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Live On the Hump: Self Knowledge Distillation via Virtual
Teacher-Students Mutual Learning

Anonymous Authors

ABSTRACT
For solving the limitations of the current self knowledge distillation
including never fully utilizing the knowledge of shallow exits and
neglecting the impact of auxiliary exits’ structure on the perfor-
mance of network, a novel self knowledge distillation framework
via virtual teacher-students mutual learning named LOTH is pro-
posed in this paper. A knowledgeable virtual teacher is constructed
from the rich feature maps of each exit to help the learning of each
exit. Meanwhile, the logit knowledges of each exit are incorporated
to guide the learning of the virtual teacher. They learn mutually
through the well-designed loss in LOTH. Moreover, two kinds of
auxiliary building blocks are designed to balance the efficiency and
effectiveness of network. Extensive experiments with diverse back-
bones on CIFAR-100 and Tiny-ImageNet validate the effectiveness
of LOTH, which realizes superior performance with less resource
by the comparison with the state-of-the-art distillation methods.
The code of LOTH is available on Github.

CCS CONCEPTS
• Do Not Use This Code → Generate the Correct Terms for
Your Paper; Generate the Correct Terms for Your Paper ; Generate
the Correct Terms for Your Paper; Generate the Correct Terms for
Your Paper.

KEYWORDS
Knowledge distillation, Self-distillation, Multi-Exits, Feature fusion

1 INTRODUCTION
In recent years, Convolutional Neural Networks (CNNs) have at-
tracted considerable attention for their excellent performance in
various computer vision tasks. However, remarkable performance
of CNNs [23, 25] typically suffer from exorbitant computational
resources and memory overheads, which makes it difficult to be
applied in edge devices with limited resources. Knowledge Dis-
tillation (KD), as one of the most effective network compression
techniques [5, 9, 18], aims to reduce the size of CNNswithout chang-
ing its structure and ensure the feature representation capability of
CNNs at the same time.

Traditional KD methods [6, 10, 12, 20, 21, 32] adopt two-stage
offline training strategy, in which a high-capacity teacher network
is pre-trained and then performs a one-way knowledge transfer
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to low-capacity student network. Obviously, the performance of
student network depends heavily on the fixed knowledge extracted
by the static teacher network. However, sophisticated teacher net-
works are not always readily available. Specifically, networks with
high accuracy are not necessarily capable of high-quality knowl-
edge transfer [11]. Moreover, the two-phase training process is
cumbersome, which leads to enormous computational costs and
resource burdens. Owing to these limitations, end-to-end mutual
learning strategies [3, 7, 14, 24, 27, 31] are in the spotlight. There
is no explicit teacher-student role in this strategy, which allows
multiple networks to be co-trained in a peer-teaching manner. Even
though dynamic interactions between networks contribute to re-
ducing semantic gaps, such aimless mutual transfer exists the risk
of performance degradation when the capacity gaps of the two net-
works differ significantly. In addition, the cost of training multiple
networks simultaneously remains prohibitive.

Self knowledge distillation (SKD) breaks the dilemmas, which
extracts and learns knowledge from its own backbone. One kind of
SKD shares the same shallow backbone to construct multiple peer
auxiliary exits in the last stage of the backbone, which integrates
logits of multi-exits as a teacher. However, multiple exits in the
same location typically tend to cause homogenization [16], hurting
the generalization ability of networks. Another kind of SKD adds
auxiliary exits hierarchically in a deep supervised manner. It takes
the deepest knowledge as supervised signal to guide the learning of
shallow exits. Although it is remarkable both in the aspect of keep-
ing the ability of backbones and reducing the training costs, it still
suffers from two inherent limitations: 1) the complementary knowl-
edge of shallow exits is never fully utilized, which decreases the
effectiveness of distillation; 2) the design of auxiliary exits normally
employs heuristic principles with a single and fixed architecture on
all networks, which fails to strike a balance between effectiveness
and efficiency.

To tackle these problems, a novel self knowledge distillation
framework via virtual teacher-students mutual learning is pro-
posed in this paper. Since the virtual teacher and the students are
generated from the backbone itself, and they learn from each other,
so we name the proposed self knowledge distillation as LOTH (Live
on the hump). Each exit in a network produces a response as a
logit, which is though as a student. The feature maps from all the
exits are used to build a virtual teacher, which concentrates all the
important knowledge of all the exits in a network. Specifically, the
feature maps of all exits perform cross-channel information inter-
action in both global and local manners. It captures finer-grained
identifiable information to adaptively enhance the fusion represen-
tation, giving us a knowledgeable virtual teacher. In order to learn
more meaningful knowledge, a mutual learning between the virtual
teacher and multi-exits of the backbone is designed according to
the classification loss and distillation loss. In addition, for balancing
the efficiency and effectiveness, two kinds of bottleneck building

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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blocks are designed to capture the hidden information of the back-
bone. Extensive experiments with diverse backbones on CIFAR-100
and Tiny-ImageNet datasets show that LOTH improves the top-1
accuracy of classification by 3.81% to 6.58% with less resources com-
pared with diverse backbones, and the top-1 accuracy achieved by
LOTH is 3.81% to 6.58% higher than the state-of-the-art distillation
methods with equivalent amount of parameters. In summary, the
main contributions of this paper are as follows:

• A novel self knowledge distillation framework named LOTH
is proposed, which views each exit as a student and fuses
knowledge from auxiliary exits to build a knowledgeable
virtual teacher. The bidirectional mutual learning between
the virtual teacher and students contributes significantly to
the capabilities of multi-exits learning and significant gains
with few training overhead.

• An efficient adaptive feature fusion is designed to adequately
extracts important knowledge from each exit, which en-
hances the feature maps by channel and spatial attention,
resulting in a powerful and knowledgeable virtual teacher.

• The impact of different scales of auxiliary exits’ structures
are explored on the model’s performance, customizing two
well-designed auxiliary blocks to balance the efficiency and
effectiveness based on the size of the network.

2 RELATEDWORKS
2.1 Knowledge Distillation
In the knowledge distillation framework, there are always other
networks to provide addition supervised signals. The vanilla KD
pioneered by [6] utilizes the fixed soft logit knowledge of teacher
network to guide the learning of the student network. To promote
the efficiency of logit knowledge, DKD [32] thoroughly explores
the logit distillation and decouples it into target class knowledge
distillation and non-target class knowledge distillation. Moreover,
PESF-KD [21] further reduces time-consuming pre-trained teacher
network and enables adaptive knowledge transfer by tuning the
soft logit of the teacher network. In addition to these explorations of
logit knowledge described above, there are also efforts to captures
intermediate information of teacher networks. AT [12] narrows
the distance gap of attention maps between teacher and student
networks. RKD [20] facilitates knowledge transfer of structural
relationships between sample instances through distance-wise and
angle-wise losses. Besides, DIST [10] captures the intrinsic inter-
class relations of teacher to enrich correlation-based knowledge.
However, all the above approaches adopt a two-stage training strat-
egy, where high-quality teacher networks are pre-trained to provide
priori knowledge for the low-capacity student network to emulate,
which is tedious and complicated.

To enhance the efficiency of KD, numerous works start to focus
on online mutual learning of multiple networks, which simpli-
fies the training process to one-stage. DML [31] encourages each
peer network to learn from each other through logit distillation.
DCCL [24] additionally introduces intermediate cross-layer feature
supervision to facilitate dynamic interactions between networks.
MCL [27] enables multiple networks to conduct mutual contrastive
learning to achieve interaction and transfer of contrastive distri-
butions. Aside from these inter-network transfer methods, there

exist ensemble strategies to generate an intermediary for collab-
orative learning, which in turn guides the learning of each net-
work. KDCL [3] ensemble soft logits from multiple networks for
high-quality supervision transferred to each peer networks. While
DualNet [7] sums the feature maps of all peer networks to obtain a
robust teacher classifier. Moreover, EML [14] provides a lightweight
adaptive feature fusion module that concatenates features from all
sub-networks.

2.2 Self Knowledge Distillation
Instead of relying on extra networks, self Knowledge distillation
extracts knowledge from its own backbone in the form of multiple
auxiliary exits. ONE [33] adopts simple gating mechanisms to dy-
namically integrate the logits of multiple peer exits, where each exit
is treated as a student and the fused logit acts as a teacher. OKD-
Dip [1] adopts self-attention mechanisms to implement two-level
distillation with multiple peers exits and a group leader. Moreover,
Zhu et al. [34] further extend OKDDip, which utilizes a concise
feature learning to provide precise weights for peer exits. AHBF-
OKD [2] constructs diverse peers to promote knowledge diversity
and employs hierarchical fusion to learn complementary knowledge.
All of these approaches described above share the same shallow
backbone to construct multiple peer exits, which suffers from a
fatal homogeneity defect.

To further improve the efficiency of self Knowledge distillation,
substantial works pay more attention to the strategy of hierarchical
shared shallow backbone. BYOT [29] adds multiple auxiliary exits
hierarchically to capture the hidden knowledge. ECSD [28] pro-
poses additional attention modules at the connection between the
backbone and auxiliary exits to capture richer features. However,
these approaches all view the deepest layer of the backbone as
teacher to supervise the learning of shallow exits, which neglects
the exploitation of complementary knowledge provided by shal-
low exits. To this end, BEED [13] proposes an artificially regulated
ensemble strategy to merge the knowledge of all exits to instruct
each exits, which is mechanical and inconvenient for different net-
work architectures and datasets. KFD [15] adopts an adaptive fusion
strategy to integrate feature maps from earlier backbones, which
possesses relative weaker semantic information than exit. More-
over, DTSKD [17] additionally considers the past learning history
to further enrich the form of the supervised signal. In contrast
to these approaches, our proposed LOTH adequately integrates
complementary feature and logit knowledge from early exits to
facilitate mutual learning across multi-exits, which possesses excel-
lent generalization and robustness.

3 METHOD
3.1 Problem Formulation
Suppose a convolutional neural network has 𝑘 stages. Each stage is
composed of multiple specific building blocks that can be thought
as feature extractor, denoted as G1,G2, ...G𝑘 . Given 𝑁 training sam-
ples X = {𝑥𝑛}𝑁𝑛=1, the corresponding ground-truth labels with
𝑀 classes are denoted as Y =

{
𝑦𝑛 ∈ R𝑀

}𝑁
𝑛=1. The purpose is to

train such 𝑘-stage network by using these 𝑁 samples to get a same
structure network with more robust classification ability and fewer
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Figure 1: The overall architecture of LOTH. The solid lines represent the backbone network, while the dashed lines indicate
auxiliary exits, which can be removed during the inference phase.

parameters. Fig. 1 shows the whole framework of LOTH. Take the
sample 𝑥𝑛 as an example, it is input into the backbone network, 𝑘
logits are generated from the 𝑘 − 1 auxiliary exits and one main
backbone exit. At the same time, a virtual teacher is built based on
these 𝑘 exits, bringing in 𝑧

′
𝑛 . Then 𝑧

′
𝑛 and these 𝑘 logits learn the

knowledge of backbone mutually according to the loss L𝑠→𝑡 and
the loss L𝑡→𝑠 .

3.2 Response of Auxiliary Exits
For the network with 𝑘 stages, 𝑘 − 1 auxiliary exits are added at
early stages. Let’s use E1 to denote the auxiliary exit in the first
stage, similarly, there are E2...E𝑘 for other stages, where E𝑘 is the
default exit of backbone. For the sample 𝑥𝑛 , it will pass through
feature extractors in the backbone network and the corresponding
exits to generate logits 𝑧1

𝑛, 𝑧
2
𝑛, ..., 𝑧

𝑘
𝑛 . Such process can be simply

formed as:

𝑧1
𝑛 = E1 ◦ G1 (𝑥𝑛),
𝑧2
𝑛 = E2 ◦ G2 ◦ G1 (𝑥𝑛),
· · · ,

𝑧𝑘𝑛 = E𝑘 ◦ G𝑘 ◦ G𝑘−1 ◦ · · · ◦ G1 (𝑥𝑛) .

(1)

The auxiliary exits
{
E𝑖

}𝑘−1
𝑖=1 play the role of providing addi-

tional training objectives in LOTH. Each auxiliary exit comprises
two parts: a feature transformation and a classifier. The classifier
provides the foundation for probabilistic prediction, which is im-
plemented by a fixed pooling layer and a fully connected (FC) layer.
The feature transformation composes of multiple building blocks
with downsampling, which ensures that the sizes of output features
from the shallow auxiliary exits are identical to the 𝑘-th stage of
the backbone. Obviously, the feature transformation dominates the

Figure 2: The structure of a single auxiliary building block,
where 𝑐 denotes the number of output channels, and G-Conv
means group convolution (depth-wise convolution).

auxiliary exits. Therefore, the design of auxiliary building blocks is
extremely crucial.

Previous researches [13, 29] have demonstrated that Bottleneck
block originated from ResNet [4] is an effective architecture to
improve the performance of exits. However, the single employment
of a fixed architecture ignores the impact of the relative size of the
auxiliary exits on the performance of the backbone network, which
is not optimal across all networks.

Hence, two kinds of auxiliary building blocks are designed at
here. One is Bottleneck, and the other is Group-Bottleneck. They
are tailored according to the scale of the backbone network. As
illustrated in Fig 2(a), the channel expansion and residual connec-
tion are removed from the standard Bottleneck [4], which retains
the powerful extraction capabilities and reduces computational
burden. However, Bottleneck drastically enlarges the scale of auxil-
iary exits in the lightweight networks, slowing the training speed.
Group-Bottleneck designed in Fig. 2(b), uses a group convolution
(depth-wise convolution) rather than a regular convolution in the
middle layer of the Bottleneck block, significantly reducing the
scale of auxiliary exits. One thing should be pointed out is that the
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Figure 3: An illustration of virtual teacher generation. The
features of 𝑘 exits are fused to be 𝑓

′
, which will be mapped

to be 𝑧
′
𝑛

number of auxiliary building blocks in each auxiliary exit depends
on the stage of the backbone network. Taking the 𝑘 = 3 as an
example, the number of building blocks in G1 is 2, the number of
building blocks in G2 is 1, and the number of building blocks in G3
is 0, i.e., the default backbone exit.

3.3 Generation of Virtual Teacher
The auxiliary building blocks in each auxiliary exit always generate
rich semantic features, which should be employed to help exits
learn the knowledge of backbone network.

Let 𝑓 𝑖𝑛 ∈ R𝐻×𝑊 ×𝐶 (𝑖 = 1, 2, . . . 𝑘) denote the features generated
from E𝑖 , where 𝐶 means the number of channels and 𝐻 ×𝑊 tells
us the size of feature maps. By simply concatenating 𝑓 𝑖𝑛 along the
channel dimension, 𝑓𝑐𝑎𝑡 ∈ R𝐻×𝑊 ×𝐶′

is obtained, where 𝐶
′
= 𝑘𝐶 .

Subsequently, 𝑓𝑐𝑎𝑡 is transformed along two parallel paths simulta-
neously. On one path, 𝑓𝑐𝑎𝑡 is globally transformed based on chan-
nels, giving the global feature context 𝑓𝑔 that tends to emphasize
large objects with coarse granularity. 𝑓𝑔 is calculated by:

𝑓𝑔 = C1𝐷 (GAP(𝑓𝑐𝑎𝑡 )), 𝑓𝑔 ∈ R1×1×𝐶′
, (2)

where C1𝐷 indicates 1D-Convolution, and GAP stands for global
average pooling that captures the global distribution of channel
dimensions.

On the other path, 𝑓𝑐𝑎𝑡 is locally transformed, giving the local
feature context 𝑓𝑙 that focuses on subtle details of small object. 𝑓𝑙 is
calculated by:

𝑓𝑙 = R(C1𝐷 (R(𝑓𝑐𝑎𝑡 ))), 𝑓𝑙 ∈ R𝐻×𝑊 ×𝐶′
, (3)

where R denotes the reshape transformation. There are a total of
two transformations, where the first reshape transforms the input
feature map of size 𝐻 ×𝑊 into a scalar for 1D-convolution in the
channel direction, and the second reshape carries out a restora-
tion. Note that the local feature context has the same size with the
input, which can be viewed as a fine-scale perception of spatial lo-
cation information. Moreover, the employment of 1D-Convolution
facilitates information interaction across channels and ensures low
complexity.

As for the kernel sizeK of 1D convolution, we adopt an adaptive
strategy in [26] to determine:

K = 𝜑 (𝐶
′
) =

����� 𝑙𝑜𝑔2 (𝐶
′ )

𝛾
+ 𝑏
𝛾

�����
𝑜𝑑𝑑

(4)

where |𝑄 |𝑜𝑑𝑑 represents the nearest odd number of 𝑄 , 𝛾 and 𝑏 are
constant. In this work, we set 𝛾 = 2 and 𝑏 = 1 for all experiments.

After obtaining the global feature context and local feature con-
text, 𝑓𝑐𝑎𝑡 is enhanced by:

𝑓
′
𝑐𝑎𝑡 = 𝑓𝑐𝑎𝑡 ⊗𝜓 (𝑓𝑔 ⊕ 𝑓𝑙 ), 𝑓

′
𝑐𝑎𝑡 ∈ R𝐻×𝑊 ×𝐶′

(5)

where𝜓 (·) indicates Sigmoid function to generate the final weight
map, ⊕ and ⊗ denote the broadcasting addition and element-wise
multiplication, respectively. Moreover, a lightweight point-wise
convolution F𝑝𝑤 (·) is utilized to further facilitate feature fusion of
multi-exits and reduce the channel dimension. Eventually, the fused
representation 𝑓

′
with strong discrimination and generalization

capabilities is obtained, and then fed into classifier for the overall
classification, which plays the role of a virtual teacher to help exits
learn knowledge of backbone network.

3.4 Virtual Teacher-Students Mutual Learning
Now, from 𝑘 exits, 𝑘 logits have been generated. And a virtual
teacher 𝑧

′
𝑛 has been created from the advanced feature maps of

all auxiliary exits, which can be treated as additional supervised
signals to instruct the learning of each exit. The training loss L𝑠→𝑡

of auxiliary exits is expressed as:

𝐿𝑠→𝑡 =

𝑘∑︁
𝑖=1

L𝑐 (𝑦𝑛, 𝑧𝑖𝑛) + L𝑑 (𝑧
′
𝑛, 𝑧

𝑖
𝑛), (6)

where L𝑐 denotes the fundamental classification loss, which is de-
fined as in terms of the Cross-Entropy (CE) between the probability
distribution and the ground-truth label of the samples:

L𝑐 (𝑦𝑛, 𝑧𝑖𝑛) = 𝐶𝐸 (𝑦𝑛, 𝜎 (𝑧𝑖𝑛)), (7)

where 𝜎 (·) is the softmax function. The distillation loss L𝑑 em-
ploys the Kullback-Leibler (KL) divergence to measure the soft
distribution difference between the target and sample:

L𝑑 (𝑧
′
𝑛, 𝑧

𝑖
𝑛) = 𝜏2 · 𝐾𝐿(𝜎 (𝑧

′
𝑛/𝜏), 𝜎 (𝑧𝑖𝑛/𝜏)) (8)

where 𝜏 is the temperature coefficient. As 𝜏 increases, the probability
distribution gets smoother.

Considering that early exits of the network typically have rel-
atively weak extraction capabilities, it is difficult to capture suffi-
cient information directly from low entropy ground-truth labels.
Therefore, inspired by [13], we further control the proportion of
classification loss L𝑐 and distillation loss L𝑑 in Eq 6 to enable early
exits to learn more subtle knowledge from the soften distillation
distribution, which can be reformulated as:

𝐿𝑠→𝑡 =

𝑘∑︁
𝑖=1

(2 − 𝛼𝑘+1−𝑖 ) · L𝑐 (𝑦𝑛, 𝑧𝑖𝑛) + 𝛼𝑘+1−𝑖 · L𝑑 (𝑧
′
𝑛, 𝑧

𝑖
𝑛), (9)

where the balance factor 𝛼 satisfies 𝛼 > 1 and 𝛼𝑘+1−𝑖 < 2, which
guarantees the early exits to be always assigned to more distillation
weights.
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Table 1: Top-1 classification accuracy and parameter statistics of LOTH on CIFAR-100.

Networks Baseline Exit1 Exit2 Exit3 Exit4 Fusion
Acc(%) Param(M) Acc(%) Param(M) Acc(%) Param(M) Acc(%) Param(M)

VGG16 73.54 76.31 6.64 76.46 7.43 76.87 10.58 76.94 (↑ 3.40) 15.30 78.68
VGG19 73.34 75.23 6.64 75.73 8.02 76.09 13.53 76.06 (↑ 2.72) 20.61 77.83
ResNet18 77.65 78.47 3.82 79.53 4.17 80.90 5.58 81.24 (↑ 3.59) 11.22 82.08
ResNet34 78.00 78.37 3.89 80.53 4.84 81.84 10.97 81.96 (↑ 3.96) 21.33 82.77
MobileNetV1 73.40 76.99 2.22 77.40 2.23 78.62 3.30 79.02 (↑ 5.62) 3.31 80.62
MobileNetV2 72.22 76.46 2.93 76.79 2.78 76.95 2.45 77.51 (↑ 5.29) 2.35 80.13
ShuffleNetV1 71.39 74.31 1.91 75.31 1.89 76.69 1.85 76.35 (↑ 4.96) 1.01 79.06
ShuffleNetV2 71.85 73.04 1.51 74.82 1.52 75.93 1.68 76.03 (↑ 4.18) 1.36 79.14

To make full use of logit knowledges, we further incorporate the
logits at each exit to construct a powerful ensemble logit 𝑧𝑛 :

𝑧𝑛 =
1
𝑘

∑𝑘
𝑖=1𝑧

𝑖
𝑛, (10)

which is utilized to guide the learning of the virtual teacher:

L𝑡→𝑠 = L𝑐 (𝑦𝑛, 𝑧
′
𝑛) + L𝑑 (𝑧𝑛, 𝑧

′
𝑛) . (11)

Bidirectional knowledge communication between the virtual
teacher and auxiliary exits facilitates the learning across exits. In
the end, the total training objective can be obtained by summing
the training loss of L𝑠→𝑡 and L𝑡→𝑠 :

L𝑡𝑜𝑡𝑎𝑙 = L𝑠→𝑡 + L𝑡→𝑠 . (12)

4 EXPERIMENTS
4.1 Experiments Setup
4.1.1 Datasets. For evaluating the proposed method, two multi-
categorical benchmark datasets are used: (1) CIFAR-100, a natu-
ral image dataset, comprising 50K / 10K training / test samples
drawn from 100 classes, sized at 32 × 32 pixels per sample; (2) Tiny-
ImageNet, a more challenging dataset, containing 200 classes, where
each class has 5K / 500 training / test samples with 64 × 64 pixels.
In the actual evaluation process, the images in Tiny-ImageNet are
resized to be the same as CIFAR-100. Moreover, data enhancement
with horizontal flipping and random cropping are performed on
the training samples of both datasets.

4.1.2 Backbones. To validate the effectiveness of the proposed
LOTH, multiple backbone networks are adopted. They are popular
architectures ResNet [4] and VGG [23], and lightweight networks
MobileNetV1 [8], MobileNetV2 [22], ShuffleNetV1 [30], and Shuf-
fleNetV2 [19]. Given the low image resolution of both datasets, these
backbone network architectures are slightly modified by dropping
the first pooling layer and shrinking the stride and kernel size of
the convolutional layer.

4.1.3 Implementation Details. All the networks are implemented
by Pytorch on GeForce RTX2080Ti GPU with 11 GB memory. The
stochastic gradient descent (SGD) optimizer with momentum of
0.9 and weight decay of 5e-4 are utilized to optimize networks for
200 epochs. We set the initial learning rate to 0.1 for both datasets,
which is divided by 10 at 75th, 130th and 180th epochs. We set the

mini-batch size to 128, the temperature coefficient 𝜏 to 3, and the
balancing factor 𝛼 to 1.15 by default during all training procedures.

4.2 Comparing with Standard Training
The experimental results of LOTHonCIFAR-100 and Tiny-ImageNet
in comparison with various backbones are presented in Table 1 and
Table 2, respectively, where the adapted Bottleneck (Bn) block is
utilized for both regular-sized ResNet and VGG architectures, and
the Group-Bottleneck (G-Bn) block is adopted for four lightweight
networks. The last columns ‘Fusion’ shows the top-1 accuracy ob-
tained by the virtual teacher in LOTH. These two tables show that:
(1) Compared to the standard training, the whole performance of all
backbone networks benefits tremendously from LOTH. Specifically,
with the same capacity, our approach surpasses the baselines by
margins of 2.72% to 5.62% on CIFAR-100 and profound improve-
ments of 3.81% to 6.58% on Tiny-ImageNet. (2) LOTH exceeds the
performance of almost all baselines at the shallowest exit. Impor-
tantly, the shallowest exit has extremely low parameter advantages
in some regular sized networks. Taking VGG19 at exit1 as example,
LOTH achieves 2.39% and 6.91% gains on CIFAR-100 and Tiny-
ImageNet with barely 1/3 of the backbone parameters, respectively.
(3) The performance of each exit is not always increase with depth,
and the optimal results are concentrated in the third and fourth
exits. However, this is not a defect, but rather an advantage for self
knowledge distillation. Owing to the hierarchical shared backbone,
we can adaptively choose classifiers of different depths to trade-off
dynamic accuracy and efficiency demands in real-world deploy-
ments. (4) On all backbone networks, the performance of the virtual
teacher far exceeds that of other exits, indicating that the virtual
teacher extracts richer and more meaningful semantic information.
Therefore, it is reasonable to be taken as a virtual teacher. All these
commonalities across different datasets and backbones confirm the
strong robustness and generalization of LOTH.

4.3 Comparing with State-of-art Online
Distillations

To validate the effectiveness of LOTH, a series of advanced online
distillation methods are compared, which is presented in Table 3.
The online distillation methods are further categorized into three
strategies: (1) Multi-networks mutual learning: DML [31], EML[14],
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Table 2: Top-1 classification accuracy and parameter statistics of LOTH on Tiny-ImageNet.

Networks Baseline Exit1 Exit2 Exit3 Exit4 Fusion
Acc(%) Param(M) Acc(%) Param(M) Acc(%) Param(M) Acc(%) Param(M)

VGG16 50.38 54.22 6.70 54.74 7.48 55.02 10.63 54.63 (↑ 4.25) 15.35 57.97
VGG19 48.34 54.45 6.70 54.88 8.07 54.89 13.58 54.33 (↑ 5.99) 20.66 57.76
ResNet18 57.20 59.34 3.87 61.25 4.22 61.49 5.63 61.65 (↑ 4.45) 11.27 63.92
ResNet34 59.54 59.10 3.94 61.13 4.89 62.39 11.02 63.35 (↑ 3.81) 21.38 64.96
MobileNetV1 52.64 56.44 2.33 57.00 2.33 58.48 3.41 59.22 (↑ 6.58) 3.41 61.81
MobileNetV2 51.61 55.27 3.06 55.92 2.91 56.66 2.58 57.04 (↑ 5.43) 2.48 59.98
ShuffleNetV1 51.25 53.80 2.01 55.56 1.98 56.15 1.94 55.68 (↑ 4.43) 1.11 58.47
ShuffleNetV2 51.84 49.91 1.61 52.45 1.62 55.61 1.78 56.47 (↑ 4.63) 1.46 58.11

Table 3: Top-1 accuracy comparison of LOTH with state-of-
art online distillation methods on CIFAR-100.

Methods Years ResNet18 VGG16

Acc(%) Gain(↑) Acc(%) Gain(↑)
DML 2018 78.97 1.32 74.40 0.86
EML 2023 79.75 2.10 74.60 1.06
DCCL 2023 - - 76.10 2.56

ONE 2018 78.89 1.24 74.38 0.84
OKDDip 2020 79.83 2.18 74.85 1.31
AHBF 2023 78.82 1.17 75.08 1.54

BYOT 2019 78.59 0.94 74.98 1.44
ECSD 2021 79.61 1.96 75.56 2.02
BEED 2022 80.68 3.03 75.09 1.55
KFD 2023 79.48 1.83 75.04 1.50
DTSKD 2024 80.46 2.81 76.72 3.18

LOTH 2024 81.24 3.59 76.94 3.40

and DCCL [24]; (2) SKD with peer exits: ONE [33], OKDDip [1]
and AHBF-OKD[2]; (3) SKD with hierarchical exits: BYOT [29],
ECSD [28], BEED [13], KFD [15], and DTSKD [17]. To ensure fair-
ness and consistency, we take the average of the two sub-networks
as the result of multi-networks mutual learning, while for SKD, we
take the accuracy of the main backbone network. It is observed
that our LOTH achieves the optimal accuracy than all other online
approaches in both backbones. Specifically, LOTH realizes gains of
0.58% to 2.56%, 0.22% to 2.58% on ResNet18 and VGG16, respectively.
Even compared with SKD with equivalent architectures, LOTH still
achieves an average of 1.48% and 1.46% improvement on ResNet18
and VGG16, respectively.

In addition, we additionally select several SKD methods with
equivalent architecture to LOTH for further comparing the top-1
accuracy and the amount of parameters on Tiny-ImageNet. From
Table 4, we can observe that (1) In the case of a large gaps of
parameters, the ECSD with average ensemble strategy of multi-
exits logits outperforms the BYOT which takes the deepest exit as
the supervised signal. This suggests that using only the deepest
knowledge as a guide limits the learning ability of the model. (2)

LOTH at the Exit1 with 1/3 of backbone parameters outperforms
BYOT and ECSD at the Exit4, which demonstrates the importance of
auxiliary building block structure. (3) Compared with BEED having
the same parameters, LOTH still realizes a gain of 0.22% to 1.00%
in multiple exits, which indicates the effectiveness of the virtual
teacher-students mutual learning in LOTH.

4.4 Evaluation of Auxiliary Building Blocks
Figure 4 shows the performance of LOTH under different auxiliary
building blocks on: regular-size networks (ResNet, VGG16) and
lightweight networks (MobileNetV1, ShuffleNetV1), where Bn, G-
Bn, and DSC stand for Bottleneck, Group-Bottleneck and Depth
Separable Convolution utilized in ECSD [28], respectively. It can be
observed: (1) With the similar lightweight design, our G-Bn block
adds few training overheads yet achieves a significant benefit on all
exits than DSC. (2) It is reasonable to treat the feature fusion as a
teacher to instruct each exit. This is mainly reflected in the fact that
the performance of fusion far exceeds the other exits under all three
construction blocks, especially on DSC, whose performance varies
greatly across exits. (3) The use of Bn with standard convolution
achieves optimal main backbone performance at both regular-size
networks, but is equal to or even lower than G-Bn with lightweight
convolution on the two lightweight networks. More importantly,
using BN to construct auxiliary exits on shuffleNetV1 imposes
34× training overhead, which slows down training significantly.
Therefore, it is necessary to design two well-designed auxiliary
blocks to balance the effectiveness and efficiency according to the
scale of backbones.

4.5 Evaluation of Feature Fusion Mechanisms
To validate the effectiveness of the feature fusion in the step of vir-
tual teacher generation, we further compare it on Tiny-ImageNet
with three prevailing feature fusion strategies: Summation [7], Con-
catenation [14], and Sample-based Attention mechanisms (shorted
as Att-Sample) [15]. From Table 5, we can note that the simple
summation gets the worst performance, with a significant gap of
1.97% to the penultimate performance, which indirectly indicates
the existence of tremendous semantic gaps between multi-exits.
Moreover, our fusion results exceeds the sub-optimal performance
by 0.51 among numerous advanced fusion strategies, which indi-
cates our fusion possesses a stronger feature extraction capability to
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Table 4: Top-1 accuracy and parameter statistics of LOTH VS. advanced SKDs with hierarchical exits in ResNet18 on Tiny-
ImageNet.

Methods Supervision Exit1 Exit2 Exit3 Exit4 Fusion
Acc(%) Params(M) Acc(%) Params(M) Acc(%) Params(M) Acc(%) Params(M)

BYOT Deepest 44.83 2.91 53.26 3.47 57.80 5.63 58.97 11.27 61.32
ECSD Ensemble-Avg 47.09 0.44 53.91 0.97 57.34 3.08 59.03 11.27 60.51
BEED Ensemble-Weight 59.20 3.87 60.25 4.22 60.52 5.63 61.11 11.27 64.13

LOTH Mutual Learning 59.44 3.87 61.25 4.22 61.49 5.63 61.65 11.27 63.92

Table 5: Top-1 accuracy comparison of different fusion mech-
anism in MobileNetV1 on Tiny-ImageNet.

Fuse type Exit1 Exit2 Exit3 Exit4 Fusion

Summation 54.65 55.33 56.70 56.78 59.45
Concatenation 56.79 57.49 58.40 58.75 60.93
Att-Sample 56.87 57.19 58.79 58.84 61.30

Ours 56.44 57.00 58.48 59.22 61.81

mitigate the feature semantic gap between multi-exits. Importantly,
likewise for the attention mechanism, our strategy still outperforms
Att-Sample strategy by 0.38% on the main backbone exit.

Table 6: Ablation study of global and local transformation
on CIFAR-100.

Method ResNet18 MobileNetV1 ShuffleNetV1

Acc(%) Gain(↑) Acc(%) Gain(↑) Acc(%) Gain(↑)
w/o G & L 80.78 3.13 78.66 3.37 75.43 4.04
w G 81.01 3.36 78.84 3.55 75.92 4.53
w L 80.53 2.88 78.33 3.04 75.88 4.49
w G & L 81.24 3.59 79.02 3.73 76.35 4.96

4.6 Ablation study
4.6.1 Ablation of Global and Local feature context. In the virtual
teacher generation, global (G) and local (L) feature contexts work
together to mitigate the feature semantic gap between multiple
exits. To further explore the complementary of each component,
careful deconstruction is performed and examined onmultiple back-
bone architectures. From Table 6, we can observe: (1) Compared
to the baseline of the first row, our fusion mechanism achieve sig-
nificant performance gains with a range of 0.36% to 0.92% across
the three backbones, which further indicates that our fusion can
capture more discriminative information to mitigate semantic gaps.
(2) Compared to local feature context, global feature context with
a wide field provides a greater contribution to information cap-
ture, outperforming the case of using only local feature context by
an average of 0.33%. (3) The information in the global and local
feature contexts is complementary, pairing the two gives better
performance. Although the performance of local feature context
alone is lower than the baseline in ResNet18 and MobileNetV1, the

combination of global feature context exceeds the optimal value by
0.18% to 0.43%.

Table 7: Ablation study of virtual teacher-students mutual
learning on CIFAR-100.

Backbone Method Exit1 Exit2 Exit3 Exit4 Fusion

VGG16

73.54

w/o L𝑑 72.47 74.88 75.75 75.77 77.81
w/o L𝑡→𝑠 75.70 75.17 76.13 76.15 −
w/o 𝛼 75.54 75.88 76.69 76.63 78.38
LOTH 76.31 76.46 76.87 76.94 78.68

MobileNetV1

73.40

w/o L𝑑 71.77 73.25 74.92 74.96 78.82
w/o L𝑡→𝑠 76.62 77.39 77.91 78.29 −
w/o 𝛼 76.00 76.78 78.35 78.51 80.33
LOTH 76.99 77.40 78.62 79.02 80.62

4.6.2 Ablation of virtual teacher-students mutual Learning. The vir-
tual teacher-students mutual learning plays the role of facilitating
information interaction between fusion and multi-exits in LOTH.
To explore the effectiveness of each component of this learning,
as shown in Table 7, we perform ablation comparisons with the
following three cases: (1) w/o L𝑑 : Only the fundamental classifica-
tion loss L𝑐 in L𝑠→𝑡 and L𝑡→𝑠 is retained. Observing the first line
of VGG16 and MobileNetV1, we can discover that even without
distillation loss involved, our approach still achieves a remarkable
gain of 2.23 and 1.56 compared to the baselines, respectively, which
demonstrates the effectiveness of the hierarchical multi-exits archi-
tecture. (2) w/o L𝑡→𝑠 : Only logit knowledge of each exit is utilized
to obtain the ensemble logit 𝑧𝑛 , which served as supervised sig-
nals to guide multi-exits learning. It is not difficult to observe that
without the involvement of feature map knowledge, there is a sig-
nificant performance degradation in two backbones, which further
validates the importance of virtual teacher. (3) w/o 𝛼 : Both the clas-
sification loss and distillation loss at each exit are signed the same
weight of 1. In comparison with the full-fledged LOTH, we note
that the presence of the balance factor 𝛼 is beneficial for network
performance, especially for early exit. Take MobileNetV1 as an
example, the performance of Exit1 gains 0.99 with the balancing
factor 𝛼 , which dramatically facilitates the learning ability of early
exits with the low-capacity. In short, the mutual interplay between
these components makes LOTH what it is.
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Figure 4: The effect of different auxiliary blocks for model performance on the CIFAR-100, where the red dotted line indicates
the baseline. The bracketed values indicate the total trained parameters of multi-exits and the backbone networks.

5 CONCLUSION
In this paper, a novel self knowledge distillation framework via
virtual teacher-students mutual learning called LOTH has been
proposed, which focuses on fully exploiting the complementary
knowledge of early exits to further enhance the effectiveness of
distillation. Extensive experimental evaluations on CIFAR and Tiny-
ImageNet have demonstrated that LOTH enables joint performance
improvement of multi-exits. In addition, the impact of different
sizes of auxiliary exits on model performance is sufficiently ex-
plored in this paper, and the two well-designed building blocks are
verified to have the ability of balancing effectiveness and efficiency
in self knowledge distillation. However, in this research, only logits
are used to learn the knowledge of network, so the classification
accuracy is still far from the requirements of applications. In the
future, the incorporation of other types of knowledge like relations
among objects will be researched to improve the ability of feature
representation of network.
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