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A DISTRIBUTION ESTIMATION

A.1 PROBLEM FORMULATION

Given an unknown ground truth distribution:
P = Unknown(y, X) (1
where p € RP and X3 € RP*P,
All the samples in our study are sampled from this distribution.
We use X, to denote the k™ dataset, with nj, samples, and we use X},; to denote the i sample in it.

We aim to consider the estimation of y from two different models. The conventional smaller model
which operates on only one dataset, and WLOG, we assume the smaller model works on X; and the
bigger, zoo of CLIP-style models, which operates on a collection of datasets, we say it works on m
datasets, i.e., {X1, X2, X3, ..., X, }, we will compare E[zg — p] and E[fic p — p], VAR (jzg) and

VAR (jicor). E[Zo — %] and E[Scpp — ¥] and VAR(S,) and VAR(Scyp).

Assumption I Due to dataset collection bias, we assume that, while all the data are sampled with
the fixed distribution above, the bias of dataset collection will introduce a bias in the estimation of
the true parameter p, therefore

fi=p+e 2)
where
LS
= me‘ 3)
J
and
€; ~ N(0,I) 4)

Assumption I Due to dataset collection bias, we assume that, while all the data are sampled with
the fixed distribution above, the bias of dataset collection will introduce a bias in the estimation of
the true parameter Y, therefore

¥, =¢X 5)
where
—~ 1 & N N
D= > [ — )" (xij — )] (6)
J
and
e; ~ Exp(1), (N
Proposition A.1. Under Assumptions I and II, we have estimators
Eljictw — 1] = Elfio — i, E[cuir - £] = E[So - 5]
VAR (jicip) < VAR(7io), VAR(Scup) < VAR(Z)

where < holds element-wise.

Proof. Estimation of u. Under Assumptions I and II, we have
fto = p + €0 (3)

We can obtain E[zg — ] and VAR(fz9) by marginalizing out the randomness introduced by e:

E[fis — u = Eli+ e — 1] = Eleo] = . ©)
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[
=E[(1 + €0)*] — E*[(1 + €0)]
— B[ + 2ueo + €] — (1 + Eleo))
= Elej] — E*[eo]
= VAR(ep)
—1 (10)

For E[ficLp — ] and VAR (ficLip), we have:

— Ten; T Eleilng
Bl - 1] = ElStrt] = Zep ol —o, an
and
VAR (ficwp) = Eljice ) — E?[jici)
= E[(p + 6CLIP) ] - EQ[(N + ecLip)]
= E[,LL + 2,ueCLIP + GCLIP] (,LL + E[ECLIP])z
= E[e2y1p] — E*[ecLip] (12)

Since Elecrip] = ElficLp — 1] = 0, we have:

S €
PO
When we expand the square of sum, we will get the many squared terms (which are left finally)

and many more that involves at least one E[e;]z, where z can be any arbitrary stuff, and then since
E[e;] = 0, z won’t matter. Therefore, we have:

memi 2 mnf 612

Since n; > 1fori =1,2,...,m,wehave Y " n? < (37" n;)%.

VAR(/@) = E[G%LIP] El(=m— )2] (13)

VAR (ficLip) =

Therefore,
- m 22 ™ i) 2E[e?
VAR (ficr) = Z(LZZZH,[)Z] < (Z(’Z:@L,)kl] = B[] = 1 (15)

Estimation of >X. We can obtain ]E[f)\g — %] and VAR(E\O) by marginalizing out the randomness
introduced by €

E[So — ¥] = Ee,¥ — ] = E[(e, — 1)] = E[e, — 1]E[Z] = 0. (16)

—~2

VAR(S)) = E[S, ] — E2[S]

— E[(c2)?] ~ E[ey]
[
[

Eleg’s?) — E?[eJE*[Z]

Ele|E[S?] — E2[¢o|E*[3]

2E[Z?] — E2[Y)

20?2 — y2

2 (17)
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For E[E/CE, — Y] and VAR(Z/CE,), we have:

— ’

EXcLr — ¥] = E[GELIPE -] = E[(G/CLIP — 1)) = Elecyp — HE[X] = 0.

VAR(Scur) = E[Sam | — E2[Scup

E[(ecupz)] E2[€/CLIPE]
[GCLIPE ] = E? [ﬁlcupw*:2 (X]
[

=F
2
:EGCLIP] [ ] E [E]
Consider that
i —\2
S NPT (%, — Beup) _ Sl _ S
Y, Y, CLIP
We will have:
2
r _ €cup
€cLip = 5
4
€cLip

Thus, we have ¢3 p = . Next, we will compute E[e3 ] as follows:

12
2 eéLIP
Elecip] = E[ w2 ]
_ E[Géup}
-~z

By definition, we have:
Zmzm (X457 — fui)

m
2y

€CLIP =

Therefore,
. (Emznl (Xi,j — f1i))?
€cLip = (E;nnz)Q
As the value of z; ; — f1; can be either positive or negative, we have:
2 EPET (% — @)% 1
CLIP = 2y 2y

Since both (z; ; — ;) and n; are positive values, we further have:

i ~\2 e ’
o enZiKG @) 1 NPS | SPeN
CLIP = 24 ; S, Y, S,

Thus, we can obtain
4 EreR?  (Ereps?
=B (En)?

Therefore, we have:

(Z7e;)? 22} E[(Zre;)?] 5
Eprna)? (32

By Assumption e; ~ Exp(1), we have E[¢;] = 1 and VAR(e;) = 1.

E[64CLIP] <E|

Since e; are independent with each other, we have:
E[(X"¢;)%] = VAR(Z["e;) + E2[Em fl
= S7'VAR () + (S7'Ele;])?

:m+m2
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Substituting Eq.[29]into Eq.[28] we have:

4 m+m?
Elecip] < =rn 2 (30)
Since n; > 1 fori = 1,2,...,m, we have X"n; > m and (X7'n;)? > m?.
Since m > 1, we have: m? > m.
Therefore,
4 m +m* 2 2m? 2 _ oy2
Elecup] < - Yo < 3 Y =23 (€2))
Substituting Eq.[31]into Eq.[22] we have:
/ 2572
Elediie] < 55 =2 (32)
Substituting Eq. [32]into Eq.[T9] we have:
VAR(Scip) = Ele p|E[S2] — E2[5] < 2E[?] — E2[S] = E[S] = & (33)
We summarize the above results as follows: For conventional fixed dataset estimators, we have:
Effio — p =
VAR(jig) =1
E[S; - %] =0
VAR(E,) = ¥2
For CLIP-style estimators, we have:
Elficip — 1] =0
VAR (ficLp) <1
EXcp—X] =0
VAR(Scip) < 5,
where < holds element-wise. O

The results show that, both conventional estimator and zoo of CLIP-style estimator can recover the
true p, 2 of the unknown distribution, but zoo of CLIP-style estimator will have a lower variance,
which is more stable to accomplish the task. This conclusion holds for any distributions.

With these theoretical evidence, we kindly argue that biased towards the zoo of CLIP-style models
is better than biased on conventional fixed datasets. In addition, recent advances in incorporating
the foundation model into various tasks (Liu et al., 2023} [Zhang et al.| {2023} |Bose et al.} 2023) also
reveals that the community has utilized the foundation model on a large scale and pays little attention
on these biases.

B NOTES ON THE EXPERIMENTAL SETUP

B.1 NOTES ON MODELS

Note that we only re-evaluate existing model checkpoints, and hence do not perform any hyperpa-
rameter tuning for evaluated models. Our model evaluations are done on 8 NVIDIA V100 GPUs.
With our Sparsified VQGAN model, our method is also feasible to work with a small amount of GPU
resources. As shown in Appendix [[, the proposed protocol can work on a single NVIDIA V100 GPU
efficiently.
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B.2 HYPERPARAMETER TUNING

Our method is generally parameter-free except for the computation budget and perturbation step size.
In our experiments, the computation budget is the maximum iteration number of Sparse VQGAN.
We consider the predefined value to be 50, as it guarantees the degree of perturbation with acceptable
time costs. We provide the experiment for step size configuration in Section

C IN-DEPTH ANALYSIS ON THE TRANSFORMER FAMILY

In Table[T] we notice a large difference between the methods in the proposed FMR metric, even within
the transformer family. After checking the distribution of misclassified perturbed images of different
models, we find that these images are rather random and do not reveal any obvious "weak classes".
One possible reason for this phenomenon may due to their internal architecture that are related to the
self-attention (SA) mechanism. Many current Vision Transformer architectures adopt a multi-head
self-attention (MHSA) design where each head tends to focus on different object components. In
some sense, MHSA can be interpreted as a mixture of information bottlenecks (IB) where the stacked
SA modules in Vision Transformers can be broadly regarded as an iterative repeat of the IB process
which promotes grouping and noise filtering. More details of the connection between the SA and
IB can be found in ((Zhou et al,[2022a), Sec.2.3). As revealed in (Zhou et al.| 2022a)), having more
heads leads to improved expressivity and robustness. But the reduced channel number per head also
causes decreased clean accuracy. The best trade-off is achieved with 32 channels per head.

Table [ illustrates the head number configurations of various models employed in our experiment.

Table 4: Details of head numbers configurations.)

Model Head Number

ViT 12

DeiT 12
Twins (3,6,12,24)

Visformer 6
Swin (4,8,16,32)

Swin Transformer exhibits the highest number of heads among them. Despite its suboptimal accuracy
on the standard dataset, it achieves the best FMR. This corroborates the finding in (Zhou et al.,|2022a)
that increased head numbers enhance expressivity and robustness, albeit at the expense of clean
accuracy.

To further verify the impact of head numbers, we trained Swin Transformer with varying head
configurations and obtained the following results in Table 5]

Table 5: The performance of Swin Transformer with different head number configurations. We find
that increased heads enhance expressivity and robustness.)

#Params Head Number SA FMR

88M (2,4,8,16) 80.82 64.85
88M (3,6,12,24) 81.98 67.48
88M (4,8,16,32) 81.67 69.73
88M (5,10,20,40) 81.05 69.97

With comparable numbers of parameters, we observe that their accuracies on the standard dataset
are relatively similar. With the augmentation of head numbers, the FMR value also escalates, which
validates our hypothesis that increased heads enhance expressivity and robustness.

D TRANSFERABILITY OF GENERATED IMAGES

We first study whether our generated images are model-specific, since the generation of the images
involves the gradient of the original model. We train several architectures, namely EfficientNet (Tan
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& Lel 2019), MobileNet (Howard et al.||2017), SimpleDLA (Yu et al.| 2018), VGG19 (Simonyan
& Zisserman, 2014), PreActResNet (He et al., 2016b), GoogLeNet (Szegedy et al., 2015), and
DenseNet121 (Huang et al., 2017) and test these models with the images that generated when testing
ResNet. We also train another ResNet following the same procedure to check the transferability
across different runs in one architecture.

Transferability of the generated images. Table [6]shows
a reasonable transferability of the generated images as  Table 6: Performances of transferability.
the FMR are all lower than the SA, although we can also

observe an improvement over the FMR when tested in Model SA PA FMR
the new models. These results suggest that our method ResNet 9538 51.67 54.17
of generating images can be potentially used in a broader ResNet 94.67 56.09 59.25
scope: we can also leverage the method to generate a DenseNet 9426 6048 64.17
static set of images and set a benchmark dataset to help ~ SimpleDLA 9225  61.03  66.16
the development of robustness methods. GoogLeNet  92.06  61.10  66.33

PreActResNet 9091 61.14 67.25
Reliability of the FMR metric. Moreover, these results EfficientNet  91.37 62.57 68.48
contribute to the validation of the reliability of the FMR MobileNet 91.63 6297 68.72
metric: given that each model’s FMR gets computed using VGG 93.54 66.01 70.57
a different test set, it is not clear why FMR would be a
reliable metric that can be used to compare two models.
In this experiment, however, the models are tested using the same fixed test set that was initially
generated during the evaluation on ResNet. Remarkably, the strong correlation observed between
FMR and PA at the fixed test sets lends credence to the reliability of the FMR metric.

New findings. In addition, our results might potentially help mitigate a debate on whether more
accurate architectures are naturally more robust: on one hand, we have results showing that more
accurate architectures indeed lead to better empirical performances on certain (usually fixed) robust-
ness benchmarks (Rozsa et al., 2016; |Hendrycks & Dietterichl, [2019); while on the other hand, some
counterpoints suggest the higher robustness numerical performances are only because these models
capture more non-robust features that also happen exist in the fixed benchmarks (Tsipras et al.,|2018;
Wang et al.,[2020b; Taori et al.,[2020). Table[6 show some examples to support the latter argument:
in particular, we notice that VGG, while ranked in the middle of the accuracy ladder, interestingly
stands out when tested with generated images. These results continue to support our argument that a
dynamic robustness test scenario can help reveal more properties of the model.

E INITIATING WITH ADVERSARIAL ATTACKED IMAGES

Since our method using the gradient of the evaluated model L
reminds readers about the gradient-based attack methods ~Table 7: Results on whether initiating
in adversarial robustness literature, we test whether initi- with adversarial images (e = 0.003).
ating the perturbation process with an adversarial example Data SA  FMR
will further degrade the accuracy. regular 9538 57.80

w. FGSM 9530 65.79

We first generate the images with FGSM attack (Goodfel-
low et al.| 2015). Table |z shows that initiating with the
FGSM adversarial examples barely affect the FMR, which
is probably because the major style-wise perturbation will erase the imperceptible perturbations the
adversarial examples introduce.

F ADVERSARIALLY ROBUST MODELS

With evidence suggesting the adversarially robust models are considered more human perceptually
aligned (Engstrom et al., 2019;|Zhang & Zhu, 2019; Wang et al., 2020b), we compare the vanilla
model to a model trained by PGD (Madry et al.,2017)) (/o norm smaller than 0.03).

As shown in Table (8] adversarially trained model and vanillaly trained model indeed process the data
differently: the transferability of the generated images between these two regimes can barely hold.
In particular, the PGD model can almost maintain its performances when tested with the images
generated by the vanilla model.
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However, despite the differences, the PGD model’s robust- Table 8: Performances comparison with
ness weak spots are exposed to a similar degree with the vanilla model and PGD trained model.
vanilla model by our test system: the FMR of the vanilla

model and the PGD model are only 57.79 and 66.18, re- Data Model SA FMR
spectively. We believe this result can further help advocate Van Van. 9538 57.79
our belief that the robustness test needs to be a dynamic "~ PGD 8570 95.96
process generating images conditioning on the model to pGD  Yan. 9538 6241
test, and thus further help validate the importance of our PGD 8570 66.18

contribution.

G AUGMENTATION THROUGH STATIC ADVERSARIAL TRAINING

Intuitively, inspired by the success of adversarial training (Madry et al.|[2017) in defending models
against adversarial attacks, a natural method to improve the empirical performances under our new
test protocol is to augment the training data with perturbed training images generated by the same
process. We aim to validate the effectiveness of this method here.

However, the computational load of generation process is

not ideal to serve the standard adversarial training strategy, Table 9: Test performances of the model
and we can only have one copy of the perturbed training  trained in a vanilla manner (denoted as
samples. Fortunately, we notice that some recent advances  Van.) or with augmentation data offered
in training with data augmentation can help learn robust  through our approach (marked by the
representations with a limited scope of augmented samples  second column). We report two sets of
(Wang et al.| 2020a), which we use here. performances, split by whether the per-
turbed images are generated according
to the vanilla model or the augmented
model (marked by the first column).

We report our results in Table[9. The first thing we ob-
serve is that the model trained with the augmentation data
offered through our approach could preserve a relatively

higher performance (FMR 89.13) when testing with the Data Model SA  FMR
perturbed images generated according to the vanilla model. Van. 9538 57.82
Since we have shown the perturbed samples have a rea- Van. Aug 8741 89.13
sonable transferability in the main manuscript, this result Aug. Van. 9538 58.03

indicates the robustness we brought when training with Aug 8741 78.61

the perturbed images generated by our approach.

In addition, when tested with the perturbed images gener-

ated according to the augmented model, the augmented model displays a marked resilience (FMR
78.61) in the face of these perturbations compared with the model trained in a vanilla manner (FMR
58.03). Nevertheless, it is noteworthy that the augmented model’s performance does exhibit a
discernible decline under these circumstances, which once more underscores the efficacy of our
approach.

H GRAYSCALE MODELS

Our previous visualization suggests that a shortcut the perturbed generation system can take is to
significantly shift the color of the images, for which a grey-scale model should easily maintain the
performance. Thus, we train a grayscale model by changing the ResNet input channel to be 1 and
transforming the input images to be grayscale upon feeding into the model. We report the results in
Table

Interestingly, we notice that the grayscale model cannot defend against the shift introduced by our
system by ignoring the color information. On the contrary, it seems to encourage our system to
generate more perturbed images that can lower the performances.

In addition, we visualize some perturbed images generated according to each model and show them
in Figure [3. We can see some evidence that the graycale model forces the generation system to
focus more on the shape of the object and less of the color of the images. We find it particularly
interesting that our system sometimes generates different images differently for different models
while the resulting images deceive the respective model to make the same prediction.
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Table 10: Test performances of the model trained in a vanilla manner (denoted as Van.) or with
grayscale model. We report two sets of performances, split by whether the perturbed images are
generated according to the vanilla model or the grayscale one (marked by the first column).

Data Model SA FMR
Van Van. 95.38 57.79
) Gray 93.52 66.06
Van. 95.38 67.48
Gray 93.52 44.76

e

Gray

(a) dog (b) horse (c) horse (d) plane (e) ship (f) bird
| . ' 4 II . J ‘ il\ LA ‘ I
(g) ship (h) car (i) plane () bird (k) ship (1) ship

Figure 3: Visualization of the perturbed images generated by our system in evaluating the vanilla
model (middle image of each group) and the grayscale model (third image of each group), with the
original image shown. The caption for each image is either the original label or the predicted label by
the corresponding model.

I SPARSE SUBMODEL OF VQGAN FOR EFFICIENT PERTURBATION

While our method will function properly as described above, we notice that the generation process
still has a potential limitation: the bound-free perturbation of VQGAN will sometimes perturb the
semantics of the images, generating results that will be rejected by the foundation model later and
thus leading to a waste of computational efforts.

To counter this challenge, we use a sparse variable selection method to analyze the embedding
dimensions of VQGAN to identify a subset of dimensions that is mainly responsible for the non-
semantic variations.

In particular, with a dataset (X,Y) of n samples, we first use VQGAN to generate a style-transferred
dataset (X’,Y). During the generation process, we preserve the latent representations of input sam-
ples after the VQGAN encoder in the original dataset. We also preserve the final latent representations
before the VQGAN decoder that are quantized after the iterations in the style-transferred dataset.
Then, we create a new dataset (E, L) of 2n samples, for each sample (e, !) € (E, L), e is the latent
representation for the sample (from either the original dataset or the style-transferred one), and [ is
labelled as O if the sample is from the original dataset and 1 if the style-transferred dataset.

Then, we train ¢; regularized logistic regression model to classify the samples of (E,L). With w
denoting the weights of the model, we solve the following problem

arg min Z lew,l) + A||lwll1,
(e,l)e(E,L)
and the sparse pattern (zeros or not) of w will inform us about which dimensions are for the style.

We generate the flattened latent representations of input images after the VQGAN Encoder with
negative labels. Following Algorithm[I] we generate the flattened final latent representations before
the VQGAN decoder with positive labels. Altogether, we form a binary classification dataset
where the number of positive and negative samples is balanced. The positive samples are the latent
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Table 11: Classification results between vanilla and perturbed images with LASSO.

Data Sparsity | Test score
MNIST 97.99 78.50
CIFAR-10 98.45 78.00
9-class ImageNet 99.31 72.00
ImageNet 99.32 69.00

representations of perturbed images while the negative samples are the latent representations of input
images. We set the split ratio of train and test set to be 0.8 : 0.2. We perform the explorations on
various datasets, i.e. MNIST, CIFAR-10, 9-class ImageNet and ImageNet.

The classification model we consider is LASS as it enables automatically feature selection with
strong interpretability. We set the regularization strength to be 36.36. We adopt saga (Defazio et al.,
2014) as the solver to use in the optimization process. The classification results are shown in Table[11]

We observe that the coefficient matrix of features can be far sparser than we expect. We take the
result of 9-class ImageNet as an example. Surprisingly, we find that almost 99.31% dimensions in
average could be discarded when making judgements. We argue the preserved 0.69% dimensions are
highly correlated to VQGAN perturbation. Therefore, we keep the corresponding 99.31% dimensions
unchanged and only let the rest 0.69% dimensions participate in computation. Our computation loads
could be significantly reduced while still maintain the competitive performance compared with the
unmasked versio

We conduct the run-time experiments on a single NVIDIA V100 GPU. Following our experiment
setting, we evaluate a vanilla ResNet-18 on 9-class ImageNet and a vanilla ResNet-50 on ImageNet.
As shown in Table |12} the run-time on ImageNet can be reduced by 28.5% with our sparse VQGAN.
Compared with large-scale masked dimensions (i.e., 99.31%), we attribute the relatively incremental
run-time improvement (i.e., 12.7% on 9-class ImageNet, 28.5% on ImageNet) to the fact that we
have to perform mask and unmask operations each time when calculating the model gradient, which
offsets the calculation efficiency brought by the sparse VQGAN to a certain extent.

Table 12: Run-time Comparision between VQGAN and Sparse VQGAN.

Method Time
9-class ImageNet ImageNet
VQGAN 521.5£1.2s 52602.4 £ 2.7s
Sparse VQGAN 455.4 +1.2s 40946.1 £ 2.7s
Improv. 12.7% 28.5%

J ANALYSIS OF SAMPLES THAT ARE MISCLASSIFIED BY THE MODEL

We notice that, the CLIP model has been influenced by the imbalance sample distributions across the
Internet.

In this experiment, we choose a larger step size so that the foundation model may not be able to
maintain the image-label structure at the first perturbation. We report the Validation Rate (VR) which
is the percentage of images validated by the foundation model that maintains the image-label structure.
(In our official configurations, the step size value is small enough that the VR on each dataset is
always 1. Therefore, we omit this value in the main experiments.) We present the results on 9-class
ImageNet experiment to show the details for each category.

2 Although LASSO is originally a regression model, we probabilize the regression values to get the final
classification results.

3We note that the overlapping degree of the preserved dimensions for each dataset is not high, which means
that we need to specify these dimensions when facing new datasets.
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Table 13: Details of test on 9-class ImageNet for vanilla ResNet-18 (step size is 0.1, computation
budget B is 50)

Type SA VR FMR
Dog 9333 9533 17.98
Cat  96.67 94.00 31.55
Frog 8533 80.67 20.34

Turtle  84.67 78.67 29.03
Bird  91.33 9600 28.13

Primate  96.00 48.00 62.21
Fish 9400 76.67 4533
Crab  96.00 8733 19.87

Insect 9333 78.00 33.88
Total 9230 81.63 30.28

Table [I3]shows that the VR values for most categories are still higher than 80%, some even reach
95%, which means we produce sufficient number of perturbed images. However, we notice that the
VR value for primate images is quite lower compared with other categories, indicating around 52%
perturbed primate images are blocked by the orcle.

As shown in Table[I3] the FMR value for each category significantly drops compared with the SA
value, indicating the weakness of trained models. An interesting finding is that the FMR value for
Primate images are quite higher than other categories, given the fact that more perturbed Primate
images are blocked by the foundation model. We attribute it to the limitation of foundation models.
As the CLIP model has been influenced by the imbalance sample distributions across the Internet, it
could only handle easy perturbed samples well. Therefore, the perturbed images preserved would be
those that can be easily classified by the models.

Table 14: Details of test on 9-class ImageNet for vanilla ResNet-18 (step size is 0.001, computation
budget B is 50)

Type SA VR FMR
Dog 93.33  100.00 18.09
Cat 96.67 100.00 28.60
Frog 85.33 100.00 20.72
Turtle  84.67 100.00 24.80
Bird 91.33  100.00 27.68
Primate  96.00 100.00 27.11
Fish 94.00 100.00 25.13
Crab 96.00 100.00 19.15
Insect  93.33 100.00 23.16
Total 92.30 100.00 23.94

In our official configuration, we set a relatively smaller step size to perturb the image and obtain
enough more perturbed images. As shown in Table[I4, using a smaller step size value and enough
computation budget barely affect the overall results. In addition, with smller step size, we manage
to perturb the image little by little and can get enough more perturbed images (VR becomes 100
on every category, indicating that all the images are perturbed and maintained their image-label
structure). Admittedly, the foundation model’s bias still exists here, e.g., the Primate images (FMR =
28.11) are still easier than Dog images (FMR = 18.09). However, considering the huge performance
gap between the foundation model and the evaluated models, images that are easy for the foundation
model are hard enough for the evaluated models (The FMR of Dogs and Primate images are closer and
smaller compared with those in Table[I3)), which is sufficiently efficacious for real-world applications.
Additionally, the employment of an ensemble of multiple foundation models in our methodology
serves to provide a further layer of alleviation for the aforementioned issue.
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K DISCUSSIONS ON THE SOCIETAL BIAS OF RELYING ON LARGE MODELS

K.1 POTENTIAL NEGATIVE IMPACTS OF FOUNDATION MODELS

Although the bias incurred by foundation models is less detrimental than the biases arisen from fixed
benchmark datasets, a more detailed discussion on the potential negative impacts is necessary. One
potential bias of making vision models behave more like the foundation models is that the vision
model may inherit the limitations and assumptions of foundation models’ training data and objective
function. For example, foundation models’ training data may not cover all possible visual concepts
or scenarios that are relevant to a given task; foundation models’ objective function may not align
with the desired outcome or evaluation metric of a given task; foundation models’ natural language
supervision may introduce ambiguities or inconsistencies that affect the model’s performance or
interpretation. These limitations and assumptions may affect the generalization and robustness
of vision models that rely on foundation models. Moreover, we add recent works that especially
investigate the bias of foundation models, and guide the readers to it for further warning, e.g., (Menon
et al.,[2022) and (Zhou et al., 2022b).

K.2 SOCIETAL BIAS OF RELYING ON LARGE MODELS

Moreover, our method relies on large models, where their societal bias is still unclear, therefore a
related discussion would be beneficial.

Large-scale models could leverage the rich knowledge and generalization ability encoded in the
training stage. However, one potential societal bias of relying on large models’ supervision on
preserving the perturbed image could be that it would privilege certain groups or perspectives over
others based on social or cultural norms. As the data used to train the pre-trained models may be
imbalanced, incomplete, or inaccurate, leading to biased representations of certain groups or concepts,
the perturbed images preserved by the pre-trained models may reflect stereotypes, or discrimination
against certain groups of people based on their race, gender, age, religion, etc., which may be harmful,
offensive, or deceptive to the users. Bridging the gap between the pre-trained model and the evaluated
vision models will make the vision models inherit the limitations of pre-trained models, which
have adverse consequences for people who are affected by them, such as reinforcing stereotypes,
discrimination, or exclusion.

We add recent works that investigate the societal bias of large models, and guide the readers to it for
further warning, e.g., (Wang et al.| 2022a).

L  EXPERIMENTS ON THE ZERO-SHOT ADVERSARIAL ROBUSTNESS OF CLIP

We conduct the following experiment to compare the adversarial vulnerability between CLIP and
robust ViT-like model pre-trained checkpoints of XCiT-L12 (Debenedetti et al., 2022) from the
RobustBench Leaderboard (Croce et al., [ 2020). The results are shown in Table @ We find that the
vanilla CLIP shows a better robustness performance under our quick experiments through FGSM
attack. However, if we continue the attack process, we will eventually obtain the adversary that
changes the CLIP’s classification decision to the targeted class.

Table 15: Comparison of the zero-shot adversarial robustness of CLIP with pretrained robust model.
We find that CLIP shows a better robustness performance compared with XCiT-L12. We note that the
CLIP’s classification decision can be changed to the targeted class as attack continues.

Target loss pltrue=0] pltarget=1]
CLIP XCiT-L12 CLIP XCiT-L12 CLIP XCiT-L12
0 8.621 4.712 0.6749 0.7437 0.0052 0.0728
20 2715 1.605 0.5083 0.4074 0.0986 0.2009
40 2316 0.8877 0.4007 0.2562 0.1357 0.3116
60 1.684 0.7420 0.2177 0.1407 0.2144 0.4760
80  1.540 0.6520 0.1813 0.1338 0.3335 0.5210

Step

26



Foundation Model-oriented Robustness: Robust Image Model Evaluation with Pretrained Models

Fortunately, in production, one can use simpler techniques such as gradient masking to protect CLIP’s
weights from malicious users, thus, the opportunities of the CLIP being attacked from a white-box
manner are quite low. In terms of black-box attacks, CLIP actually shows a strong resilience toward
the adversarial samples generated for other models, for which we also have some supporting evidence:
In Appendix [E, we generate the images with the FGSM attack by the tested model. Table[7 shows
that initiating with the FGSM adversarial examples barely affects the FMR, which implies that CLIP
succeeds in defending these black-box adversarial images and preserving the hard ones such that
the FMR does not change significantly (Otherwise, CLIP will discard heavily perturbed images and
preserve easy ones with minor perturbation, leading to high FMR values). Furthermore, our approach
incorporates an ensemble of foundation models, including robust models such as ConvNext-T-CvSt
from the RobustBench Leaderboard, and employs a majority vote mechanism to validate the fidelity
of the image-label relationships.

Thus, CLIP, especially when equipped with techniques to protect its weights and gradients, and
coupled with an ensemble of robust foundation models, might be the closest one to serve as the ideal
foundation models to maintain the image-label structure at this moment.

M LiIST OF EVALUATED MODELS

The following lists contains all models we evaluated on various datasets with references and links to
the corresponding source code.

M.1 PRETRAINED VQGAN MODEL

We use the checkpoint of vqgan_imagenet f16_16384 from https://heibox.
uni-heidelberg.de/d/a7530b09fed84£80a887/

M.2 PRETRAINED FOUNDATION MODELS
1. Model weights of ViT-B/32 and usage code are taken from https://github.com/
openai/CLIP
2. CoCa (Yuetal,2022) https://github.com/lucidrains/CoCa—-pytorch

3. ConvNeXt-T-CvSt (Singh et al., [2023) https://github.com/nmndeep/
revisiting-at

M.3 TiMM MODELS TRAINED ON IMAGENET (WIGHTMAN, [2019))

Weights are taken from https://github.com/rwightman/pytorch-image-models/
tree/master/timm/models

. ResNet50 (He et al., 2016a)

. ViT (Dosovitskiy et al.| [2020)
. DeiT (Touvron et al., 2021)

. Twins (Chu et al.|[2021)

. Visformer (Chen et al.| 2021)
. Swin (Liu et al., [2021)

. ConvNeXt (Liu et al., [2022))

~N N B WD =

M.4 ROBUST RESNET50 MODELS
1. ResNet50 SIN+IN (Geirhos et al., 2019) https://github.com/rgeirhos/
texture-vs-shape
2. ResNet50 ANT (Rusak et al.) https://github.com/bethgelab/
game—-of-noise

3. ResNet50 ANT+SIN (Rusak et al.) https://github.com/bethgelab/
game-of-noise
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4. ResNet50 Augmix (Hendrycks et al., [2019) |https://github.com/
google—-research/augmix

5. ResNet50 DeepAugment (Hendrycks et all [2021a) https://github.com/
hendrycks/imagenet-r

6. ResNet50 DeepAugment+Augmix (Hendrycks et al., 2021a) https://github.com/
hendrycks/imagenet—r

7. ResNet50 Discrete Adversarial Training (DAT) (Mao et al.,2022b) https://github,
com/alibaba/easyrobust

M.5 ADDITIONAL IMAGE GENERATORS

1. Efficient-VDVAE (Hazami et al., 2022) https://github.com/Rayhane-mamah/
Efficient-VDVAE

2. Improved DDPM (Nichol & Dhariwal, 2021) https://github.com/open-mmlab/
mmgeneration/tree/master/configs/improved_ddpm

3. ADM (Dhariwal & Nichol, 2021) https://github.com/openai/
guided-diffusion

4. StyleGAN (Sauer et al., 2022) https://github.com/autonomousvision/
stylegan_x1

M.6 PRETRAINED XCIT-L12 MODEL

Model weights of XCiT-L12 (Debenedetti et al., 2022) are taken from https://github.com/
dedeswim/vits—-robustness—-torch

N LEADERBOARDS FOR ROBUST IMAGE MODEL

We launch leaderboards for robust image models. The goal of these leaderboards are as follows:

 To keep on track of state-of-the-art on each adversarial vision task and new model architectures
with our dynamic evaluation process.

* To see the comparison of robust vision models at a glance (e.g., performance, speed, size, etc.).

* To access their research papers and implementations on different frameworks.

We offer a sample of the robust ImageNet classification leaderboard in supplementary materials.

O ADDITIONAL PERTURBED IMAGE SAMPLES

In Figure[d, we provide additional perturbed images generated according to each model. We have
similar observations to Section[d.3] First, the generated perturbed images exhibit diversity that many
other superficial factors of the data would be covered, i.e., texture, shape and styles. Second, our
method could recognize the model properties, and automatically generate those hard perturbed images
to complete the evaluation.

In addition, the generated images show a reasonable transferability in Table [6, indicating tha our
method can be potentially used in a broader scope: we can also leverage the method to generate
a static set of images and set a benchmark dataset to help the development of robustness methods.
Therefore, we also offer two static benchmarks in supplementary materials that are generated based
on CNN architecture, i.e., ConvNext and transformer variant, i.e., ViT, respectively.

P DISCUSSION ON THE REALISM OF THE GENERATED IMAGES

We notice that some generated images look unnatural, as the generated images being realistic is
not part of the optimization function. We acknowledge that making the generated images appear
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tree frog mamba greenlizard

greenlizard  greenlizard  chameleon
washer speaker iPod microwave remote iPod speaker

Figure 4: Visualization of the images generated by our system in evaluating the common corruption
robust model, with the original image shown (left image of each row). The caption for each image is
either the original label or the predicted label by the corresponding model. The evaluated models are
SIN, ANT, ANT+SIN, Augmix, DeepAug and DeepAug+AM from left to right.

more natural will be a further desideratum, as this contributes to enhancing the human-perceptible
interpretability.

Nonetheless, the current research agenda of the robustness evaluation community is still to encourage
the evaluation to expose the model’s weakness, such as to expose and eliminate the model’s learning
of spurious correlation in rare cases.

Similar evidence can be found in 2023), where the authors utilize masked images as
counterfactual samples for robust fine-tuning. In this paper, the authors argue that masked images can
break the spurious correlation between features and labels that may degrade OOD robustness, and
that feature-based distillation with the pre-trained model on these counterfactual samples can achieve
a better trade-off between IID and OOD performance. According to our second desideratum, our
generated counterfactual images might also look unnatural. However, although it appears unnatural, it
is beneficial in uncovering and eliminating spurious correlations for enhancing the model robustness.
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