𝑡,1); · · · ;𝐸𝑇 (𝑃𝑚𝑜𝑡,𝑁 )]; 𝑆𝐷𝐶𝐴)), (8)

where we will send 𝑁 prompts {𝑃𝑚𝑜𝑡,𝑖 }𝑁𝑖=1, where each prompt
describes one subject of the same category as subject 𝑖 taking a
specific action (e.g., “a girl plays the guitar”, “a dog plays the gui-
tar”, “a dog walks”), to the Stable Diffusion, and use the Stable
Diffusion with SDCA to generate several images with different
random seeds. We totally generate 200 images for the motion prior
dataset 𝐷𝑚𝑜𝑡𝑖𝑜𝑛 = {𝑥𝑚𝑜𝑡,𝑗 }200𝑗=1, and conduct multi-subject motion
preserved tuning on the dataset as follows,
L3 = E𝜖,𝑡,𝑗 [ | |𝜖−𝜖𝜃 (𝑧𝑚𝑜𝑡,𝑗,𝑡 , 𝑡, [𝐸𝑇 (𝑃𝑚𝑜𝑡,1 ) ; · · · ;𝐸𝑇 (𝑃𝑚𝑜𝑡,𝑁 ) ];𝑆𝐷𝐶𝐴) | |22 ] .

(9)
With 𝐿3, we can preserve the model’s ability to generate various
motions for different subjects.
Joint optimization. The final objective of the motion-preserved
disentangled finetuning is: L = L1 + L2 + L3. We follow the
previous work [8] to use LoRA [20] to update the text encoder and
the U-Net parameters.

Video generation with disentangled spatial control. After the fine-
tuning process of the Stable Diffusion, we insert the temporal mo-
tion module of the AnimateDiff to generate videos, where we adopt
the spatial-disentangled cross-attention to generate multiple sub-
jects with their corresponding actions as shown in Figure 2 D.

4 EXPERIMENTS
4.1 Experimental Setup

Dataset. Since there is no released benchmark for customized
multi-subject text-to-video generation, we follow [8] to collect a
DisenStudioBench dataset containing 25 subjects, which includes
different categories of subjects, such as toys, animation characters,
and animals. The images of the datasets are part of the previous
works [26, 41], or collected by the authors. In our quantitative
experiments, we use 15 multi-subject combinations to evaluate dif-
ferent finetuning methods. The combinations involve 11 2-subject
customization, e.g., a dog and an animation girl, and 4 3-subject
customization, e.g., an animation girl, a dog, and a cat. During gen-
eration, we provide 25 prompts for each customization, involving
different actions such as “playing the guitar, playing basketball,
sleeping, surfing”, different appearances such as “in a red hat”, and
different backgrounds such as “on the beach, in the flowers”. Dif-
ferent from the prompts in [8] where the multiple subjects in a
video have the same action, we add prompts that require different
subjects to have different actions, such as “a dog is playing the
guitar, and a cat is sleeping”. We follow the previous work [8] to
generate 4 videos with 4 random seeds for each prompt, and obtain
1500 videos for robust evaluation. We provide all the multi-subject
videos in the main manuscript and additional results generated by
DisenStudio in the supplementary materials.

Baselines. We compare our proposed DisenStudio with the re-
cent work VideoDreamer [8] for customized multi-subject text-to-
video generation and apply their finetuning method to the Ani-
mateDiff [15] base model. Additionally, we follow VideoDreamer
to adopt two customization finetuning methods, i.e., DreamBooth
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Table 1: Quantitative comparisons on DisenStudioBench. ↑
means a larger value indicates better performance and vice
versa. The best performance is bolded.

DINO↑ CLIP-T↑ T-Cons↑ Human-R↓
DB+AD 0.280 0.221 0.938 3.183
Custom+AD 0.289 0.236 0.911 2.978
VideoDreamer 0.362 0.225 0.948 2.403
DisenStudio 0.391 0.247 0.963 1.438

(DB) [41] and Customdiffusion (Custom) [26] to finetune the Ani-
mateDiff(AD) model, obtain the DB+AD (i.e., the naive approach)
and Custom+AD baselines.

Evaluation Metrics. We evaluate all the methods with the fol-
lowing metrics. DINO [8, 41]: This metric measures how similar
the generated subjects are to the given subjects. We first detect
each subject from the generated frames, and calculate the DINO
image feature cosine similarity [6] between the detected gener-
ated subject and the given subject through version ViT S/16, and
finally report the average DINO score on the dataset. A higher
DINO score indicates higher similarity to the given subjects and
better customization performance. CLIP-T: CLIP-T [13, 41] mea-
sures whether the generated image conforms to the given textual
prompt by the CLIP image and text feature cosine similarity. Here,
we calculate the CLIP-T score for each detected subject and their
corresponding textual prompt through ViT-L-14 [36]. This metric
can reflect whether each subject takes the desired action. T-Cons:
This metric measures whether the frames are temporally consis-
tent by calculating the CLIP image similarity between frames [53].
Human-R: Besides the automatic metrics, we also use human eval-
uation. Specifically, we asked 40 users of different occupations to
rank the videos generated by different methods, by jointly consid-
ering whether the generated videos have the same subjects as the
given images, whether they are consistent with the text prompts
and whether the video is temporally consistent. We randomly sam-
ple 10 unique prompts for each user, and we report the average
rank, a smaller rank value indicates better performance.

Implementation. We implement all the baselines on AnimateD-
iff [15] with Stable Diffusion v1-5 [39]. Our code is built on the
Diffusers library [33]. The finetuning hyper-parameters for DB+AD
and Custom+AD are the default parameters provided by the library.
We finetune VideoDreamer with their provided settings. In our Dis-
enStudio, the lora rank is 16. The learning rate of the U-Net is 1e-4
and that of the text encoder is 2e-5 as recommended by the Diffusers
community. We finetune ∼1000 iterations for the customization.

4.2 Main Results
Qualitative results. We provide qualitative comparisons on the

DisenStudioBench dataset in Figure 6 and more are presented in
the Appendix. From the results, we can see that both DB+AD and
Custom+AD fail to customize the multiple subjects, they either miss
one subject or generate subjects with different appearances from
the given subjects. Additionally, we find that the generated videos
by Custom+AD are often unstable with low temporal consistency,

e.g., the basketball of Custom+AD in Example 1 suddenly appears
and changes its color, and in Example 2, the appearance of the dog
changes among the video frames. VideoDreamer can better preserve
the overall subject appearances than DB+AD and Custom+AD, but
some attributes of the subjects may be different. More importantly,
it cannot assign the desired actions to the corresponding subject,
e.g., in Example 1, the dog generated by VideoDreamer does not
wear a yellow scarf and the cat does not play the basketball as the
prompt indicates. In contrast, our proposed DisenStudio can best
preserve the visual details of each subject and make each subject
take their corresponding action. Additionally, the video frames of
DisenStudio are clearly consistent as shown in Figure 6.

Quantitative results. The quantitative results are provided in
Table 1. From the quantitative results, we have the following ob-
servations: (i) DisenStudio has the best DINO score, which means
the generated subjects are more similar to the given subjects. The
superiority is largely due to the multi-subject co-occurrence tun-
ing and masked single-subject tuning, making the special token
only focus on the corresponding region and masked subject, thus
better preserving the subject visual details. (ii) DisenStudio also
has the highest CLIP-T score, meaning that the subjects generated
by DisenStudio can better follow the prompt to take their corre-
sponding actions, which benefits from the disentangled spatial
cross-attention, making the action only binds to a specific subject.
(iii) The frames generated by DisenStudio are more temporally con-
sistent than the baselines. We find that the Custom+AD method is
not so stable, often with large changes between consequent frames.
Overall, from the human evaluation (Human-R), we find that our
generated videos are most favored by humans.

4.3 Ablation Studies
In this subsection, we evaluate whether the proposed components
are effective, and also some other results generated by DisenStudio.

Effectiveness of finetuning strategies. During finetuning, we pro-
pose the multi-subject co-occurrence tuning (multi-c), masked
single-subject tuning (masked-single), and multi-subject motion-
preserved tuning (motion) strategies. We conduct ablations on all
the 2-subject combinations for these strategies by respectively re-
moving each of them. The quantitative results are shown in Table 2
and the qualitative results are shown in Figure 7. From the results,
we can see that (i) masked-single&multi-c: masked single-subject
tuning and multi-subject co-occurrence tuning are very important
to preserve the visual attributes of each subject. As shown in Fig-
ure 7, without multi-c, one subject is missing, and without masked-
single, the color of 𝑆2∗ cat is changed to white from black. Corre-
spondingly, without these two strategies, the DINO score will drop
as shown in Table 2. (ii) motion: Without the multi-subject motion-
preserved tuning, we can see that the CLIP-T score drops, which
means it fails to follow the textual prompts and makes the subject
take the desired action. More importantly, as we can see from Fig-
ure 7 and also the demos we provide in the supplemental material,
the generated videow/omotionwill be static, and themodel overfits
the images and loses the motion-generation ability. To further illus-
trate this problem, we calculate another metric, dynamic degree[22]
(abbreviated as Dync) on DisenStudio and w/o motion. This metric
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Subject 1: A S1* dog 
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DB+AD Custom+AD
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A S1* dog in a yellow scarf is sleeping, and a S2* cat is playing with basketball, on the sofa.

Subject 1: A S1* girl 

Subject 2: A S2* dog 

DB+AD Custom+AD

VideoDreamer DisenStudio

A S1* girl is playing the guitar, and a S2* dog is running, in the flowers.

Example 1

Example 2

Figure 6: Qualitative comparison between DisenStudio and baselines. Baselines suffer from attribute-binding, subject-missing,
and action-binding problems. DisenStudio can generate temporally consistent videos that preserve the subject visual details
and make each subject take the desired action.

Table 2: Ablative quantitative results on the 2-subject com-
binations of DisenStudioBench, w/o means we remove the
corresponding finetuning strategy. Dync is a metric to evalu-
ate whether the videos are dynamic or static, and a smaller
Dync means more static videos.

DINO CLIP-T T-Cons Dync

DisenStudio 0.424 0.254 0.960 0.518
w/o masked-single 0.409 0.254 0.961 -
w/o multi-c 0.386 0.246 0.950 -
w/o motion 0.416 0.237 0.972 0.271

evaluates whether the generated videos are static, and if Dync is
closer to 0, the video is more static, otherwise dynamic, and the
mean value of current pretrained text-to-video models [19, 47, 49]
is about 0.5. The Dync comparison between DisenStudio and w/o
motion shows that multi-subject motion-preserved tuning helps to
preserve the motion-generation ability.

Effectiveness of SDCA. During generation, we adopt the spatial-
disentangled cross-attention (SDCA). To verify its effectiveness, we
first replace SDCAwith vanilla attention and obtain the variant w/o
SDCA. Additionally, we also apply SDCA to our most competitive
baseline, VideoDreamer (abbreviated as VD). We still conduct ex-
periments on all the 2-subject combinations of DisenStudioBench.
The quantitative results are demonstrated in Table 3 and qualitative
results are presented in the Appendix. The results show that with-
out SDCA during generation, DisenStudio will suffer both clear

Subject 1
A S1* cat 

Subject 2
A S2* cat 

A S1* cat is walking, and a S2* cat is surfing 
on board in the ocean, near the beach.

DisenStudio

w/o
masked-single

w/o 
multi-c

w/o 
motion

Figure 7: Qualitative ablation study about the proposed fine-
tuning strategies.

CLIP-T and DINO drop, because the attributes and actions of the
multiple subjects are mixed together in the attention map, making
it hard to preserve the subjects’ appearances and assign the desired
action to the corresponding subject. Additionally, SDCA can also
help VideoDreamer to obtain better CLIP-T, but its DINO score is
still lower than DisenStudio, further indicating the necessity of the
motion-preserved disentangled finetuning.
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Table 3: Ablation about SDCA, where we conduct the experi-
ments on the 2-subject combinations of DisenStudioBench.

DisenStudio w/o SDCA VD VD+SDCA

DINO 0.424 0.386 0.392 0.395
CLIP-T 0.254 0.240 0.224 0.232
T-Cons 0.960 0.954 0.953 0.960

Single-subject generation with spatial control. During finetuning,
we only use the co-occurrence data to customize the multiple sub-
jects. Here, we want to explore whether we can generate videos for
a single subject. Furthermore, since SDCA is related to the region
of each subject, we want to explore whether we can use the SDCA
to control the position of the subject. The results are provided in
Figure 8, and it demonstrates that our method can be also applied to
generating videos about any of the multiple subjects, and provide
detailed control of their location in the videos.

Subject 1
A S1* dog 

Subject 2
A S2* dog 

co-occurrence 
data

customized single-subject text-to-video generation

right

A S1* dog is running on the beach

left

middle

left

A S2* dog is running on the beach

Figure 8: Customized single-subject text-to-video generation
with SDCA to control the subject position.

DisenStudio as a video storyteller. Since DisenStudio can generate
videos for both single and multiple subjects, it is easy to use Dis-
enStudio to create several video stories about these subjects. Here,
we show a simple example in Figure 9, where we imagine a story
that “the girl is playing the guitar, and the guitar music attracts the
two dogs. Then the two dogs run to her, and sit beside the girl to listen
to the guitar music.” The prompts used to generate each video are
respectively: ”A 𝑆1∗ girl is playing the guitar in the flowers”, “A 𝑆2∗
dog and a 𝑆3∗ dog are running in the flowers”, “A 𝑆1∗ girl is playing
the guitar, a 𝑆2∗ dog is sitting, and a 𝑆3∗ dog is sitting in the flowers”.
We believe DisenStudio will boost more interesting applications.

More generation results. Previously, all the generation results
are about subjects in different regions. Here, we want to explore

A S1
* girl  

A S2
* dog  

A S3
* dog  

A S1
* girl is playing the guitar in the flowers   

A S2
* dog and a S3

* dog hear the girl’s guitar 
music and run to her 

The two dogs sit beside the girl and listen to her 
playing the guitar 

Figure 9: A simple example to show DisenStudio can be used
as a video storyteller.

whether our method can generate interactions between different
subjects. By placing the cross-attention regions of different subjects
at different relative positions in the entire frame, we obtain the
results in Figure 10. We can see that DisenStudio can also generate
interactions such as “a girl holding or riding a dog”. When generat-
ing “riding”, we put the attention region of the girl on top of the
attention region of the dog. When generating “holding”, we put the
attention region of the dog inside the attention region of the girl.

A S1
* girl is riding a S2

* dog on the grass

A S1
* girl is holding a S2

* dog under the Eiffel Tower

Figure 10: DisenStudio generates multi-subject interactions.

5 CONCLUSION
In this paper, we propose a DisenStudio framework for customized
multi-subject text-to-video generation. We propose the spatial-
disentangled cross-attention for generation to tackle the action-
binding problem. Additionally, we propose the motion-preserved
disentangled finetuning which involves three tuning strategies:
multi-subject co-occurrence tuning and masked single-subject tun-
ing to tackle the attribute-binding problem, multi-subject motion-
preserved tuning to preserve the model’s motion-generation ability.
Extensive experimental results demonstrate that our proposed Dis-
enStudio significantly outperforms existing works, and DisenStudio
can work as a powerful for various applications. Future works can
consider applying DisenStudio to more advanced base text-to-video
generators and combining DisenStudio with other controllable gen-
eration methods such as ControlNet.
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