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1 Main and Supplemental Results

1.1 Probabilistic Bounds for General Function Classes

In this section, we develop probabilistic bounds for general function classes in terms of Gaussian
and Rademacher complexities. First, we prove the following key lemma, which is an extension of
the symmetrization inequality for i.i.d. sequences (for example, [1]) to a new version for Markov
sequences { X, }52 ; with the stationary distribution 7 and the initial distribution v € Mp:

Lemma 1. Let F be a class of functions which are uniformly bounded by M. For all n € 7, define
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Then, the following holds:
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Proof. See Appendix [A] O

Next, we prove the following theorem.

Theorem 2. Consider a countable family of Lipschitz function ® = {py : k > 1}, where ¢, : R —
R satisfies 1(_ oo 0](7) < @r(x) for all k. For each ¢ € ®, denote by L(yp) its Lipschitz constant.
Define
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Then, for any t > 0,

<3f e F:P{f<0}> mf [ Poon(f) +AL(pp) Ry (F) + (t+ \/@)\/TIZTJFBHD

2

< % exp(-2t?) (6)
and
P(3 €75 PU < 0) >t | Pugn() + VERL(o0)Go(F)
2
\/» + (t+ /logk)/ mm}) 7%exp(—21€2). (7)
Proof. See Appendix [B] O

Theorem 3. Let  is a non-increasing function such that o(x) > 1(_ 0)(x) for all x € R. For any
t >0,

P(er}':P{fSO}> inf [Pn<p<§)+&§(>3n(;)+(t+w)ﬁ+

6€(0,1]
2
< % exp(-26%) (8)
and
IP’(EIf € F:P{f<0}> 5612)f1] {Pnga<£> + MGM}')

2 Tmin T
+ NG + (t + /loglogy 26— 1),/ - + B”D < T exp(—2t?), 9)
where B, is defined in (3).
Proof. See Appendix [C| O

In the next statements, we use Rademacher complexities, but Gaussian complexities can be used
similarly. Now, assume that ¢ is a function from R to R such that ¢(x) < I(_ g(z) forall z € R
and o satisfies the Lipschitz with constant L(y). Then, the following theorems can be proved by
using similar arguments as the proof of Theorem [3]

Theorem 4. Let ¢ is a nonincreasing function such that () < 1(_ o)() for all x € R. For any

t >0,
P(Hf € F:P{f<0}< sup {Pngo(f> + MR,;(}')
§€(0,1] é 5
2
+(t+ \/W)\/T‘“m D < 7rgexp(—??fQ) (10)
and

]P(er]-":P{fSO} < sup] [P,L<p<f) +WG7L(}—)+5A>

6€(0,1 g d
= 2
+ (¢t + v/loglog, 26— min Bn}) < —exp( 2t2), (11)

where B, is defined in (3).

By combining Theorem [3|and Theorem 4] we obtain the following result.

)



Theorem 5. Let

Tmin 10g logy 261

A (F:6) = an(]-') + \/ 4B, (12)

n

Then, for all t > 0,

IP’(ﬂf €F:|Pf{f <0} —P{f <0} > inf (Pn{|f| < 6} + AL(F;0) HF))
6€(0,1] n

2 2
< % eXp(—2t2) (13)

and

P(afejrz |[Polf <0} = P{f <O} > inf (P{IfI §6}+An(f;6)+tﬁ>

2 2
< %exp(—2t2). (14)

Proof. Equation (T3) is drawn by setting ¢ (z) = 1{z < 0} + (1 — 2)1{0 < & < 1} in Theorem [3]
and Theorem 4] Equation (T4) is drawn by setting ¢(z) = 1{z < —1} — 21{—1 < z < 0} in these
theorems. =

1.2 Conditions on Random Entropies and v-Margins

As [2]], given a metric space (T, d), we denote by H,;(T'; €) the e-entropy of T" with respect to d, that
is

Hy(T;e) :=log Na(T's¢), (15)

where Ny (T'; ) is the minimal number of balls of radius e covering T'. Let dp, o denote the metric
of the space La(S;dP,):

1/2

dp,2(f,9) = (Pulf — 9?) (16)

For each y € (0, 1], define

+

[N

a7)

}. (18)

We call 6,,(v; f) and 6, (7; f), respectively, the y-margin and empirical -margin of f.

5y f) = sup{a €(0,1):63P(f<d) <n-

wR
——

and

On (75 f) := sup{5 €(0,1): 5%Pn(f <6 <n 2t

Wl
NS

Theorem 6. Suppose that for some o € (0,2) and some constant D > 0,

Hap, 2(Fiu) < Du™®, u>0 a.s., (19)

2

rar there exists some constants (,v > 0 such that when n is large enough,

Then, for any v >

PIVf € F: (00 ) <On(vi f) < Con(v; )| =1 20(logylogy n) exp { —n?/2}. (20)

Proof. See Appendix |D|for a detailed proof. O



1.3 Convergence rates of empirical margin distributions

First, we prove the following lemmas.

Lemma 7. For any class F of bounded measurable functions from S — R, with probability at least
1—2exp ( — 2t2), the following holds:

Tmin
sup sup [ P(f < y) = P(f < )| < VBu+ 1/ ==, 1)

fEF yeR

where B, is defined in (3).

Remark 8. By settingt = v/2logn, shows that Sup ;¢ z Sup, e |Po(f <y)—P(f<y)|—0
asn — oo.

Proof. See Appendix [E] O

Now, for each f € F, define
Fr(y):=P{f <y}, Foy=PAf<y}, wyeR (22)
Let L denote the Lévy distance between the distributions in R:
L(F,G):=inf{0 >0: F(t) < G(t+0) + 6, Gty < F(t+0)+9, vVt e R} (23)

Lemma 9. Let M > 0 and F be a class of measurable functions from S into [—M, M. Let ¢ be
equal to 1 for x < 0, 0 for x > 1 and linear between them. Define

G, — {goo(fd_y>—1:f€]-', ye[—M,M]} (24)

for some & > 0. Recall the definition of By, in (). Then, for allt > 0 and § > 0, the following holds:

IP{ sup L(Fy, Fr.n) > 6 + E[[|PYllg, ] + Bn + t4/ Tjj:“} < 2exp(—2t7). (25)

fer

Especially, for all t > 0, we have

P{ sup L(Fy, Frr) > 4\/IE[||P,?H]:} + M//n+ B, +ty/ Tmnm} < 2exp(—2t?). (26)

fer

Proof. See Appendix [F| O

In what follows, for a function f from S into R and M > 0, we denote by f); the function that is
equal to fif |f| < M, isequal to M if f > M and is equal to — M if f < —M. We set

Fuar = {f]w : feF} @7

As always, a function F from S into [0, co) is called an envelope of F iff | f(x)| < F(x) for all
fe€Fandalzx e S.

We write F € GC(P) iff F is a Glivenko-Cantelli class with respect to P (i.e., | P, — P||z — O as
n — oo a.s.). We write 7 € BCLT(P) and say that F satisfies the Bounded Central Limit Theorem
for P iff

E[||P. = P||z] = O(n~'/?). (28)

Based on Lemma and Lemma[9] we prove the following theorems.
Theorem 10. Suppose that

sup P{|f| > M} =0 as M — . (29)
fer

Then, the following two statements are equivalent:



* (i) Far € GC(P) forall M >0

and

* (ii)supyer L(Fyp, Fy) =+ 0 as. n— oo
Proof. See Appendix [G| O

Next, the following theorems hold.
Theorem 11. /2| Theorem 7] The following two statements are equivalent:

* (i) F € GC(P) forall M >0
and

* (ii) there exists a P-integrable envelope for the class F(¢) = {f-Pf:feF}and
suprer L(Fup, Fr) = 0 n — oo and

sup L(Fy, 1, Fr) =0 a.s. n — oo. (30)
fer

Now, we prove the following theorem.
Theorem 12. Suppose that the class F is uniformly bounded. If F € BCLT(P), then

1/4
supL(Fn,f,Ff)oP«lOg") ) n — o 31)
feF n

Moreover, for some o € (0,2) and for some D > 0

Hg, ,(F;u) < Du”*logn, u >0, a.s., (32)
then
sup L(Fy. ¢, Fy) = O(rfﬁ logn) n — 0o, a.s., (33)
fer
Proof. Appendix [H] O

1.4 Bounding the generalization error of convex combinations of classifiers

We start with an application of the inequalities in Subsection [I.1]to bounding the generalization error
in general classification problems. Assume that the labels take values in a finite set ) with || = K.

Consider a class F of functions from S x ) into R. A function f € F predicts a label y € ) for an
example z € S iff

f(z,y) > max f(z,y"). (34)
y'Fy

In practice, f(x,y) can be set equal to P(y|z), so F can be assumed to be uniformly bounded. The
margin of a labelled example (x, y) is defined as

myy(r) := f(r,y) — max f(z,y'), (35)
Y'FY
so f mis-classifies the label example (z,y) if and only if m ¢, < 0. Let

F={f(y):ye, feF} (36)

Then, we can show the following theorem.
Theorem 13. Forallt > 0, it holds that

]P’(Elf € F:P{my, <0} > 5 i?ofl] {Pn{mf,y <4} + %(QK —1)R,(F)
€(0,

: 2
+ (t + \/loglog, 26— 1) Tmin | Bn:|) < % exp(—2t?), 37)
V' n



where B, is defined in (). Here,

P{mys, <0} =Y m(x)1{my,(z) <0}, (38)
x€S
and
1 n
Pa{mypy <0} =—3 1{myy(Xy) <0} (39)
k=1

is the empirical distribution of the Markov process {my ,(X,)}>2, given f.

Proof. First, we need to bound the Rademacher’s complexity for the class of functions {my,, : f €
F } Observe that

[sup Zsjmfy ] (40)
feF
By [2, Proof of Theorem 11], we have
[Sup Zajmfy ] < (2K — 1)R.(F), (41)
feF

where R,,(F) is the Rademacher complexity function of the class F. Now, assume that this class
of function is uniformly bounded as in practice. Hence, by Theorem [3for ¢ that is equal to 1 on
(—00,0], is equal to 0 on [1, +00) and is linear in between, we obtain (37). O

In addition, by using the fact that (X7,Y7) — (X2, Ys) -+ — (X,,, Y,,) forms a Markov chain with
stationary distribution 7 (see the discussion on Section 2.2 in the main document), by applying
Theorem 3] we obtain the following result:

Theorem 14. Let ¢ is a nonincreasing function such that p(x) > 1(_og () for all = € R. For any
t>0,

. N f L(p
P(Hf eF:Pf<0}> inf {in(gt) + ST()Rn(H)

: 2
+ (¢t + y/loglogy 26—1), / Tmin B”D < % exp(—2t?), (42)
n
where By, is defined in (3)).

As in [2], in the voting methods of combining classifiers, a classifier produced at each iteration is

a convex combination f of simple base classifiers from the class . In addition, the Rademacher
complexity can be bounded above by

V(#H)

n

R,(H)<C

(43)

for some constant C' > 0, where V() is the VC-dimesion of H. Let ¢ be equal to 1 on (—o0, 0], is

equal to 0 on [1, 4+00) and is linear in between. By setting t,, = 4/ % log %, from Theorem , with
probability at least 1 — «, it holds that

5 . @ V(H) —1), [ Tmin
P{f <0} < 5@{?1] P{f <&} + — (ta + /loglog, 26-1) ” + B, |, (44)

3

which extends the result of Bartlett et al. [4] to Markov dataset (PAC-bound).



1.5 Bounding the generalization error in neural network learning

In this section, we consider the same example as [2, Section 6]. However, we assume that feature
vectors in this dataset is generated by a Markov chain instead of an i.i.d. process. Let H be a class of
measurable functions from S — R (base functions). Let H be the set of function f :SxY =R
The introduction of # is to deal with the new Markov chain {(X,,, Y;,)}22, which is generated by

n=1
both feature vectors and their labels instead of the feature-based Markov chain { X, }52 ;.

Consider a feed-forward neural network where the set V' of all the neurons is divided into layers

1
v={uyuJv (45)
j=0

where V; = {v, }. The neurons v; and v, are called the input and the output neurons, respectively. To
define the network, we will assign the labels to the neurons in the following way. Each of the base
neurons is labelled by a function from the base class H. Each neuron of the j-th layer V;, where
j > 1, is labelled by a vector w := (w1, wa, - ,w,,) € R™, where m is the number of inputs of

the neuron, i.e. m = |H| + 1. Here, w will be called the vector of weights of the neuron.

Given a Borel function ¢ from R into [—1, 1] (for example, sigmoid function) and a vector w :=
(w1, wa, -+ ,wy) € R™, let

m

Npw :R™ SR, Nypl(un, g, ) = a(ijuj) (46)
j=1
For w € R™, ]
[wlly = Jwil. (47)
i=1
Let o, : j > 1 be functions from R into [—1, 1], satisfying the Lipschitz conditions
’aj(u)—aj(v)’ < Ljlu—v], u,v € R. (48)

The network works the following way. The input neuron inputs an instance z € S. A base neuron
computes the value of the base function on this instance and outputs the value through its output
edges. A neuron in the j-th layer (j > 1) computes and outputs through its output edges the value
Noj w(u1,ug, -+, um) (Where uy, us, - - -, uy, are the values of the inputs of the neuron). The
network outputs the value f(x) (of a function f it computes) through the output edge.

We denote by N the set of such networks. We call NV; the class of feed-forward neural networks with
base H and [ layers of neurons (and with sigmoid o). Let Ny i= U‘;‘;l ./\/] Define Hy := H, and
then recursively

H; = {Ngj,w(hl,hg, s ,hm) m>0h; €Hj_1,we Rm} UH, 1. 49)

Denote Hoo 1= U;’il H;. Clearly, H includes all the functions computable by feed-forward neural
networks with base H.

Let {b;} be a sequence of positive numbers. We also define recursively classes of functions com-
putable by feed-forward neural networks with restrictions on the weights of neurons:

H;(b1,ba, - ,b) (50)
= {Ngj,w(hl,hg, L hy) >0,k € Hija(bi,be, - bjm1),w € R™ Jlw|l < bj}
U Hi—1(ba b, bj). (51)
Clearly,
Moo = {Hj(bl,bz,m b)) by,ba, - by < +oo}. (52)

As in the previous section, let ¢ be a function such that () > I(_ g) for all x € R and ¢ satisfies
the Lipschitz condition with constant L(). Then, the following is a direct application of Theorem



Theorem 15. Foranyt > 0 and forall [ > 1,

P(Hf € H(bi,ba, - ,by) : P{f <0}

, i sz l
> mf][Pngo((s) 1;[ (2L;b; + 1)Gr(H)

6€(0,1

2
bk (e Vioglon2 ) 2 | ) < o (<22), 6

-3
where By, is defined in (3).

Proof. Let
Hp = H(bi, b, b). (54)
As the proof of [2, Theorem 13], it holds that
n 1
Gn(H) :=E n*lzgiax < [I@L;b; + 1)Gn(H). (55)
i=1 j=1
Hence, is a direct application of Theorem [3|and @D O

Now, given a neural network f € N, let
[(f) :==min{j > 1: f € N;}. (56)

For a number k, 1 < k < I(f), let Vi(f) denote the set of all neurons of layer k in the graph
representing f. Denote

Wi(f) = max o™l vbe,  k=12-,Uf) (57)

where w(®) is the coefficient vector associated with the neuron w of the layer k, and let

4e))

A(f) = [[ALWi(f) + 1), (58)
k=1
1(f)

NGESS ¢ log (2 + loga Wi(f)). (59)

where a > 0 is the number such that ((a) < 3/2, ¢ being the Riemann zeta-function:

= i ke (60)
k=1

Then, by using the same arguments as [2, Proof of Theorem 14], we obtain the following result.
Theorem 16. Foranyt > 0 and forall [ > 1,

p(r e <0 > it [Pe(£) + 2EHO ),

5€(0,1] Y
2 min
b2t (1 a0+ Vioglog 25T ™ 1 5] )
< (5 20(0) " exp (~ 26, 61)

where By, is defined in ().



Proof. Let

k—1 ok
Ak'_{[Q 2%) for keZk+#0,1 .

[1/2,2) fork = 1.
Then, using the following partition:
Uenad-U U U -+ U {remmn-1mmea, wen}

1=0 ky €Z\{0} k2€Z\{0} ki €Z\{0}
(63)

On each subset {f € Hoo : UI(f) = L,W;(f) € Ay, Vj € [l]}, we can lower bound A(f) and

Lo(f) by

l
H 2L;2% + 1), (64)

l
Z log k;| +1). (65)

By replacing ¢ by ¢ + 22:1 \/§ log(k; + 1) and using Theoremto bound the probability of each
event and then using the union bound, we can show that

IP’(Hf € Hoo : P{f <0} > 66%51] [PW((S) + Nﬁ“ )A(f)Gn(H)

2 min
ot (t+Ta(f) + Vioglog, 25‘1)\/7+Bnb (66)

]P(erHoo : P{f <0}
- it {pngo< 5) N

5€(0,1]

(t+z,/ log(k; + 1) + /log log, 20 ),/T“““JF;JFBD 67)
<> Z Y 2exp<—2<t+z,/ log(k; +1>> (68)
1=0 k1 €Z\{0}

ki €Z\{0}
2
< ?(3— 2§(a))_1 exp ( — 2t%), (69)
where the last equation is followed by using some algebraic manipulations. O

2 Extension to High-Order Markov Chains

In this section, we extend our results in previous sections to m-order Markov chains and a mixture of
m independent Markov services.

2.1 Extend to m-order Markov chain

In this subsection, we extend our results in previous sections to m-order homogeneous Markov chain.
The main idea is to convert m-order homogeneous Markov chains to 1-order homogeneous Markov
chain and use our results in previous sections to bound the generalization error.

We start with the following simple example.



Example 17. [m-order moving average process without noise] Consider the following m-order
Markov chain

X =Y aiXpi, k€L, (70)
=1

Let Yy == [Xiktm—1, Xktm—2," " » Xg]T. Then, from (T0), we obtain

Yk+1 = GYk7 Vk € Z+ 71)
where
ayp a2 am—1 am
1 0 0 0
G=|0 1 - 0 0f (72)
0 0 - 1 0

It is clear that {Y ,}52_, is an order-1 Markov chain. Hence, instead of directly working with the
m-order Markov chain {X,,}22 ,, we can find an upper bound for the Markov chain {Y,,}52_;.

To derive generalization error bounds for the Markov chain {Y,,}52_,, we can use the following argu-
ments. For all~f € Fand (g, Tpt1," 5 Thom—1) € S™, by setting (g, Tr11, "+ s Thtm—1) =
f(xg) where f : 8™ — R, we obtain

n

1« 1 <

— 1 ) < = — ) <0}

SO UK =0h = -3 1{f(vi) <0} (73)
i=1 =1

Hence, by applying all the results for 1-order Markov chain {Y;,}52 |, we obtain corresponding

upper bounds for the sequence of m-order Markov chain { X, }5° ;.

This approach can be extended to more general m-order Markov chain X; =
9(Xp—1,Xp—2+ , Xk—m) where ¢ : 8™ — R. More specifically, for any tuple
(x1,22, "+ ,XTm) € S™, observe that

9g

@dxl + @dl'g + -+ ——drp,. (74)

d =
g oy 0xo 0T,

Hence, if % = «; for some constant «; and for each i € [m], from (74)), we have

m m
g($17x27' o 7xm) = 9(01,02,' o ;C’m) + Zaixi + Zaiyia (75)
1=1 1=1

where v;’s are constants. One specific example where the function g : S™ — R satisfies this property
isg(z1, 22, ,Tm) = @121+ a222+ - -+ @&, Where aq, ag, - - - , a,, are constants as in Example

Now, by choosing u = (g(c1, ¢, ,em) + 2oy airy) /(1 = 31" | a;), from (73), we have

gl e, ) Fu =Y a;(z; + u). (76)
i=1
By setting Vi, = [Xg+m—1+t Xgtm—2+u - Xp+ u]T, from (7€), we have:
ap az -+ Am-1 am
1 o --- 0 0
V=0 b 0 0y (77)
0 0 10

10



In a more general setting, if Xy = g(Xx—1, -+ , Xk—m, Vi) for some random variable Vj, which is
independent of { X,_;}7, such as the Autoregressive model (AR), where

Xp=c+ Y aiXe i+ Vi, (78)

i=1

we can use the following conversion procedure. First, by using Taylor’s approximation (to the
first-order), we obtain

)
g(@1, 2, Tm, &) m gler, ca,0 0 omy §o) + Z agA (zi — )
=1 ? (01,02,'“ ac7n7<0)
dg
5 (€ — &) (79)
v (e1,c2,0++ ,em,€0)
for some good choice of (c1,ca, - ,cm, &) € S™ x V, where V is the alphabet of V. Using the
above trick with Y, = [Xp4m—1+u Xgym-2+u -+ Xp+ u]T, a; = aaaf- (1rcarr em )’
we can replace the recursion X = g(Xg_1, -, Xx—m, Vk) by the following equivalent recursion:
9g
a1 a2 Gm—1 O | cricaren o) VE
1 0 0 0 (c1,e2,+ ,em,€0)
Viga= |0 1 00y 0 . (80)
0o 0 -~ 1 0 0

Since Vj, is independent of { X ;Hm,i};’;;l or Yy, (80) models a new 1-order Markov chain {Y%}7° ;.
Then, by using the the same arguments to obtain (73)), we can derive bounds on generalization error
for this model.

For a general m-order homogeneous Markov chain, it holds that

PXk|Xk—1:11,Xk—2:év2~,"' Xiem=2m " T(ﬂh,wz,'“ T ) 8D
for all (z1,22, -+ ,2m) € 8™, where T, 4, ... z,,) is a random variable which depends only on
T1,%2, - , Ty and does not depend on k. Hence, we can represent the

X = 9( X1, X2, X T(Xp 1 KXo s Xom) )5 (82)

where T x, | x, 5, Xe ) = JEk Vs Vi1, Vg, X1, X2, -+, Xgx—m). Here, &
represents new noise at time k£ which is independent of the past. Hence, in a general m-order
homogeneous Markov chain, we can represent the m-order homogeneous Markov chain by the
following recursion:

Xk = g(thflan72; o anf’mmEka Vk?a Vk:717 o ;Vk7q>7 (83)

where ¢ represents new noise at time k¥ and ¢ € Z,. By using Taylor expansion to the first
order, we can approximate the Markov chain in by an Autoregressive Moving-Average Model
(ARMA (m, ¢)) model as following:

m q
Xp=c+ep +Zaz‘Xk—i +Zei5k7ia (84)

i=1 i=1

where c and a;’s are constants, and {ej }3°, are i. i. d. Gaussian random variables A/ (0, 02). For this
model, let

k
Vii=Y & (85)
=1

11



and

Xk+m71 +u
Xk+m—2 +u
X +u
Yk = Vk+m—1 5 (86)
Vitm—2
Vkerfq
Vk+7n—q—1
where
< (87)
u :: 7/,71/.
1-> o a
Let V, := Zle g; for all £ > 1. Observe that
Vk+m = €k+m T+ Vk+m—1- (88)
On the other hand, we have
m q
Xker =c+ Ek+m + Z aiijmei + Z eiEkerfi (89)
i=1 i=1
m q
=c+ Eppm + Z a; Xk+m—i + Z 0; (Vim—i — Virm—1-1) (90)
i=1 i=1
q—1

=cCc+Ektm + Z ;i Xprm—i +01Vigm_1 + Z (9i+1 - ei)Vk+m—1—i - quk-l—m—q—l-
=1 =1
oD

Then, we have

Ek+m
0
Vip =6+ |0 |, 92)
Ek+m
0
0
where
(G111 G2
G:= (G21 Gzz) . (93)
Here,
ayp a2 am—1 0am
1 0 -~ 0 0
Gp= |0 b 00 : (94)
0 0 1 0/ pqin
01 O—0, - 0,—0,1 —0,
0 0 0 0
e 0 : (95)
0 0 0 mxq+1

12



0 O 0 0
0 0 0 0

Gop = 00 - 00 , (96)
0 0 00/ im

and

1 0 0 0
1 0 0 O

Gy = 1 00 97)
00 10/ 11

Since €+, is independent of Y}, (92) models a 1-order Markov chain. Hence, we can use the above
arguments to derive new generalization error bounds for the m-order homogeneous Markov chain
where ARMA model is a special case.

2.2 Mixture of m Services

In this section, we consider the case that Vi, = >, alX,gl) forallk =1,2,---, where {X,gl)};ozl
are independent Markov chains on S with stationary distribution for all € [m]. This setting usually
happens in practice, for example, video is a mixture of voice, image, and text, where each service can
be modelled as a high-order Markov chain and the order of the Markov chain depends on the type of
service.

Let
O[lX]il) + O[QX]S) + - OémX]gm) ) Yk
axX® 1+ X ™ X 4 X
Zy = ] = ) (93)
alegm) OémX]Em)
Then, it holds that
7, = GX}, (99)
where
ap Q2 - Oyl Qg
0 ay -+ am1 anm
G=|. "0ttt (100)
0 0 -+ 0 am
and
1
xM
x 2
Xeo=| % |. (101)
(m
xim

It is obvious that G is non-singular since det(G) = [[;%; &y # 0. Therefore, for fixed pair
(z,y) € 8™ x 8™, we have

P(Zis1 =y|Zk = 2) = P(Xjp1 = G y| Xy, = G o). (102)
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Now, assume that G~z = (ﬁi% ff%---ﬁfvm))) and G~ ly = ( (1) By )) Then,
from (101)) and (102), we have

P(Zir = y| 20 = @) = (ﬂ {xis = =4} ) (103)
=[P =47 !X“ @ﬁ”) (104)
= H 0,8, (105)

where (), is the transition probability of the Markov chain [. It follows that {Z;}72 , is a 1-order
Markov chain. It is easy to see that {Z;, } 72 ; has stationary distribution if all the Markov chains

{X ,il) }7 | have stationary distributions.

Now, as Subsection to derive generalization error bounds for the Markov chain { X, }5° ;, we
can use the following arguments. For all f € F and by setting f(21,22," -, zm) 1= f(21) where
f:8™ — R, weobtain f(GXj) = f(Y) and

n

721{f <o}_321{f(c;xi) <0} (106)

i=1

Hence, by applying all the results for 1-order Markov chain {Z,, }° ; where Z,, = GX,,, we obtain
corresponding upper bounds for the sequence of m-order Markov chain { X, }2° ;.

A Proof of Lemmal(ll

Before going to prove Lemmal[I} we observe the following interesting fact.

Lemma 18. Let {X,,}22, be an arbitrary process on a Polish space S, and let {Y,}5% 1 be a
independent copy (replica) of { X, }52 ;. Denote by X = (X1, X9, -+, X,), Y = (Y1,Ya,---, Yy),
and F a class of uniformly bounded functions from S — R. Let € := (1,9, - ,€,,) be a vector of
i.i.d. Rademacher’s random variables. Then, the following holds:

n

ZEZ z)—f(Yé))m :EX,Y|:SUP z}

E. [EX Y {sup sup
€ =1

fer

o) - s aon

Remark 19. Our lemma generalizes a similar fact for i.i.d. processes. In the case that {X,,}°2
is an i.i.d. random process, holds with equality since Pxn yn (21, %2, ,Tn,Y1,Y2, s Yn)
is invariant under permutation. However, for the Markov case, this fact does not hold in general.
Hence, in the following, we provide a new proof for (107), which works for any process { X, }°2 by
making use of the properties of Rademacher’s process.

Proof. Let g(x,y) = f(z) — f(y) and G == {g : S xS = R : g(z,y) = f(x) —
f(y) forsome f € F}. Then, it holds that
H (108)

E. [Exy [sup (Xi) — f(%2) Z&g (X, Y:)

fer

geg
:tSEI S [llzl[g(‘(‘l?)i) g()i’4(2)f:1 lelZ < 1.

For all j € [n], denote by
=\, (109

and

en, = {ei i € N} (110)
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Now, for each j € [n], observe that ¢; is independent of X{', Y|, ;. Hence, we have

|

Eep xp vy [sup
geG

i=1
1
= 5Bew, xp. v [SUP Z €i9(Xs,Yi) + 9(X;,Y;) ]
9€9g iENj
1
+ §E5Nj,X{L,Y1” l:SUP Z Elg(X’HK) - g(X]7Y}) :| (111)
g€eg ie./\/j
1
= 5Een, xp .y [Sup 3 eg(Xi Vi) + 9(X;,Y5) ]
9€9 iGN]’
1
+ 5o, xpp | Sup > eig(Xi, Vi) + 9(V5, X;) (112)
g

1EN;
where (I12) follows from g(X;,Y;) = —g(Y;, X;).

Now, by setting €; := —¢; for all ¢ € n. Then, we obtain

|

Eey, xpvp [Sup > eig(Xi, Vi) + g(Y5, X;)

geg

’iGNj
=By xpvy [sup| Y &g(Xi, Vi) + (Y5, X;) (113)
_g€g iENj -
=By xpvy [sup| Y eig(Vi, Xi) + g(Y, X;) (114)
L9€g iENj -
= BEey xpay | sUp| Y £ig(X5,Y)) + g(X5,Y5)| |, (115)
Lgeg iEN; i

where (I13) follows from (¢; : ¢ € N;) has the same distribution as (g; : ¢ € N;), (IT4) follows
from g(X;,Y;) = —g(Y;, X;) and & = —¢;, and (I13) follows from ¢(X;,Y;) = —g(Y;, X;) for all
i€ [n].

From (T12) and (T13), we have

EE?,X?,YF{SUP Zfig(Xi»Yi)} =E5NJ,X1L,Y1”{SUP > Eig(Xi%)Jrg(Xj’Yj)} Vj € [n].
9€9 1=y 9€9 1ien;
(116)
It follows that
Een xp vy {SUP Z&‘g(Xi,Yi) }
9€9 155
n—1
=Ent xpyp [sup D eig(Xi V) + g(Xa, V) ] (117)
9€6 | 4
n—2
1
= B xp oy [i‘ég > Eig(Xi Vo) + g(Xno1, Yao1) + 9(Xn, Ya) ]
- i=1
n—2
1
+ SE n-2 yn Yn[sup Zag(xi,m—g(Xn_l,Yn_1>+g<Xn,Yn>} (118)
2 &1 Aty g p
n—2
1
= B xp oy [i‘ég > Eig(Xi, Vo) + g(Xno1,Yao1) + 9(Xn, Ya) ]

i=1

15



n—2

1
+ 7E n—2 Xnyn |:Sup
2 &1 AN ge6 ;

€i9(X:,Ys) + 9(Yn—1, Xn—1) + 9(Xn, Yn)

}7 (119)

where (I17) follows from setting j = n in (I16), and (T19) follows from ¢(Y,—1,X,—1) =

_g(Xn—17 Yn—l)-

Now, for any fixed tuple (71, 7~ el 1) € S*71 x 81 x {—1,1}"~!, observe that

n—1 ,n—-1 _n—-2
PXn7Yn|X’1!L717Y17L7176‘;1.72 (mn,yn|x1 s Y1 y €1 )

= XMXI“I(xn|‘r?71)PYn\Y1"’l(yn|y?71)
= PY,L|Y1"*1($n|$?7l)Pxn\x;*1(yn|y?71)

_ n—1
= PYMX"‘Yln_17X{L_1’ET_2(xn,yn\xl VYT, E]

On the other hand, we also have
-1 . n—-1 _n-2
PX'ln.717Y1n71,8'{1.72(x? ,y? ,E? )
-2 - -1
= PE;L—Q (E;l )PXin.—l (1‘711 I)Pyln—l (y? )
= Pon2(e7 ) Pyn1 (2771 Py (377 )

_ n—1 n—1 _n—2
= Yln—lyx'ln,—l’g?,—Q(xl YT el T,

Hence, from (122)) and (123), we obtain

n ,n _n—2
PX;L,Yln,a?—z(xlvylvgl )

o n—1 n—1 _n—2 n—1
= X;—lyln,—lsT,—Z(xl JYT T ET )PXnYn‘Xln_lyln_lsT,_z(xn,yn|x1

n n—1 _n—2

p— 71 n
= ylnﬂx;tflﬁyﬁ(xl Y1 & )Pyn,xnm"*l,xrl,a?*(mmynml

— n ,n n—2
= PY1n7XI17€';L72 (ml’yl ,61 ).

Now, from (128), we also have

Pxp yn(zt,y1') = Pypxp (27, 97)-

It follows from (129) that
J— n n
Px, v, 1 (Tn—1,Yn-1) = ) Pxp v (27, 97)
n—2 mn-—2
Ty 'Yy s TnyYn
p— n n
= E PYlnXT’(x17y1>
et 2yt e yn

= PYn—lxn—l(‘r’ﬂfl) ynfl)«
Hence, from (128)) and (132), we have

PX”,Y,L,Xf—z,Yl"—2,a;”’—2|xn,1,yn,1 (mn, Yn, $?727 y?ﬁ» 671172|xn717 yn71>
B PXIL,YI",E;L_2(CE??y{l7€?_2)

Px, v, (Tn—1,Yn—1)
_ Prpxper2 (et of )

PYnflxn—l (l‘n_l, yn—l)

_ n—2 n—2 _n—2
—PX”,YH,X?*Q,Yl“”,s’f”\Xn_l,Yn_l(ynvzmyl 215 Yns

16

11 1 n72).

(120)
(121)
(122)

(123)
(124)
(125)

— n—1 _n-—-2
vyl 751 )

(126)

n—1 _n—2

71,91 a€1 )
127)

(128)

(129)

(130)

(131)

(132)

(133)

(134)

(135)

Too1).  (136)



From (T36)), for each fixed (z,,—1,yn—1) € S x S, we have
n—2

Y eig(Xi, ) + (Y1, Xpa)

i=1

E6;L727X1L727Y1n72,Xn7Yn |:Sllp

+ g(Xna Yn) ’Xn—l =Tp-1,Yn1= yn—1:|
n—2
= E€QL72’XII'721YIH727X"’YH |:Sup Z €i9(Xi,Ys) + 9(Yn—1,Tn—1)
1=1
+ g(Xna Yn) ‘Xn—l - xn—layn—l = yn—1:|
n—2
=E.n-2 yn-2yn-2 x y, {Sup > eig(Yi, Xi) + 9(yn—1, 20 1)
=1
+ g(Yru—Xn) Ynfl = Tn-1, anl = yn1:| (137)
n—2
T A L PO E RORSTER
=1
+ g<Xna Yn) Yn—l = Tn-1, Xn—l = yn—1:| (138)

where (I37) follows from (I36), and (I38) follows from the fact that g(x,y) = —g(y, z) for all
z,y €S xS.

From (138)) and (132)), we obtain

n—2

Z Slg(Xu}/l) + g(Yn—laXn—l) + g(Xnv Yn)
i=1

E6Y72 7XIL 7Y1" |: Sup

geg
n—2
=E.n2 xp yp [sug Z £i9(Xi,Y3) + 9(Xn_1,Yno1) 4+ 9(Xn, Yy) ] ) (139)
9e9 1 i=1
From (T19) and (139), we obtain
Eer xn vy {sup ZEig(Xi,Yé) }
9€9 155
n—2
= Es?’2,X{‘,Y1" |:§1€1p Z Sig(Xiv Yz) + g(Xn—h Yn—l) + g(Xm Yn) :| . (140)

i=1
By using induction, we finally obtain

n
Eer xn vy [Sup ZEiQ(Xu Y;) ] =Exp yr [SUP 9(Xi,Y;)
9€9 135 9€9 1:3

or equation (T07) holds. O

n

}, (141)

Next, recall the following result which was developed base on the spectral method [6]:

Lemma 20. [7) Theorems 3.41] Let X1, Xo,--- , X,, be a stationary Markov chain on some Polish
space with Ly spectral gap ) defined in Section 2.1 in the main document and the initial distribution
v € Ms. Let f € F and define

1 n
Snno(f) == F(Xjino) (142)
j=1
for all ng > 0. Then, it holds that
2
oM 64M2 || dv
E[Sn,no(f) — EL[£(X)] } ey R e v it IS
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In addition, we recall the following McDiarmid’s inequality for Markov chain:

Lemma 21. [/0, Cor. 2.10] Let X := (X1, Xa,- -+ , X;,) be a homogeneous Markov chain, taking
values in a Polish state space A = S X § X - -+ X S, with mixing time tyix(¢) (for 0 < e < 1).
—_— ———

n times

Recall the definition of Ty in Eq. (3) in the main document. Suppose that f : A — R satisfies

Fo) = fly) <D eit{m # yi}

i=1
foreveryx,y € A, for some c € R"}. Then, for anyt > 0,

2
x [|£(X) —E[f(X)]| > ¢] < 2exp<— 2;)

llcl|3Tmin

Now, we return to the proof of Lemmam

Proof of Lemmall] For each f € F, observe that

1 n
PMCERY KEHET

= %Zf(Xi) —E[f(Xi)] + e D E[f(X0)] - /SW(m)f(:c)dx.
i=1 i

On the other hand, we have

2
< \[E{[snatn) - Bolr0)] |
< 2M n 6402 dv
“\Vn(d-X)  n2(1-XN)?|dr 5
= Ana
where (I50) follows from Lemma[20|with ng = 0.
E[||[Pn — Pl| ]
An.
<z 300 sl

On the other hand, let Y7,Y5,--- , Y, is arepllca of X1, X5, -+, X,. Itholds that

< | 32 00 -]
x| sup igf(Xi) 1ol
= 5xsup [ [ 2_: ) - ]|
< Ex EY[?EE %if(Xi) - f(Y3) ”

(144)

(145)

(146)

(147)

(148)

(149)

(150)

(151)

(152)

(153)

(154)



Now, by Lemma T8]and the triangle inequality for infinity norm, we have

E{;gg iznjf(Xi)—f(Yi)] =E5Ex,y{Hi§:€i(f(X -
i=1 i=1
< EEEXHii&(‘f(Xi))HJ JFEEEY{ ;zn:&:(f(y
— B[P, _

where (T57) follows from the fact that Y is a replica of X.
From (131)) and (T57), we finally obtain
E[||P. — Pl 2] < 2E[||PR]|7] + A

Now, by using the triangle inequality, we have

s

E[|IPYA] = EXE[sup

e I
O R

i=1

LS (7% — 1(v2) H [bup

<Exvy,e [ sup

feF|n fer
1 n
= Exy [;gg - Z (f(X) = f(Y2)) H []S}Elg

where (T63) follows from Lemma|[T8]

Now, we have

Ex.y [;gg jl; (F(X0) — fm))H
— Exvy {?‘23 711_1 (f(Xi) = Pf) = (f(¥i) - Pf)) ]
< EXE[;EE Tlliz:;f(Xz) —PfH +Ey. bgg :1
= 2EX€[;2§ ! ilf(Xi) —PfH
= 2E[||P, — P| #].

On the other hand, by using the triangle inequality, we also have

n

]Ebtelg E;&EY[J((Y;)] ]
<= [} e eriso) B0 | e[|

19

o,

],

Z€7EY
Z& EY

Z &‘Z]EY
Z EZEY

]

(155)

(156)

(157)

(158)

(159)

(160)

o]

(161)

(162)

(163)

(164)
(165)

(166)

(167)

(168)



Now, observe that

E [ sup
fer

% ZsﬂEw[f(Y)]H < <sup ‘Eﬂ[f(Y)H)EE [Z % ZE]

i=1

In addition, for each fixed (e1,€2, -+ ,&,) € {—1,4+1}" and f € F, we have

n

LS (B )] - Bl
i=1
< 18| > ai (/) - ELLA))
= By [lo- (V).
where
9:(y) =) _ei(f(y) —E[f(Y)]), VyeR"™

Now, for all x,y € b", we have

ge(X) - ge(}’) = Zfi (f(xi) - f(yi))

i=1

< 315 - £

< Z 2M1{x; # yi}.
i=1
Hence, by Lemma[21] we have
IP)Y HgE(Y)‘ Z M\/ 2Tminnlog n] < g
n

It follows that
Ey HgE(Y)H < ]Ey[|g5(Y)|||gs(Y)| < M\/2Tminnlogn}
+ 2nMPy Hgs (Y){ > M~/27minn log n]

2
< M\/QTminnlogn—i—QnM()

n
= M+/2mminnlogn + 4M,

(169)

(170)

(171)

(172)

(173)

(174)

(175)

(176)

77

(178)

(179)

(180)
(181)

(182)

where (T80) follows from the total law of expectation and [g<(y)| < Y1 | f(yi) — Ex[f(Y)]] <

2nM forall y € R".

From (T74) and (I82), we have

n

1 Zsi(IEY[f(Yi)] — E,,[f(Y)])‘ < ;(M\/%'minnlogn + 4M)

n -
=1

20
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forall f € F,(e1,e9, - ,&n) € {—1,+1}"™
From (183)), we obtain

1 1
E. [ sup |~ > e (By[f(Y)] - E<[f(Y))) H <= (Mx/27'minnlogn + 4M) : (184)
fer =1
From (168), (172), and (184), we have
1 n
E| sup |— g Evy[f(Y; H
s e lr )
1 M
< <M\/27'minnlogn+4M) + —. (185)
n vn
From (163), (167), and (I83), we obtain
1 M
E[”PSH}'} < 2E[||Pn - P”]—‘] + n (M\/ 2Tminnlogn + 4M> + %» (186)
and we finally have
1 -
E[||P. = Pll7] > SE[IP?]7) - An. (187)
O

B Proof of Theorem

The proof of Theorem [2]is based on [2]. First, we prove (€). Without loss of generality, we can
assume that each ¢ € ® takes its values in [0, 1] (otherwise, it can be redefined as ¢ A 1). Then, it is
clear that p(z) = 1 for < 0. Hence, for each fixed ¢ € ® and f € F, we obtain

P{f <0} < Po(f) (188)
< Pop(f) + |1Pn — Pllg, (189)

where
(P::{go-f:fe]:}. (190)

Now, let g(x) = supcg, |% Yoy fla) — Pf|. Then, for all x # y, we have

n

Zf ;) Pf‘sup

l9(x) = g(y)| = 2 s | ;f(yi) - PfH (191)
< sup i;f(x Pf‘ ' Zf vi) PfH (192)
< s ( ﬁ:f(wi) - Pf) - (n > sl - i)l sy
< swp |0 Zf () = f(ys) (194)
< s Z; (i) — f i) (195)
< igl{x £y, (196)

Hence, for ¢ > 0, by Lemma@with we have

{||P Plg, > E[||P, — Pllg,] +ty/ r;f:“}<2exp(—2t?). (197)
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Hence, with probability at least 1 — 2exp ( — 2t?) forall f € F

Tmin
P{f <0} < Pao(f) + E[|[P. — Plig,] + ty/ o (198)
Now, by Lemmawith M =1 (since supscg,_ || flloc = 1), it holds that
B[ 17 = Pl | < 220172, ] + Auly,—y (199
= QE[ n*lzaaxi } + B,.. (200)
i=1 9o

Since (¢ —1)/L(¢p) is contractive and ¢(0) — 1 = 0, by using Talagrand’s contraction lemma [3} [L1],
we obtain

E. < 2L(p)E.
e

(201)

n
n1 E €i0x,
i=1

n
n1 Z €ilx,
i=1 F
= 2L(p) R (F). (202)
From (197), (198), (200), and (202), with probability 1 — 2exp ( — 2¢?), we have for all f € F,

P{f <0} < Poo(f) + AL(¢)Rn(F) + ¢ Tr;“;“ + B,. (203)
Now, we use (203) with ¢ = ¢}, and ¢ is replaced by ¢ + v/log k to obtain

]P’(Elf € F:P{f<0}> ;x;% Pooi(f) + 4L(¢r) R (F) + (t + \/log k) / T‘:“ + BnD

<23 exp (—2(t+ /logk)?) (204)
k=1

<2 kexp (- 2t%) (205)

= 5 P (—2t%), (206)

where (206)) follows from
™ = i k2. (207)
6 =

Next, we prove (7). By the equivalence of Rademacher and Gaussian complexity [12], we have

E n*lzsiaxi < \/ZIE n*lzgiaxi (208)
i=1 9o i=1 9o
Hence, from (200) and (208), we obtain
E{Hpn - P, ] <V2rE|ln"' Y gidx,||  + Bn. (209)
¢ i=1 [
Now, define Gaussian processes
n
Zi(f,0) i=on"2Y " gi(p o [)(X0), (210)
i=1
and
Zo(f,0) = Lip)n > gif (X,) + oy, (211)
i=1
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where o = +1 and g is standard normal independent of the sequence {g; }. Let E, be the expectation
on the probability space (€24, 24, P) on which the sequence {g;} and g are defined, then by [2| [L1]],
we have

E, [sup{Zl(f, o):feF,o= il}} <E, [sup{Zg(f, o):feF, o= il}]. (212)
On the other hand, it holds that
Eylln~ 12> gidx,| =E, [nl/Q sup Zgih(Xi)} (213)
i=1 Go heGy =1
:]Eg[sup{Zl(f,a)  f e]—",a:il}} (214)

where G, := {o(f), —p(f) : f € F}, and similarly

L(9)Eg|n™"2> " gidx, H +Elg| > E, | sup{Za(f,0): f € F,o0 = j:l}} (215)
i=1 F L

From 212)), (2T4), and T3], we have
n
n! Zgiaxi
i=1

By combining (209) and (216), we obtain

Eg < L(@)Eg

Ge

n_IZgiéxiH +n_1/2E|g|. (216)
i=1 F

BllP.-Plg,] < VER(LE|

nt Y gidx, H } + n1/2E9|> +B,. (@217
i=1 F
Hence, from (198), (209), and (Z17), we finally obtain (7).

C Proof of Theorem

We can assume, without loss of generality, that the range of ¢ is [0, 1] (otherwise, we can replace ¢
by @ A 1). Let 6 = 27% for all £ > 0. In addition, set ® = {¢y : k > 1}, where

orlx) = {ZEZ?:)’I)’ ; i 8’ . (218)

Now, for any § € (0, 1], there exists k such that § € (i, dx—1]. Hence, if f(X;) > 0, it holds that
F(X)/6k > f(X;)/6, so we have

er(f(X3) = w(f(;:i)) (219)
< so(f(?i)), (220)

where (220) follows from the fact that ¢(-) is non-increasing.
On the other hand, if f(X;) < 0, then f(X;)/dk—1 > f(X;)/J. Hence, we have

en(f(X)) = @({siXi)) 221)
< so(f(éX)) (222)

where (220) follows from the fact that ((-) is non-increasing.
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From (220) and (222), we have

1
Pogi(f) =~ D on(F(X0)) (223)
i=1
n 1)
_ pnso(f), (225)
1)
Moreover, we also have
1 2
— <z 22
A (226)
and
log k = log log, (% < loglog, 26 . (227)
k
Furthermore, observe that
dpr ()
L(p.) =s —_ 228
(¢r) Sup |\ = (228)
= sup do(@/0k) 1{z >0} + ’d‘p(xf’“‘l) 1{z < 0} (229)
rz€eR X
L(y)
_ 2
~ min{dg, dk—1} (230)
_ L) (231)
Op
2
< SL(p). (232)

By combining the above facts and using Theorem 2] we obtain (8) and (9).

D Proof of Theorem

Lete > 0 and § > 0. Define recursively

ro =1, rk+1 = Cy/rke A1, Y=y — (233)

Tk

some sufficiently large constant C' > 1 (to be determined later) such that ¢ < C~*. Denote by

8o =0, (234)
O := (5(1—’70—"'_')%71)7 (235)

1
5k,% = 5(5k + 5k+1)7 k> 1. (236)

For k > 0, let ) be a continuous function from R into [0, 1] such that p(u) = 1 for u <
(Sk’%,@k(u) = 0 for u > 6y, and linear 6,@’% < u < 6. For k > 1 let ¢} be a continuous function

from R into [0, 1] such that ¢} (u) = 1 for u < 6k, ¢} (u) = 0 for u > 6;_; 1, and linear for
o <u< 5k71,%'
To begin with, we prove the following lemma.

Lemma 22. Define Fo := F, and further recursively

Fiur = {f € Fot P{f < 0,y) < T80 } @37)
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For all k > 1, define

Gri={ewof:feF}, k>0 (238)
and

G, = {¢lof:feFu} k> 1. (239)

Assume that

B®) = {nPn  Plloe, <EIP. - Plo,, + (Kayiie + Kac) ﬁm}

ﬁ{||]3n—]3|gllc <E|Pn—Pg,;—‘r(KQ\/’r‘kE-‘rKgE)\/Tmin}, k>1, (240)

and
N
Ey:=[)EW, N >1. (241)
k=1
Then, it holds that
2
P[ES] < 4N exp ( - ";) (242)

Proof. The proof is based on [2 Proof of Theorem 5].

For the case Cy/e > 1, by a simple induction argument, we have 7, = 1. Now, without loss of
generality, we assume that C' ﬁ < 1. For this case, we have

= o2 2 Y 27 gpm (D) (243)
= CAm e (244)
= (Ve =2, (245)

From (243)), it is easy to see that 7441 < ry for any k& > 0.

Now, observe that

Zk;% N (e (NG SRtV L (246)
= VB (VR (R (eve ] e
<07 [(@Va " + (Ve + (VR (<Cﬁ>“>’ﬂ @48)
<c! i ((evey ™)' e

<o NOevR (1-(cve)r ) Tt <

fore < C~*,C > 2(25 —1)"! and k < log, log, e, where (248) follows from i + 1 < 27 for all
i > 1and C4/e < 1. Hence, for small enough ¢ (note that our choice of ¢ < Cc—4 implies C'y/z < 1),
we have

(250)

N

1
otmd A<y k21 (251)

Therefore, for all k£ > 1, we get 6, € (§/2,9). Note also that below our choice of k will be such that
the restriction k < log, log, e~ for any fixed e > 0 will always be fulfilled.

From the definitions of (238) and (239), for k£ > 1, we have

sup Pg* < sup P{f <6} < sup P{f <d,_11} < <, (252)
9EG fEFk fEF 2 2
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and

sup Pg® < sup P{f <61 1} < & <. (253)
g€, FEFN 2 2

Since 1o = 1, it is easy to see that (252) and (253) trivially holds at & = 0.
Now, by the union bound, from (240), we have

P[(E(k))c] < ]P)PP,L — PHg,%1 > E||P, — PHg,ﬁ1 + Koy /rr_16 + K3€:|

+ P|:||Pn — PHg]/‘;l > ]EHPn — P||glf€71 + Ko\ /Tr_1€ + K35:| . (254)

In addition, by similar arguments which leads to (197), we have

Tmin
P{IP. = Ploy > E[IP, = Plo._) + 0y 22} <200 (= 22). @59

and

P{Pn — Pllg;_, > E[||P, — Pllg;_,] + uﬁ} < 2exp (—2u?). (256)
By replacing v = (Kgm + Kgs)\/ﬁ to (233) and (236)) for K5 > 0 and K3 > 0, we obtain
P{IP. = Ploy > EIP, = Plo.) + (Kayicie + Kae) o |
< 2exp ( — 2n(Ka/Tr—1€ + K3)2> (257)

and

P{Pn = Pllg,_, 2 E[||[Pn = Pllg;_,] + (K2y/ri—1 + Kse) \/Tmin}

< 2exp ( —2n(Ko\/Th_12 + K35)2>. (258)
Now, since 0 < C'v/e < 1, by (243), we have
rro1 = (CVE)272 ) > o2 (259)
Hence, from (254), 257), (258), and (239), that
P[(E™)°] < 4exp ( — 2n(Ka/Tr_1e + K35)2> (260)
< 4exp ( —2n(K,C + K3)252> (261)
ne?
§4exp(2>, Yk > 1 (262)
if we choose K5 and K3 such that
1
KoC+ K3 > 3 (263)
Then, by the union bound and (262), we have
2
P[ES] < 4N exp (— ";) (264)
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Lemma 23. Lete > 0and 0 < o < 2 such that

1 \#s  [2]
e > () v/ 28" B (265)
noe

n

for all large enough n, where B,, is defined in (3). Denote by L := {f € F : P,{f < 6} < ¢}.
Then, on the event En N L, we have:

* (i)supper, Pl f < 0k} <1, 0<k<N
and
s (i)VfeLl P{f<dé}<e = feFn
for all positive integer N satisfying
N < %logg logoe™  and  ry >e, (266)

and n is some implicit positive constant.

Proof. We will use induction with respect to N. For N = 0, the statement is obvious. Suppose it
holds for some N > 0, such that N + 1 still satisfies condition (266) of the lemma. Then, on the
event En N L we have

(4) sup P {f <0k} <mp, O0<k<N (267)
fEFK
and
(il) VfeF P{f<dé}<e = feFn. (268)

Suppose now that f € F is such that P,{f < §} < e. By the induction assumptions, on the event
E defined in (241)), we have f € Fy. Because of this, we obtain on the event E 44

P{f<oni}t=P{f <ona}+(P—P){f <on1} (269)
S Po{f <on}+ (P =P){f <oy} (270)
<P {f <on}+ (P —Pu)(en(f)) (271)
< PAf <N} +IP = Pullgy 272)
<e+E|P, - Plgy + (Kay/rne + K3€) y/Tnin- (273)

For the class Gy, define

Rn(QN) = n_l Z&i(SXi y (274)
i=1 Gn
where ¢; is a sequence of i.i.d. Rademacher random variables. By Lemmal[T} it holds that
0
E[||P. —Pllg, ] < 2E[|Pllgy] + B (275)
= 2E[R,(GN)] + Ba. (276)
From (276)), we have
E[[P. = Plg, ]
< 2E[Rn(9n)] + B 277)
= 2E[1{EN}E. [Rn(Gn)]] + 2E[1{E5}E. [Rn(GN)]] + Ba. (278)
Next, by the well-known entropy inequalities for subgaussian process [12]], we have
E. [Rn(gN)] < inf E/|n7! Zsjg(Xj)
9gEGN =
(2sup,eg Py,,gz)l/2
n IEEN 1/2
= /0 Hy? (G u)du (279)

27



for some implicit positive constant 7 > 0.

By the induction assumption, on the event E N L,

n n 2

inf E.[n"! g(XH)| < inf |E.|n-1 g(X 280

nf Eeln ;m( )| < jnf || Eeln ;ajm (280)
1

< — f VP, 281

B \/;i gigérv g (281)

<7 mf VP {f <N} (282)

< 5 (283)
n

<e, (284)

where (283) follows from inf je 7, Po{f < dn} < infrery Po{f <8} < P {f < 4§} <ebythe
induction assumption with f € Fy.

We also have on the event Ey N £, by (252), it holds that

sup P,g? < 5up P {f <on} <rn. (285)
gelgn feF,

The Lipschitz norm of ¢j_1 and ¢}, is bounded by

2 _
= 201 — 00T =207 = T’“E ! (286)
which implies the following bound on the distance:
2 —1 - 2
dp, o(on o fion0g) =n"" > Jon(f(X5)) — en(9(X,))| (287)

j=1
< (32 & 00 (288)
> 5 c Pp,2 »9)-

2)1/2

2supg€gN ng
1/2
/ dp 2<gN7 )

Therefore, on the event Ex N L,

(2rn) /2 5
< / Hy?, (]-‘ f”) u (289)
nJo n’ 21/
< 2¢/D TN o/4 7"]1\,/2 /4 (290)
“\1-a/2/)\ ¢ \/ﬁéa/ﬂ
- 21/2+a/4\/7 2+a
= 1—a/2 6&/4 o (291)
21/2+a/4\/ﬁ
_ (1 — ) e, (202)
where (292) follows from the condition (263)), which implies that
< 293
ni/2gajz =< 7 (293)
From (279) and (292), we obtain that on the event Ey N L,
R 21/2+a/4 D
E.[Rn(Gn)] <e+ 2D TNE. (294)

1—a/2
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On the other hand, we also have
E.[R,(Gn)] < 1. (295)
Hence, by combining with (294) and (293), from (278)), we obtain
E[([|[Pn = Pllg, )] = 2E[H{EN}E[R0(Gn)]] + 2E[1{ERYE: (R, (Gn)]] + B (296)

91/2+a/4p /T 2
< 2[8 + 7](1 — aq/gF)\/rNs] + 8N exp ( n;) + B,.

297)
Now, by the condition (263)), it holds that
€ > By, (298)
and
2
N
80N exp (— ”6) < SN (299)
2 n
8log, log, € (300)
- n
8logy logy 4 / 57es
< : (301)
n
<y 22087 (302)
n
< 7, (303)

for n sufficiently large, where (299) and (B0T) follows from € > /2°™ (300) follows from (260),

and (302)) holds for n sufficiently large.

From (297), (298), and (303), it holds that

B[P, - P[] gz[s+n(W> rNs] o (304)
=4e + 277(%?) TNE. (305)
In addition, we have
ry = (CVE)21=27") > o2, (306)
or
e < % (307)
Hence, from @ and @b we conclude that with some constant 77 > 0,
E[||P. - P, ] < 0vrNe. (308)
From 273)) and (308), on the event Ex 1 N L, we have
P{f <0y} <e+iV/rne + (Kov/FNe + K3e)y/Tmin (309)
< %C rNE (310)
=rn+1/2, (311)

by a proper choice of the constant C' > 0, where (3T1)) follows from (307). This means that f € Fn 41
and the induction step for (ii) is proved.
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Now, we prove (i). We have on the event En 1,
sup P {f <dny1} < sup P{f <dny1}+ sup (P, —P){f <ons1}

fEFN+1 JEFN+1 FEFN+1
< sup P{f <énga}+ [P — Plgy,,
feFNt1

<rnt+1/2+E||P, — P”g}v+1 + (KQ\/TN+1€ + KSE)\/Tmim

By Lemmal[T] we have
E|p, - 7]

’
INt1

< 2B [1{EN}E: [Rn(n1)]] + 2B [1{ERYE: [Rn(n1)]] + Bn

< 2]E[1{EN}EE [E”(gg\/’-&-l)]] +2E [1{E§:v}EE [Rn(ggvﬂ)]] +e,
where (316) follows from the condition (263)).

As above, we have

EE[Rn(gg\url)] < lnf E
9eg

Zfﬂg
1/2

(2supgeg/ Png?)
/ ;. (Gasu)du.

dp, 2

Since we already proved (i), it imphes that on the event En41 N L,

n n 2
inf [E. nt ZEjg(X inf Ec|n—! Zgjg(X])
9E€GN 11 = 9€9N 11 j=1
1
< — inf +/P,g?
\/ﬁ 9€GN 11 "

IA

By the induction assumption, we also have on the event E'n 1 N L,

sup  P,g° <
9€G N 11 FEFN+1

The bound for the Lipschitz norm of ¢j, gives the following bound on the distance

d%ﬂmz (%09\{+1 o f; ¢3V+1 © f) =n"! Z “P§V+1 © f(Xj) - 903V+1 © Q(Xj)|
j=1

< (2 /)N 2d2
=\s\V = P,,,,Q(fvg)'

Therefore, on the event En4q N £, we get quite similarly to (292)),

ey P
ﬁ/o + Hdl/%a(gﬁv_i_l;u)du
)12
< L[ e (R,
= % o dp,, 2 2\/7
- 21/2+o¢/4\/5 v a/4 TJIV/Q_,
- 1—a/2 5 V/noe/?

21/2+a/4\/§
B <1—a/2) e

2
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(312)
(313)

(314)

(315)
(316)

(317)

(318)

(319)

(320)

(321)

(322)

(323)

(324)

(325)

(326)

(327)

(328)



We collect all bounds to see that on the event Ex 41 N L,

sup  Po{f < 0ni1} < N 4 5 /ine (329)

fEfN+1

for some constant 77 > 0.

Therefore, it follows that with a proper choice of constant C' > 0 in the recurrence relationship
defining the sequence {7}, we have on the event En 11 N L

sup  Po{f <dnp1} < Cyrye=rn4a, (330)
fG}_N+1

which proves the induction step for (i) and, therefore, the lemma is proved. Finally, using Lemma [24]
and the same arguments as [2} Proof of Theorem 5], we can prove Theorem 6]

Lemma 24. Suppose that for some o € (0,2) and for some D > 0 such that the condition (19)
holds. Then for any constant ¢ > C?, for all § > 0 and

2
24
e> <1> vi/2en g (331)
noe n

and for all large enough n, the following:

P[er}':Pn{fgé}ge and P{fgg}zgs]§4/7710g21og25_1exp{—n€2}

2
(332)
and
§ . ne?
P|I3fe F:P{f<é6}<e and P, f§§ > &e| < 4/nlogylogy e exp 5
(333)

where 1) is some constant.
Proof. Observe that

P[Efe]—':Pn{fgé}gs/\P{f§5/2}2§g}

<P -{Hf eF AP {f <o} <e}n{P{f<d/2}> gg}} N EN} +P[ES] (334)
<P|{3f e Fx O ALPU < 0/2 > €2 | 4+ PIES) (339)
<}P’_{Elf6]-"NﬂL}/\{P{f§5N} 255}}0]5‘4 + PIES] (336)
gIP’-{HfE}'NﬂL}/\{P{fS(SN}>rN}}ﬂEN- + P[EY] (337)
— P[EY] ' (338)
< 4N exp ( — 71;2) (339)
< 4/n(logy logye™") exp ( - nj), (340)

where (333) follows from (ii) in Lemma [23] (337) follows from ry < (C+/€)? < &e for some
constant £ > C?, and (338) follows from (i) in Lemma 23} and (340) follows from the condition
([266) in Lemma 23] which holds for n sufficiently large. O

Now, we return to prove Theorem [6]
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Proof of Theorem[6] . Consider sequences §; := 2_-7%, and

1
1 2+a’
Ej = | —(==7 s j >0,
J <n5;“ ) J=

where

Then, we have
g = n(—=2)/495

Let
E:={3j>0 3feF:P{f<6}AP{f<5;/2}>&;}.
By Lemma[24] the condition (I9) implies that there exists £ > 0 such that
S ne?
IP’[S] < 4/772 (1og2 log, 5;1) exp ( — 23)

Jj=0

s ny ..
< 4’ E _ 2j
< 4v ‘ (log2 log, n) _ exp[ 5 2 }

Jj=0 =0

ol
< v(log, log, 1) exp [ - n;}

for some v, v’ > 0. Now, since 8,,(v; f) € (0, 1], there exists some j > 1 such that
0n (7 £) € (85, 85-1]-
Then, by the definition of &, (v; f) in (T8), we have
Po{f <65} < Pu{f < on(: 1)}

< 4 /67 In—1+3
- J

=¢&j.

Suppose that for some f € F, the inequality C‘lgn(fy; f) < d,(y; f) fails, which leads to

on (7 f) < 4715n(7§ f)
6]‘_1
T
Then, if ¢ > 2", from the definition of &, (7 f) in (T7), it holds that

PUr <o > P{r< 2t

IN

(341)

(342)

(343)

(344)

(345)

(346)

(347)

(348)

(349)

(350)
(351)

(352)
(353)

(354)

(355)

(356)

(357)
(358)

by choosing ¢ sufficiently large, where £ is defined in Lemma 24, From (338), it holds that

¢, (7 f) < 6n(; f) fails for some f € F to hold with probability at most P[£].

Similarly, we can show that the event &, (7; f) < (0, (v; f) fails for some f € F with probability at

most P[E].
By using the union bound, we finally obtain (20).
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E Proof of Lemma/(7l

Proof. Observe that
|Pu(f <y) = P(f <)

({f(X3) <y} —P(f(Xy) <y)) +

1 i=1

3

Now, let
fu(z) == 1{f(z) <y} - P(f(Xn) <y),
forallz € Sandn € Z7. Itis clear that
| frllos < 1.

1 n
= ;fz(l'z)

Now, let

Then, we have

1

|9(x) = 9(y)| = ~

Z (fi(xi) - fi(%))’

i=1

IN

SIS (U @) < vy - 1) < )

1 n
; \

i=1
1 n
. Z i # yi}-
i

Then, by applying Lemma 2] it holds that
(X)) =ty /T‘“m} < 2exp (— 2t%).
; n

1 n
p{ E
n
i=1
On the other hand, for all y € R, let
fy(@) = 1{f(z) <y}

It is clear that supyeR | fylloo = 1. Hence, by Lemma | it holds that

22RO =)= P < )] = 2 3B 00 - B )

< VB,
where (369) follows from Lemma [20](with M = 1) and the Cauchy—Schwarz inequality.

From (359), (366), and (369), we have
Tmln
sup sup | Po(f < y) = P(f <y)| < By +1y/ =

fEF yeR
with probability at least 1 — 2 exp(—2t2).

IN

F Proof of Lemma

Let 6 > 0. Let ¢(x) be equal to 1 for z < 0, 0 for > 1 and linear in between. Observe that

Fy(y) = P{f <y}

<Pg0<f5 y)
SPnsﬁ(fay)+||P Pls.

< Fuy(y+0)+|[Pn—P|g .
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(359)

(360)

(361)

(362)

(363)

(364)

(365)

(366)

(367)

(368)

(369)

(370)

(371)

(372)

(373)

(374)



and

Foi(y) < P{f <y} (375)
<Pn<P<f5y) (376)
< Po(L52) +1p -l @)
< Fyly+0) + [P = P5._. (378)

Now, by applying Lemma 21| (see (I97)), we have

Tmin
P||P, — Pllg, > E[||P. — Pllg, | +1t/ - } < 2exp (—2t7). (379)

From (379), with probability at least 1 — 2 exp(—2¢?), it holds that

Tmin
|Pa = Plig, <E[IP.— Pllg,] +t (380)

n .

On the other hand, from Lemmal[T} we have
E[||P. — Pl | < 2E[|IP)]g,] + B (381)

From (380) and (38T)), with probability at least 1 — 2 exp(—2¢?), it holds that

Tmln
|1Pn = Pllg, <2E[|Pllg,] + Bn +t m (382)

From (374), (378), and (382)), with probability at least 1 — 2 exp(—2t?), we have

L(Fy, Fyn) < 6+ 2E[||POlg ] + Bo + 1,/ 222, (383)

n

Furthermore, by Talagrand’s contraction lemma [3, [L1]] for the class of function ¢(x) := p(z) — 1,
we have

E[HPSHQ } < ZE[ sup
s feEF ye[— M, M)

Z EPEA .7 4 H (384)

2 2M

—-E|n" " su + —E €; (385)
"0 [ feg } on ;

2 0 2M

< SENIPSIA + 5 (386)

Hence, by setting § := /4E[||PY|| ] + 4M /+/n, from (383) and (386), it holds with probability at
least 1 — 2 exp(—2t2) that

L(Fy, Fy.n) < 4\/E[||Pf2llf] +M/ﬁ+Bn+tﬁ. (387)

G Proof of Theorem

Fix M > 0. Since Fas € GC(P), we have
E(|P, = Pllz,] =0 as. n— oo, (388)
which, by Lemmal[l]with t = /Tog n,

1 -
E[||Pn = Pl 5, ] = SE[IP70] = An. (389)
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By taking n — oo, from (389), we obtain
E[|PY 7] — 0, (390)
E [ nt Z €i0x,
i=1

Furthermore, with ¢ = /logn, by Lemma@ we have

P{ sup L(Frg, Fy) > 4y/E[| P x] + M/ Vi + B +10gnﬁ}

or

] — 0, as n — oo. (391)
Fum

fEFM
2
SZeXp(fQIOgn) :E. (392)
It follows from (392) that
T min
S { sup L(F.z, Fr) = 4/E[| P =] + M/v/n+ By + logn, | 222 }
n=1 feFum n
1
<2y — <00, (393)
=1
Hence, by Borel-Cantelli’s lemma [13], B,, — 0, and (391), we obtain
sup L(F, s, Fy) =0, a.s.. (394)
feFum
Since sup ye 7 L(Fo, frr, Ffar) = sUpper,, L(Fn.p, Fr), from (394), we have
sup L(Fy, fos Fira) = sup L(Fy ¢, Ff) = 0, a.s.. (395)
fer fE€FM
Now, by [2]], the following facts about Levy’s distance holds:
sup L(Fy, Fy,,) < sup P{|f| > M} (396)
fer feF
and
sup L(mevafM) < sup Pn{|f| ZM} (397)
fer fer
Now, by the condition (29), we have
sup P{|f|> M} —=0 a.s. M — oo, (398)
fer
SO
sup L(Fy, Fy,,) =0, a.s. M — oo. (399)
feF
To prove that
lim limsup sup L(F, s, Fp f,,) =0, a.s., (400)

M—00 n—co feF
it is enough to show that
lim limsup bup P{lf|> M} =0, a.s. (401)

M—00 nosoco feF

To this end, consider the function ¢ from R into [0, 1] that is equal to 0 for |u| < M — 1, is equal to 1
for |u| > M and is linear in between. We have

sup Po{|f| = M} = sup PA{|f| = M} (402)
feF feF
< sup P,o(|f]) (403)
fEFM
< sup Po(|f|) + [|[Pn — Pllg (404)
feFm
< sup P{|f|> M —1} +[|P, — P|lg, (405)
fE€EFM
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where
G:={polf|: f€Fu}. (406)
Then, by using the same arguments to obtain (I97), it holds with probability 1 — 2 exp(—2t?) that

Tmll’l
1P = Pllg <E[|[Pn = Pllg] + /= (407)
< 2E[|PYlF] + A + ty) 22 (408)

Then, by setting ¢ = logn and using the Borel-Cantelli’s lemma [13], the following holds almost
surely:

1P, — Plig < 2E[| PCllg] + Ap + logny /222, (409)

3

Now, since p o f € p o Fyy, by @) and Talagrand contraction lemma [3}|12], we have
E[|P)lg] =0 as n— cc. (410)
From and (@10), we obtain
|IP, —Pllg =0 a.s.. 411)
Hence, we obtain (ii) from (i), the condition (29), and @TT).
To prove that (ii) implies (i), we use the following bound [[14]

‘ /_A; H(F — G)(t)’ < OL(F,G), 12)

which holds with some constant v = v(M) for any two distribution functions on [—2/, M]. This
bound implies that

|Pn — Pll7y = sup |P,f — Pf| (413)
fEFM
M
< sw | [ td(Fn,f—Ff><>\+M sup | P(f = M) — Pu(lf] > M)|
fE€EFM —-M fEFM
(414)
<w sup L(F; Ff)+M s |P(If| = M) = Pu(|f| > M)| (415)
fe€EFM
<wsup L(F 5, Ff) + M sup \P [f] > M) = P,(|f| > M)|. (416)
fer feF

Now, by Lemma with probability at least 1 — 2 exp(—2t?), the following holds:
sup sup |Pu(f <y) = P(f <y)| <t/ 4 \/B,. 417)
yER fEF M n

By setting t = v/log n and using the Borel-Cantelli’s lemma, from #17), we obtain

sup sup ‘P (f<y)—P(f<y)|—0, as. (418)
yeER feFm

Finally, from (#17), @18), and (ii), we obtain (i). This concludes our proof of Theorem[I0]

H Proof of Theorem

The proof is based on [2, Proof of Theorem 9]. Since F is uniformly bounded, we can choose M > 0
such that s = F. To prove the first statement, note that 7 € BCLT(P) means that

E[||P. — P|5] = O(n~'/?). (419)
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Now, from Lemmal(l} we have
1 ~
E[||Pn = Pl ] = SE[I1P]7] = An, (420)

for all t > 0. By applying @20), it easy to see that

E |: n_l i Ei(SXi
i=1

} =E[IP] 5] “21)
].'

<24, + 2E[||P, - P|| ;] (422)

< O(\/lorgln> (423)
since A,, = O (/') by (T).

Now, from Lemma@ for t = /logn,

min1 2
]P’{ sup L(Fy, Fy.p) >4\/E POl 7] + M/v/n + B, +\/Tn°g”}g712. (424)

feF
From [@23)) and (@24), it holds that
n O\ /4
IP{( ) sup L(F,, ¢, Ff) > D} —0 (425)
logn) jer
as n — oo for some constant ), or
logn L/4
sup L(F, r, Fy) = Op . (426)
feF n
Now, recall
s f-y .
G, =<po 5 —1:feF,ye[-M,M];. 427)

To prove the second statement, we use the following fact [2| p.29]:

4M
E-[IPllg,] < [/ H;}/f L (F5 u)du + \/QjL 1} (428)

for some constant d, which, under the condition (]3_7[) satisfies

1 /1 1 AM
E-[|Pllg,] Sd{w\/;+\/ﬁ<\/g+ 1>} (429)

Now, by Lemma|§|, it holds for all ¢ > 0 and 6 > 0 that

IP’{ sup L(Fy, Fyn) > 6 +E[[|P)llg, | + Bn +1ty/ Tf;j:“ } < 2exp(—2t?). (430)
Since E||n=t Y7 &

feF
= E[”PSHQJ <d| 10%5_“/2 + ﬁ(q/log 4 +1)], from @30),
for all t > 0, we have

logn __ 1 4M T,
P L(Fy, Fp,) > \ /672 4 —(y/log— +1 B, +ty /2
{;1611; (Fy, Fy, )_(5+d[ - ) +ﬁ< g — + )]—i— +t p

< 2exp (—2t%). (431)
Now, by choosing ¢t = v/logn and § = (log n)n_%%a, we have
2
IP{ sup L(Fy, Fy,) > v(log n)n_%l—a} <= (432)
feF n
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for some constant v and for n > N for some finite Ny big enough.
From (@372)), we have

o o 2
3 IP’{ sup L(Fy, Ff.) > v(log n)n—zia} <No+ Y 5 <oo. (433)
n=1 fer n=Ny n
Hence, by Borel-Cantelli’s lemma [[13]], it holds that
sup L(Fy, Fy,) = Op((logn)n™%%),  a.s. (434)

feF

This concludes our proof of Theorem[12}
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