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Abstract

An important goal of AutoML is to automate-away the design of neural networks on
new tasks in under-explored domains. Motivated by this goal, we study the problem
of enabling users to discover the right neural operations given data from their
specific domain. We introduce a search space of operations called XD-Operations
that mimic the inductive bias of standard multi-channel convolutions while being
much more expressive: we prove that it includes many named operations across
multiple application areas. Starting with any standard backbone such as ResNet,
we show how to transform it into a search space over XD-operations and how to
traverse the space using a simple weight-sharing scheme. On a diverse set of tasks—
solving PDEs, distance prediction for protein folding, and music modeling—our
approach consistently yields models with lower error than baseline networks and
often even lower error than expert-designed domain-specific approaches.

1 Introduction

Automated machine learning (AutoML) and neural architecture search (NAS) are often motivated by
a vision of democratizing ML by reducing the need for expert design on a variety of tasks. While
NAS has grown rapidly with developments such as weight-sharing [36] and “NAS-benches” [47, 49],
most efforts focus on search spaces that glue together established primitives for well-studied tasks like
vision and text [32, 26, 45, 25] or on issues such as latency [8, 13]. In this work, we revisit the broader
vision of NAS and propose to move towards much more general search spaces while still exploiting
successful network topologies. To do so we focus on expanding the set of operations, which is usually
fairly small; for example, that of the well-studied DARTS space has eight elements: a few types of
convolution and pooling layers [32]. The baseline approach for expanding this set—adding operations
one-by-one—scales poorly and will not result in new operations when faced with new types of data.

Our core contribution is a re-imagining of NAS operation spaces that drastically expands this set in a
principled fashion to include both standard operations as well as a wide range of new ones. To do
so we exploit the fact that most standard operations used in modern NAS return linear transforms
diagonalized by the discrete Fourier transform (DFT). Replacing the DFT matrices in the diagonal
decomposition by a more expressive family of efficient linear transforms known as Kaleidoscope or
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Figure 1: Diagram of our search space depicting a NAS method picking an operation for an edge in a
backbone network (left). Instead of choosing from a discrete search space, we use a relaxation based
on the convolution’s diagonalization by the discrete Fourier transform in which the DFTs are replaced
by K-matrices [10] K, L, and M (middle); these are the main architecture parameters of our new
search space over Expressive Diagonalization (XD) operations. This space contains most operations
considered in standard NAS and many other important operations in a variety of domains (right).

K-matrices [10] yields the set of Expressive Diagonalization (XD) Operations, which comprise a
large search space containing various types of grid-based convolutions and pooling, permutations,
transposed convolutions, certain kinds of graph convolutions, the Fourier Neural Operator (FNO) [30],
and infinitely many more. This broad expressivity reflects the key insight of our work: that many
of the most important neural operations in ML consist of multiple channels that apply weights w to
inputs x by computing

K diag(Lw)Mx (1)

where the matrices K, L, and M are efficient (to represent and apply) and shared across channels.

We leverage XD-operations to take critical steps towards a broader NAS that enables the discovery
of good design patterns with limited human specification from data in under-explored domains. To
do so we develop a simple procedure which transforms any backbone convolutional neural network
(CNN) into an architecture search space by replacing its operations with XD-operations. This space
is then searched using a simple weight-sharing algorithm that needs only a small amount of tuning to
find effective operations. As a simple first demonstration, we show that XD-operations yield models
that are 15% more accurate than standard discrete search spaces on permuted CIFAR-10, highlighting
the fragility of standard NAS operation spaces on new datasets, and thus the need for XD-operations.

As our main evaluation, we demonstrate the effectiveness of XD-operations in a series of applications
showing that, starting from vanilla CNNs, they consistently outperform custom-designed operations.

• Learning to solve partial differential equations (PDEs): when substituted into a simple CNN
backbone, XD-operations outperform convolutions and the dense prediction NAS method Auto-
DeepLab [31], and even achieve lower error than custom-designed, state-of-the-art operations
(FNOs [30]) across three problems with different dimensionalities (Burgers’ equation, Darcy Flow,
and Navier-Stokes). Our method also maintains consistent performance across different resolutions,
a major stated advantage of FNOs over previous methods.

• Protein folding: on the task of predicting residue distances in a polypeptide chain—a key compo-
nent of the protein folding problem—we substitute XD-operations into vanilla ResNets and achieve
lower error than cyclically-dilated ResNets adapted specifically for this setting [1]. Furthermore,
our ResNet-34 XD outperforms the reported error of the much deeper Dilated ResNet-258.

• Music modeling: on two next-note prediction tasks, we show that substituting XD-operations into
an undilated CNN outperforms temporal convolutional networks (TCNs)—exponentially-dilated
1d CNNs that themselves outperform standard convolutional and recurrent networks [5].

Code to reproduce these results is available here: https://github.com/nick11roberts/XD.
Software to apply XD-operations can be found here: https://github.com/mkhodak/relax.
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Related Work AutoML is a well-studied area, with most work focusing on fairly small hyperparam-
eter spaces [7, 24] or on NAS [12]. Most NAS operation spaces only contain a few operations such
as convolutions [32, 33, 49, 11], which may not be useful for domains where CNNs are ineffective.
Applications of NAS outside vision largely follow the same pattern of combining human-designed
operations [35, 43]. On the other extreme, AutoML-Zero [37] demonstrates the possibility of evolving
all aspects of ML from scratch. We seek to establish a middle ground with large and domain-agnostic
search spaces that still allow the use of well-tested methods, e.g. stochastic gradient descent (SGD).

Several papers have generalized the DFT to replace layers in deep nets [9, 3, 2, 10] in order to speed
up or add structure to models while reducing expressivity. In contrast, we can replace convolutions
and other layers while increasing expressivity by extending their diagonalization via K-matrices. As
discussed in Section 2, using K-matrices for this directly is inefficient for input dimension > 1.

2 The Expressive Diagonalization Relaxation

In this section we overview our main contribution: a large, general search space of neural operations.
Formally, we view an architecture as a parameterizable object—a mapping from model weights
to functions—described by a labeled directed acyclic graph (DAG) G(V,E). Each edge in E has
the form (u, v,Op), where u, v ∈ V are nodes and Op is an operation that can be parameterized
to define some transformation of the representation at node u; node v aggregates the outputs of its
incoming edges into a new representation. For example, the popular ResNet architecture [15] has
many nodes with two incoming edges, one labeled by the convolution operation Conv and one by the
identity (skip-connect) Id, whose outputs it sums and passes to outgoing edges with the same labels.
Each architecture has a source node taking in input data and an output node returning a prediction.

Neural architecture search is the problem of automatically selecting an operation for each edge of G to
optimize an objective.1 For each edge e ∈ E a NAS algorithm must pick one element of a search space
S = {Opa |a ∈ A} of operations specified by architecture parameters a ∈ A to assign to e; in past
work,A usually indexes a small set of operations. As an example, we will refer to a variant2 Sdiscrete
of the DARTS search space with parameters Adiscrete = {1, . . . , 8} where each operation is one of
Zero, Id, MaxPool3×3, AvgPool3×3, Conv3×3 or 5×5, or DilatedConv3×3,2 or 5×5,2 [32].

Our main contribution is a novel family of operations that comprise a search space containing almost
all these operations, in addition to many others that have been found useful on different types of
data. The starting point of our construction of these XD-operations is the simple observation that
all the operations Op ∈ Sdiscrete listed above except MaxPool3×3 are linear, i.e. for any model
weights w there exists a matrix Aw such that for all inputs x we have Op(w)(x) = Awx. More
specifically, all seven of them return convolutions: to see this note that Zero, Id, and AvgPool3×3
each apply a convolution with filter 01×1, 11×1, and 13×3/9, respectively. This means that most
of the operations in the DARTS search space—which is representative of NAS operation spaces in
computer vision—share the convolution’s diagonalization by the discrete Fourier transform (DFT).
Formally, if Aw ∈ Rn2×n2

is the matrix representing a 2d convolution with filter w ∈ Rk of kernel
size k ∈ [n]2, then for any 2d input x ∈ Rn2

we have

Conv(w)(x) = Awx = F−1 diag (Fw)Fx (2)

Here [n] = {1, . . . , n}, diag(z) denotes the diagonal matrix with entries z, w ∈ Rn2

is an appropriate
zero-padding of w ∈ Rk, and F ∈ Cn2×n2

is the 2d DFT (a Kronecker product of two 1d DFTs).

This diagonalization explicates both the computational and representational efficiency of the DARTS
operations, as the DFT and its inverse can be applied in time O(n log n) and stored with O(n log n)
bits. It also suggests a natural way to dramatically expand the operation space while preserving these
efficiencies: just replace matrices F and F−1 in (2) by any one of a general family of efficient matrices.
Doing so yields the single-channel version of our expressive diagonalization (XD) operations:

XD1
α(w)(x) = Real (Kdiag (Lw)Mx) (3)

Here architecture parameter α = (K,L,M) sets the matrices replacing F and F−1 in Equation 2.

1It is often defined as selecting both operations and a graph topology [50], but if the set of operations contains
the zero-operation Zero then the former subsumes the latter.

2For memory-efficiency, all convolutions in the original DARTS search space are separable [32].
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The main remaining question is the family of efficient matrices to use, i.e. the domain of the archi-
tecture parameters K, L, and M. For this we turn to the Kaleidoscope matrices, or K-matrices [10],
which generalize F and F−1 to include all computationally efficient linear transforms with short
description length, including important examples such as sparse matrices and permutations. To
obtain this general family, K-matrices allow the DFT’s butterfly factors—matrices whose products
yield its efficient implementation—to take on different values. While a detailed construction of
K-matrices can be found in the original paper, we need only the following useful properties: they
are as (asymptotically) efficient to apply as DFTs, are differentiable and can thus be updated using
gradient-based methods, and can be composed (made “deeper”) to make more expressive K-matrices.

Specifying that K, L, and M in Equation 3 are K-matrices largely completes our core contribution:
a new search space SXD of XD-operations with K-matrix architecture parameters. We give a full
multi-channel formalization in N dimensions, as well as an overview of its expressivity, in Section 3.
First, we note some key aspects of this new search space:

• Complexity: XD1
α(w) requires three K-matrices and O(1) filter weights to represent, i.e. de-

scription length O(n log n); this is larger than a regular convolution (which has no architecture
parameters) but is not quadratic in the input size like a linear layer. Applying XD1

α requires multi-
plication by three K-matrices, yielding a theoretical per-channel time complexity of O(n log n),
matching the efficiency of convolutions. However, as XD-operations strictly generalize convolu-
tions they are more expensive to apply in-practice; we detail these costs both in the application
sections and as appendix table, and we view improving upon them as an important future direction.

• Initialization: a crucial advantage of XD-operations is that we can initialize or warm-start search
using operations with known constructions. In particular, since we can recover convolutions (2) by
setting architecture parameters K = F−1, L = F, and M = F in Equation 3, we can always start
search with any CNN backbone. We use this extensively in experiments.

• K-matrices: as they contain all efficient linear transforms, K-matrices can represent all functions
returned by XD-operations, including convolutions. However, for input dimension and filter size
> 1 the only known way is to apply K-matrices directly to flattened inputs x ∈ RnN

, yielding much
worse description length O(nN log n). In contrast, as detailed in Section 3, our diagonalization
approach uses Kronecker products to apply DFTs to each dimension separately, yielding description
length O(n log n). It is thus the first (and in some sense, “right”) method to use such matrices to
replace convolutions. Furthermore, diagonalization allows us to separate model weights w from
architecture parameters α, letting the former vary across channels while fixing the latter.

Finally, we address the fact that the architecture parameters of SXD are continuous, not discrete,
contrasting with much of the NAS literature. This can be viewed as a natural extension of the
weight-sharing paradigm [36], in which continuous relaxation enables updating architecture pa-
rameters with gradient methods. For example, many algorithms traverse the relaxed DARTS
search space S̃discrete =

{∑8
i=1 λiOpi |λi ≥ 0,

∑8
i=1 λi = 1

}
, defined via DARTS operations

Opi ∈ Sdiscrete and architecture parameters λi in the 8-simplex; most search spaces then require
discretizing after search via a rounding procedure that maps from the simplex to Adiscrete. Note that
the fully continuous nature of XD-operations means that we will only evaluate the final network re-
turned by search. In particular, while some weight-sharing papers also report the correlation between
true architecture performance and that indicated by the shared weights [46], there is no obvious way
to define a ranking or sampling distribution over XD-operations in order to do so. This also means
that our final architecture will not be more efficient than the supernet, unlike other weight-sharing
methods that do discretize.

3 XD-Operations and Their Expressivity

Here we formalize XD-operations and show what operations they include. We first define operations:

Definition 3.1. A parameterizable operation is a mapping Op : W 7→ F from parameter space
W to a space F = {Op(w) : X 7→ Y|w ∈ W} of parameterized functions from input space X to
output space Y . A search space is a set of operations with the sameW , X , and Y .

For example, if X = Y = Rn andW = Rn×n then each W ∈ W defines a parameterized linear
layer that for each x ∈ X returns Lin(W)(x) = Wx. Here Lin is the parameterizable operation
and for each W the linear map Lin(W) is the parameterized function.
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From Definition 3.1, we say a search space can express a specific operation if it contains it. Crucially,
the ability of a parameterizable operation Op1 to express a parameterized function Op2(w) output
from another operation Op2 given the right set of weights w does not imply that a search space
containing Op1 can express Op2. For example, Lin(In) = Id(W) ∀W ∈ Rn×n but Lin(W) 6=
Id(W) ∀ W 6= In, so a search space containing the linear operation Lin cannot express the
skip-connection Id, despite the fact that Lin can be parameterized to compute the identity.

Formalizing Multi-Channel XD-Operations Recall the single-channel XD-operation XD1
α in

Equation 3 specified by three-matrix architecture parameter α = (K,L,M). For input dimension
N ≥ 1, every matrix B ∈ α is a Kronecker product of N K-matrices of depth d ∈ Z3

+, i.e.
B =

⊗N
i=1 Bi for K-matrices Bi ∈ Cn×n of depth d[1], d[2], or d[3] for B = K, L, or M,

respectively.3 Roughly speaking, XD1
α can return any linear operation that is diagonalized by K-

matrices and is thus efficient to compute and represent, e.g. any convolution (recall we recover the
diagonalization of Conv(w) in Equation 2 by setting K, L, and M appropriately in Equation 3).
However, XD1

α cannot represent efficient parameter-free operations such as skip-connections and
average-pooling, both common in NAS. In particular, the only way to always ignore the model weights
w is to set one of the K-matrices to zero, producing the zero-operation. We avoid this by adding a
bias b ∈ CnN

as an architecture parameter, yielding the biased single-channel XD-operation:4

XD1
α,b(w)(x) = Real (Kdiag(Lw + b)Mx) (4)

This lets us define skip-connections (set K = M = InN , L = 0nN×nN , and b = 1nN ) and
average-pooling (set K = F−1, L = 0nN×nN , M = F, and b to be F multiplied by a pooling filter).

Lastly, we use XD1
α,b to construct multi-channel “layers” that pass multiple input features through

multiple channels and re-combine them as multiple output features. This follows the primary way of
using convolutions in deep nets. The key insight here is that we will share the same parameterizable
operation (specified by α and b) across all channels, just as in convolutional layers.

Definition 3.2. Let a = (α,b,C) be an architecture parameter containing a triple α = (K,L,M)

of Kronecker products of N K-matrices with depths d ∈ Z3
+, a bias b ∈ CnN

, and channel gates
C ∈ Cc×c.5 Using “

⊕
” to denote concatenation, the XD-operation XDa of depth d specified by

a is a parameterizable operation on parameter spaceW = Rc×c×k consisting of c2 filters of size
k ∈ [n]N that outputs parameterized functions on X = Rc×mN

for m ≤ n mapping every x ∈ X to

XDa(w)(x) =

c⊕
i=1

c∑
j=1

C[i,j]XD1
α,b(w[i,j])(x[j]) (5)

The last architecture parameter C allows interpolation between all-to-all layers (C = 1c×c), e.g.
multi-channel convolutions, and layers where each channel is connected to one other channel
(C = Ic), e.g. skip-connections and average-pooling. We note that we use SXD to describe the set of
operations covered by Definition 3.2 and conclude our construction by discussing two properties:

• Kernel size: the weight-space available to an XD-operation is Rc×c×nN

; however, since we will
initialize search with existing CNNs, we will zero-pad to have the same weight-space Rc×c×kN as
the convolutions with filter size k ≤ n that they replace. This preserves the weight count but also
means that if the backbone has 3× 3 filters our search space will not contain 5× 5 convolutions.
Experimentally, we find that relaxing the constraint to allow this does not significantly affect results
on image tasks, so we do not do so in subsequent applications to avoid increasing the weight count.

• Depth: an XD-operation’s depth is a triple describing the depths of its K-matrices K, L, and M.
Increasing it trades off efficiency for expressivity; for example, in the next section we describe
operations that we can show are contained in SXD if L or M have depth > 1. By default we will
set the depth to be the minimum needed to initialize search with the backbone operation.

3A depth-d K-matrix is a product of d depth-1 K-matrices.
4Zero-padding x as well lets the input to be smaller than the output if needed, e.g. for transposed convolutions.
5For simplicity we formalize the case where all N dimensions have the same input size and there is an

identical number c of input and output channels; both are straightforward to extend.
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Expressivity of XD-Operations For many papers that replace deep net layers with efficient linear
transforms [34, 10], the question of expressivity comes down to the transform capacity. For example,
layers with a K-matrix in every channel can represent a different transform in each, thus allowing the
output to be any combination of efficient linear operations. Our case is less straightforward since
we care about expressivity of the search space, not of parameterized functions, and our approach is
less-expressive by design as all channels share K-matrices K, L, and M. The latter can be thought
of as a useful inductive bias on NAS: the set of XD-operations is still much broader than the set of
convolutions, but the way in which model weights are applied is the same across all channels.

Expressivity results are a way to see if this bias is useful or constraining. Here we summarize
some important operations that are 1d XD-operations; proofs can be found in the appendix and are
straightforward to extend to multi-dimensional inputs. Formally, there exists d ∈ Z3

+ such that the
set of XD-operations of depth d over weightsW = Rc×c×k and inputs X = Rm for m ≤ n contains

1. convolutions with filter size ≤ k, dilation ≤ bn−1k−1 c, stride ≤ n− 1, and arbitrary channel groups.
2. parameter-free operations Id, Zero, and AvgPools for any kernel size s ≤ n.
3. composing 1 or 2 with multiplication of all input or output channels by a bounded-depth K-matrix.

Note this does not account for all important XD-operations, e.g. we show in the appendix that they
also express Fourier Neural Operators [30] with ≤ bk/2c modes and any transposed convolutions
whose stride equals the dilated kernel size.6 Still, the first two items account for non-separable
variants of most operations considered in past NAS work in computer vision, excluding the nonlinear
MaxPool [47, 11]. Note depthwise-separable convolutions are contained in the set of compositions
of XD-operations. The third item implies that XD-operations can express the basic and diffusion
graph convolutions over fixed graphs [21, 27]: both are point-wise convolutions composed with
sparse multiplication by a modified adjacency matrix, which K-matrices can represent efficiently.

As a concrete example, consider dilated convolutions, which for k > 1 and dilation factor d ≥ 1
apply filters of effective size (k − 1)d+ 1 with nonzero entries separated by d− 1 zeros. One could
hope to express the application of DilatedConvk,d to an input x ∈ Rn in the single-channel setting
as F−1 diag(Fdiag(pk,d)w)Fx, where pk,d ∈ {0, 1}n zeroes out appropriate entries of w, but
this requires filter size (k − 1)d+ 1 > k, increasing the number of weights. Instead, we can use a
permutation Pk,d ∈ {0, 1}n×n before the DFT to place the k entries of w into dilated positions:

DilatedConvk,d(w)(x) = F−1 diag(FPk,dw)Fx (6)

As permutations are depth-2 K-matrices [10], we can express DilatedConvk,d with an XD-
operation of depth (1, 3, 1), with K = F−1, L = FPk,d, and M = F.

4 Finding and Evaluating XD-Operations

This section outlines a simple procedure that we use to evaluate XD-operations. Recall that NAS
methods specify architectures by assigning operations to each edge (u, v,Op) of a computational
graph. We aim to simultaneously find good operations and model weights, a goal distinct from the
classic two-stage NAS formulation, which finds assignments in an initial search phase before training
the resulting architecture from scratch [47]. However, the use of weight-sharing [36] extends NAS to
one-shot objectives where weights and architectures are jointly optimized. Under weight-sharing,
architecture parameters become weights in a larger “supernet,” extending the hypothesis class [25].

To assess XD-operations directly we assume the user provides a starter network with existing edge
labels Opu,v as a backbone. We transform this into a weight-sharing supernet by reparameterizing
each operation Opu,v as an XD-operation XDau,v

with architecture parameter au,v. Then we
simultaneously train both au,v and the model weights wu,v associated with each edge as follows:

• Architecture parameters au,v are initialized using the original operation used by the CNN
backbone by setting Opu,v = XDau,v ; au,v is then updated via SGD or Adam [20]. We tune
step-size, momentum, and the number of “warmup” epochs: initial epochs during which only
model weights wu,v are updated. This can be viewed as a specialized step-size schedule.

• Model weights wu,v are initialized and updated using the routine provided with the backbone.

6This restriction still includes transposed convolutions used in well-known architectures such as U-Net [38].
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Table 1: Search space comparison on CIFAR-10. Valida-
tion accuracies are averages of three trials. While we use
small CNNs for exploration, XD-operations can also be
used with high-performance backbones to obtain > 95%
accuracy (c.f. the appendix).

Backbone Permuted Cost
search space CIFAR-10 CIFAR-10∗ (hours†)

LeNet 75.5± 0.1 43.7± 0.5 0.3
S̃discrete 75.6± 3.4 47.7± 1.0 1.0
SXD 77.7± 0.7 63.0± 1.0 0.9

ResNet-20 91.7± 0.2 58.6± 0.7 0.6
S̃discrete 92.7± 0.2 58.0± 1.0 5.3
SXD 92.4± 0.2 73.5± 1.6 5.6

∗ No data augmentation used in the permuted case.

Figure 2: On permuted images, where
convolutions are not the “right” opera-
tion, we find XD-operations that are far-
ther away from the operations of the ini-
tial CNN backbone.

This approach allows us to use established topologies and optimizers while searching for new
operations, thus aligning with the goal for Sections 5, 6, and 7: to improve upon the CNN backbones
that practitioners often use as a first attempt. As a simple example, we start by applying the procedure
to image classification. Since this is not the main objective of our work, we treat it as a warmup and
consider two datasets: CIFAR-10 and a variant where the images’ rows and columns are permuted. On
CIFAR-10 we do not expect to see much improvement from XD-operations over the CNN backbone
used to initialize search, as convolutions are already the “right” operation for images. On the other
hand, the “right” operation on permuted data, at least in layer one, is an inverse permutation followed
by convolution; as this is an XD-operation7, here we do hope to see improvement.

Using LeNet [23] and ResNet-20 [15] as backbones, we compare applying our algorithm to XD-
operations with two baselines: (1) using just the backbone CNN and (2) applying a similar method
to the relaxed set S̃discrete of DARTS operations from Section 2. To optimize over S̃discrete we
take an approach similar to DARTS: parameterize the simplex using a softmax and apply Adam. We
experiment with both a uniform initialization and one biased towards the backbone’s operation. While
both SXD and Sdiscrete contain LeNet’s Conv5×5 and ResNet’s Conv3×3 and Id, for LeNet’s
MaxPool3×3 layer we initialize with the closest operation. For direct comparison, both search
spaces employ weights with maximum filter size 5× 5 and for both we evaluate the shared weights
rather than retraining, which we find hurts S̃discrete. We set the XD-operations’ depth to d = 33 to
express the dilated convolutions in Sdiscrete and convolutions composed with permutations.

In Table 1, we see that while both the relaxed discrete NAS operations and XD-operations perform
comparably on regular images, XD-operations achieve around 15% better accuracy with both back-
bones when the images are permuted.8 Note that even networks obtained by running state-of-the-art
NAS procedures such as GAEA PC-DARTS [25] and DenseNAS [13] on permuted CIFAR-10 achieve
only 66.3% and 61.6% accuracy, respectively, despite using millions more parameters than ResNet-20.
While it is not straightforward to understand the recovered XD-operations that perform so well, we
can use the relative Euclidean distance of their architecture parameters from initialization as a proxy
for novelty; in Figure 2 we see that on regular images our procedure finds operations that are quite
similar to convolutions, but on permuted data they are much further away. These results show that to
enable NAS on diverse data, we will need a search space that contains truly novel operations, not just
combinations of existing ones. In the remainder of the paper, we study more diverse and realistic
tasks that show further evidence that SXD is a strong candidate for this.

7Recall SXD includes compositions of convolutions with multiplication by a K-matrix, e.g. a permutation.
8Full accuracy can be recovered via an auxiliary loss encouraging permutation-like K-matrices [10].
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Figure 3: Relative error on Burgers’ equation (left) and Darcy Flow (right) across different resolutions.

5 Application: Learning to Solve Partial Differential Equations

As our first non-vision application, we consider the task of solving PDEs, an important application
area of ML in the natural sciences [28, 29, 41]. In our setup, data generated by classical PDE solvers
is used to learn functions from some initial condition or setting to the corresponding PDE solution,
with the goal of replacing the solver by a deep net forward pass; the latter can be orders of magnitude
faster. A recent state-of-the-art approach for this introduces Fourier Neural Operators [30], operations
that significantly improve upon previous neural approaches across three different PDE settings. To
evaluate the ability of XD-operations to compete with such custom-designed operations starting from
simple CNN backbones, we will investigate the same three PDEs that they study: Burgers’ equation,
Darcy Flow, and the 2d Navier-Stokes equations, which involve 1d, 2d, and 3d data, respectively. The
first two are studied across multiple resolutions, while the last one is studied at different viscosities.

As before, we start with a simple CNN backbone—the type a scientist might use in a first attempt at a
solution—and replace all convolutions by XD-operations. We initially hope to do better than this
backbone, but ambitiously also hope to compete with the custom-designed FNO. The specific CNN
we use is simply the FNO architecture of the appropriate dimension N but with all N -dimensional
FNOs replaced by N -dimensional convolutions; this performs similarly to their CNN baselines [30].
In all cases we compare mainly to the CNN backbone and our reproduction of the FNO results, as
the latter exceeds all other neural methods; a complete results table is provided in the appendix. Our
reproduction of FNO is slightly worse than their reported numbers for Burgers’ equation and slightly
better in the other two settings. Note that on the Navier-Stokes equations we only compare to the 3d
FNO on the two settings in which we were able to reproduce their approach; moreover, we do not
compare to their use of a 2d FNO plus a recurrent net in time, but in-principle XD-operations can also
be substituted there. In the 2d Darcy Flow case we also include comparisons to DARTS operations
in the simple CNN backbone, as in Section 4, and to Auto-DeepLab (AutoDL) [31], a well-known
NAS method for dense prediction. For evaluating XD-operations we again follow the procedure in
Section 4, in which we tune only the architecture optimizer; notably, we do this only at the lowest
resolutions. At all dimensions we use XD-operations of depth d = 13; in addition, in dimensions
N > 1 we fix the architecture biases b and channel gates C to 0 and 1, respectively, to conserve
memory at higher resolutions. At lower ones we find that the performance difference is negligible.

We report our results for the Burger’s equation and Darcy Flow in Figure 3; for 2d Navier-Stokes the
results are in Table 2. In all cases we dramatically outperform the CNN backbone used to initialize
XD-operations; furthermore, we also achieve better error than FNO, despite it being custom-made
for this problem. In particular, we find that XD-operations have higher training error but generalize
better (c.f. the appendix). Figure 3 also shows that XD-operations perform consistently well across
resolutions, a major advantage of FNOs over previous methods, whose performance was tightly
coupled to the discretization [30]. Notably, CNN performance worsens with higher resolution, unlike
that of XD and FNO. Finally, we also substantially outperform DARTS operations and AutoDL in 2d,
although the latter is at least consistent across resolutions. These results provide strong evidence that
XD-operations are a useful search space for discovering neural operations, even in domains where
the convolutions used to initialize them perform much worse than state-of-the-art. Note that these
results do come at a cost of slower training and inference: XD-operations are roughly an order of
magnitude slower than FNOs, despite having fewer parameters in 2d and 3d. This still yields solvers
one-to-two orders of magnitude faster than classical solvers, maintaining usefulness for the problem.
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Table 2: Relative test error on the 2d Navier-Stokes equations at different settings
of the viscosity ν and time steps T . Best results in each setting are bolded.

ν = 10−4, T = 30 ν = 10−5, T = 20

CNN-3d (our baseline) 0.325 0.278
FNO-3d (reproduced) 0.182 0.177
CNN-3d XD (ours) 0.172 0.168
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Figure 4: ResNet XD outperforms both baseline and dilated ResNets on PSICOV. At the highest
depth we test we also outperform the reported MAE8 of the much deeper Dilated ResNet-258 [1].

6 Application: Real-Valued Distance Prediction for Protein Folding

As a second scientific application, we consider the task of inferring the 3d “folded” structure of a
polypeptide chain, which yields important insights into the function of the resulting protein [18]. This
problem is a high-priority challenge in biology and has recently seen significant ML-driven advances
from deep learning methods such as AlphaFold [40, 19] and PDNET [1]. These typically involve
training a network to predict pairwise physical distances between residues in the chain. We work
with the PDNET benchmark, which consists of a training set of 3,356 proteins, a validation set of 100
of proteins, and the PSICOV [18] test set of 150 proteins. PDNET is designed to be more accessible
than datasets used by large-scale methods such as AlphaFold, which are not always publicly available
and/or require massive compute [40, 19]. We follow the PDNET training procedure [1] and evaluate
test set performance using their MAE8 metric for assessing long-range distances.

As before we start with simple CNN backbones—in this case ResNets. We choose this to compare
most directly to the custom-designed architecture used by PDNET, consisting of a Dilated ResNet
characterized by its use of a cyclically increasing dilation rate across ResNet blocks [1]. At a
sufficient depth, the Dilated ResNet is shown to outperform a standard pre-activation ResNet adapted
to this task [1]. Our goal will be to see whether we can start with the vanilla ResNet and use XD
to outperform both it and the specialized Dilated ResNet. We also aim to outperform the DARTS
operations baseline from the previous two sections as well as the AutoDL NAS approach for dense
prediction. We use XD-operations of depth d = 13 and fix the architecture biases and channel gates
as before to conserve memory. We evaluate architectures of different depths—4, 6, 10, 18, and
34—by varying the number of ResNet blocks used in the backbone architecture and baseline.

We report the results as averages across three trials for each depth in Figure 4. Notably, while
Dilated ResNet slightly outperforms ResNet, ResNet XD outperforms both dilated and standard
ResNets at all depths. This provides further evidence that XD-operations can outperform specialized
operations for diverse domains, even when initialized naively as standard convolutions. XD also
outperforms AutoDL, which does poorly, and DARTS operations, except at the two smaller depths
where performance is similar. Moreover, our ResNet-34 XD’s MAE8 of 4.0 also improves upon
PDNET’s reported MAE8 of 4.1 attained by the much deeper Dilated ResNet-258 [1]; however, in
our reproduction Dilated ResNet-258 achieved an MAE8 of 3.5. Given the trend in Figure 4, where
XD-operations consistently improve the backbone architecture of the same depth, we conjecture that
ResNet-258 XD could further improve upon this result. We leave scaling XD-operations to such
deeper networks to future work.
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Table 3: XD-operations compared to recent results in music modeling. We report
average loss across three trials. The best result on each task is bolded.

Method (source) JSB Chorales Nottingham

Best recurrent [5] 8.43 3.29
TCN [5] 8.10 3.07
Transformer [44] - 3.34
R-Transformer [44] - 2.37
Undilated TCN (our baseline) 8.16± 0.04 3.23± 0.02
TCN (reproduced) 8.17± 0.01 2.97± 0.01
Undilated TCN XD (ours) 8.07± 0.01 2.84± 0.02

7 Application: Music Modeling

Our final application is to music modeling, i.e. learning to predict the next note from sheet music [4].
The dominant approaches for such tasks are recurrent nets [16] and Transformers [42], but recent
work has shown that specially-designed convolutional models can also be made competitive at similar
model sizes [5, 6]. We will consider the temporal convolutional network (TCN) [5], which improves
upon a regular CNN by having the dilation factor grow exponentially across layers. The tasks we
study are on the JSB Chorales and Nottingham corpora, used in the original evaluation of TCNs [5].
As the baseline we take the TCN and set all dilation factors to one (undilated); our goal will be to
start with this undilated network and match or outperform the custom dilation design of the TCN.

The results presented in Table 3 show that we achieve this goal, as we outperform both the undilated
baseline and the TCN on both tasks. While the simple undilated backbone that we initialize with
turns out to already match the TCN on JSB Chorales, on Nottingham our approach demonstrates that
XD-operations can be used to outperform hand-designed architectures starting from vanilla CNNs.9
Where possible we also compare to other known results; XD-operations outperforms all of these
except the R-Transformer [44], a model combining recurrent nets and self-attention, on Nottingham.

Together with our results on PDEs and proteins, our study of music modeling provides further
evidence that XD-operations can effectively find good operations using standard backbones on
diverse tasks. One notable difficulty here is causality enforcement: making sure the input data does
not contain the target when predicting the next entry. While TCNs can efficiently do so via temporal
shifts, we do it in a brute-force manner by treating sequences of length n as n− 1 data-points with
masked targets. This is expensive and thus limits our evaluation to small music tasks. A fruitful
direction for future work is thus to examine whether it is possibly to directly enforce causality in XD-
operations, e.g. by forcing architecture parameters K and M to be lower triangular; since a product
of lower triangular matrices is again lower triangular, the entire operation is then a multiplication of
the input sequence by a lower triangular matrix, which suffices to prevent causality violations.

8 Conclusion

This work aims to transition NAS from combining existing operations designed for vision and text to
finding novel and effective operations in many domains. To do so we introduced a new search space
of XD-operations and demonstrated its effectiveness on diverse tasks. Combining XD-operations
with standard topology-search NAS, warm-starting search from non-standard operations such as
graph convolutions and FNOs,10 improving the computational limitations described earlier, and
constructing spaces containing missing operations such as BatchNorm [17] and self-attention [42]
are all promising future directions. Finally, note that our goal—lowering the barrier for applying
ML—necessarily comes with the possibility of misuse. Mitigating this involves developing tools for
application-specific concerns, e.g. privacy and fairness, that go beyond the error metrics we target.

9In the appendix we report similar improvements on two other tasks on which TCNs were evaluated—
permuted MNIST and Penn TreeBank—that we do not discuss in detail as our focus is on under-explored tasks.

10 In this direction, we found that initializing XD with FNO did worse than initializing with convolutions
on Burgers’ equation and Darcy Flow, a surprising result given how much better FNO is than the baseline
CNN. Similarly, initializing XD with convolutions dilated as in the original TCN did not lead to significant
improvement, except in one setting, over undilated initialization. See the appendix for more details and results.
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A Expressivity Results

Here we collect results on the expressivity of the set of XD-operations. For simplicity, our results
will be in the following single-dimensional (N = 1) setting:
Setting A.1. We consider input spaces of form X = Rc×m for input size m ∈ N and channel count
c ∈ N and parameter spaces W = Rc×c×k for filter size k ∈ [n], where output size n ≥ m is a
power of 2.

It is straightforward to extend the results to multiple dimensions using Kronecker products and to
input sizes other than powers of two using padding. Note that all of our results will also assume a
circular padded domain.

A.1 Convolutions

Definition A.1. A convolution in Setting A.1 with filter size k, dilation d ∈ [bn−1k−1 c], stride s ∈ [n−1],
and channel groups described by a matrix B ∈ {0, 1}n×n s.t. B[i,j] = 1 if channels i and j are in
the same group and 0 otherwise is a parameterizable operation that for any weight w ∈ W outputs a
function mapping every x ∈ X to

1

n


diag(as(1dns e))

c∑
j=1

B[1,j]F
−1
n diag(Fnad(w[1,j]))Fnx[j]

...

diag(as(1dns e))
c∑
j=1

B[c,j]F
−1
n diag(Fnad(w[c,j]))Fnx[j]

 (7)

where Fn ∈ Cn×n is the n× n DFT and ad : Rn 7→ Rn is an atrous permutation of a vector that is
equivalent to multiplication by some permutation matrix Pd ∈ {0, 1}n×n. We will use Convk to
denote the case of d = 1, s = 1, and B = 1c×c.

Claim A.1. All multi-channel convolutions of the form given in Definition A.1 are contained in the
search space of XD-operations of depth (1, 3, 1).

Proof. Setting the architecture parameters to be K = diag(as(1dns e))F
−1
n , L = FnPd, M = Fn,

b = 0n, and C = B, and noting that (a) the DFT and its inverse are both depth 1 K-matrices,
(b) multiplying a K-matrix by a diagonal matrix is another K-matrix of the same depth, and (c)
permutation matrices are K-matrices of depth 2 yields the result. These three facts can be found in
the original paper [10].

Remark A.1. Note that for the case of dilation d = 1 the result in Claim A.1 holds with depth 13.

A.2 Parameter-Free Operations

Definition A.2. The skip-connection in Setting A.1 is parameterizable operation that outputs a
function mapping every x ∈ X to itself. The zero-operation in Setting A.1 is parameterizable
operation that outputs a function mapping every x ∈ X to 0c×n.

Claim A.2. The skip-connection and zero-operation are both contained in the search space of
XD-operations of depth 13.

Proof. For both set the architecture parameters to be K = F−1n , L = 0n×n, M = Fn, and C = Ic.
To obtain the skip-connection set b = 1n; to obtain the zero-operation set b = 0n.

Definition A.3. An average pooling operation in Setting A.1 with filter size k, dilation d ∈ [bn−1k−1 c],
and stride s ∈ [n− 1] is parameterizable operation outputs a function mapping every x ∈ X to the
output of a convolution (as in Definition A.1) with the same filter size, dilation, and stride, channel
groups described by B = Ic, and filters w[j,j] = 1k/k ∀ j ∈ [c].

16



Claim A.3. All average pooling operations are contained in the search space of XD-operations of
depth 13.

Proof. Setting the architecture parameters to be K = diag(as(1dns e))F
−1
n , L = 0n×n, M = Fn,

b = ad(1k/k), and C = Ic and noting that (a) the DFT and its inverse are both depth 1 K-matrices
and (b) multiplying a K-matrix by a diagonal matrix of the same depth is another K-matrix of the
same depth yields the result.

A.3 Compositions with Multiplication by a Fixed K-Matrix

Definition A.4. A fixed linear operation LinA in Setting A.1 with fixed matrix A ∈ Rn×n is
a parameterizable operation that outputs a function mapping every x ∈ X to LinA(w)(x) =(
Ax[1] · · · Ax[c]

)T
. For example, LinIc = Id.

Definition A.5. Let Op1 and Op2 be two parameterizable operations in Setting A.1 with X . Then
for any weight w ∈ W their composition Op1 ◦Op2 outputs the parameterized function Op1(w)◦
Op2(w).

Claim A.4. Let Op be a parameterizable operation in Setting A.1 that is contained in the set of
XD-operations of some depth d ∈ N3 and let A be a K-matrix of depth d′. Then Op ◦LinA is
contained in the set of XD-operations of depth (d[1],d[2],d[3] + d′) and LinA ◦Op is contained in
the set of XD-operations of depth (d[1] + d′,d[2],d[3]).

Proof. Let K and M be the first and last K-matrices of the representation of Op as an XD-operation,
which thus have depth at most d[1] and d[3], respectively. Then the representation of Op ◦LinA as
an XD-operation is the same except with depth d[3] + d′ K-matrix MA as the last K-matrix, and
similarly the representation of LinA ◦Op as an XD-operation is the same except with depth d[1]+d

′

K-matrix AK as the first K-matrix.

A.4 Other Named Operations

Definition A.6. Suppose we have a fixed n-node graph with adjacency matrix A and degree matrix D,
and let Â and D̂ be the adjacency and degree matrices, respectively, of the same graph but with added
self-loops. Then regular graph convolution [21] in Setting A.1 with k = 1 is a parameterizable
operation that for any weight W ∈ W outputs a function mapping every x ∈ X to D̂−

1
2 ÂD̂−

1
2xTw

and the diffusion graph convolution [27] in Setting A.1 with k = 1 is a parameterizable operation
that for any weight W ∈ W outputs a function mapping every x ∈ X to D−1AxTw.

Claim A.5. Suppose A and Â can be represented by K-matrices of depth d and d̂, respectively. Then
the corresponding graph convolution is contained in the search space of XD-operations of depth
(1, 1, d̂+ 1) and the corresponding diffusion graph convolution in that of depth (1, 1, d+ 1).

Proof. For any G ∈ Rn×n we have GxTw = LinG(w)(x)w = Conv1(w)(LinG(w)(x)) =
(Conv1 ◦LinG)(w)(x). The result follows by Claims A.1 and A.4, the fact that a K-matrix
multiplied by a diagonal matrix is another K-matrix of the same depth, and by substituting G =

D̂−
1
2 ÂD̂−

1
2 (for graph convolution) or G = D−1A (for diffusion graph convolution).

Remark A.2. Note that the above claim is meaningful because adjacency matrices of realistic graphs
are usually sparse and sparse matrices can be efficiently represented as K-matrices [10].

Definition A.7. A Fourier neural operator (FNO) [30] in Setting A.1 with even k and thus k/2
modes is a parameterizable operation that for any weight w ∈ W outputs a function mapping every
x ∈ X to

Real
(∑c

j=1 F
−1
n diag(

(
w[1,j,1:k/2] + iw[1,j,k/2+1:k] 0n−k/2

)T
)Fnx[j]

)
...

Real
(∑c

j=1 F
−1
n diag(

(
w[c,j,1:k/2] + iw[c,j,k/2+1:k] 0n−k/2

)T
)Fnx[j]

)
 (8)
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Claim A.6. The FNO with k/2 modes is contained in the search space of XD-operations of depth
(1, 4, 1).

Proof. Setting the architecture parameters to be K = F−1n , L ∈ Cn×n the n-sparse matrix mapping
w to

(
w[1,j,1:k/2] + iw[1,j,k/2+1:k] 0n−k/2

)T
, M = Fn, b = 0n, and C = 1c×c, and noting that

an n-sparse matrix is a depth-4 K-matrix [10] yields the result.

Remark A.3. If we allow the parameter space in Setting A.1 to be complex then the FNO with all k
modes will be contained in the search space of XD-operations of depth 13.

Definition A.8. Each channel of transposed convolution with stride d(k − 1) + 1, where k is the
kernel size and d is the dilation rate, computes a feature map in which each input element is replaced
by that element multiplied by the dilated filter of size d(k − 1) + 1. The multi-channel extension of
this over parameter spaceW = Rc×c×k is similar to that for standard convolutions.

Claim A.7. All transposed convolutions with stride equal to the dilated kernel size are contained in
the search space of XD-operations of depth (1, 3, 3).

Proof. A transposed convolution is equivalent to a regular convolution with the same filter applied to
the input after it has been zero-padded and then permuted to separate all entries by d(k − 1) zeros.
Since permutations are K-matrices of depth 2 the result follows by Claims A.1 and Claim A.4.

Definition A.9. A depthwise-separable convolution in Setting A.1 with filter size k but with param-
eter spaceW = Rc×k × Rc×c is a parameterizable operation that for any weight w ∈ W outputs
Conv1(w[2]) ◦ Convk,Ic(w[1]), where Convk,Ic denotes the convolution in Definition A.1 with
B = Ic.

Remark A.4. Since both Conv1 and Convk,Ic are XD-operations, by definition depthwise-
separable convolutions are contained in the search space of composed XD-operations, which by
Claim A.2 also contains all of the above operations.

B Practical Complexity of XD-Operations

Table 4: Comparison of the computational and memory costs of XD-operations when substituted
for convolutions. For simplicity, we consider cases with 2d inputs and where the channel and bias
parameters are fixed.

input kernel minutes / epoch memory (Gb) param. (×106)
Task (backbone) size size Conv XD Conv XD Conv XD
CIFAR-10 (WRN-40-4) 32 3 1.4 4.3 3.73 15.6 8.96 9.08
Darcy Flow (Conv4∗) 85 13 0.028 0.14 4.51 5.53 0.701 0.744
PSICOV (ResNet-18) 128 3 5.9 11 1.50 10.7 0.038 0.549
∗ Four-layer convolutional network with parameterized skip (shortcut) connections derived from

the FNO network [30] as described in Section 5.

In this section we report a detailed comparison of computational costs of the XD-operation compared
to a convolution; this is presented in Table 4. Due to their familiarity, we present results for tasks that
have 2d inputs and thus use 2d convolutions in their default backbone. Note that since XD-operations
are more general than convolutions, they must by definition be at least as expensive as convolutions
in both computation and memory. While in this paper our focus is on absolute performance using
learning metrics (e.g. test error), we view finding a good tradeoff between the performance of
XD-operations on certain tasks and convolutions, for example by restricting the expressivity of
XD-operations, as important directions for future work.
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C Experimental Details: CIFAR-10 and Permuted CIFAR-10

Table 5: Architecture optimizer settings on CIFAR-10 tasks. Note that the step-size is updated
using the same schedule as the backbone.

search space backbone task optimizer initial step-size warmup epochs perturb

S̃discrete

LeNet CIFAR-10 Adam 1E-1 0 0.1
Permuted Adam 1E-1 50 0.875

ResNet-20 CIFAR-10 Adam 1E-3 0 0.1
Permuted Adam 1E-1 0 0.875

SXD

LeNet CIFAR-10 Adam 1E-4 0 -
Permuted Adam 1E-3 0 -

ResNet-20 CIFAR-10 Adam 1E-4 50 -
Permuted Adam 1E-3 0 -

For our experiments with image classification backbones we use the standard CIFAR-10 data [22]
and a permuted version where all rows and columns are identically permuted. For unpermuted data
we use standard data augmentation [15] while for permuted data we do not use any data augmentation.
As specified in Section 4, we keep the training routine of the model weights the same and tune only
the architecture optimizer, the settings of which are specified in Table 5. Note that for the DARTS
operation space we specify a “perturb” parameter that specifies how unbiased the initial architecture
parameters are towards the backbone operation; specifically, we initialize architecture parameters
so as to assign one minus this quantity as the weight to the backbone operation, so 0.875 means the
initialization is uniform (since |S̃discrete| = 8) while 0.1 means the backbone operation is assigned
0.9 of the weight.

C.1 LeNet

The LeNet backbone we consider consists of two Conv5×5 layers, each followed by MaxPool2×2,
and two fully connected layers. When warm-starting with XD-operations we use AvgPool2×2
instead of MaxPool2×2, while when warm-starting with the DARTS operations we use
MaxPool3×3. For the baseline training routine we use 200 epochs of Momentum(0.9), with
the first 100 at learning rate 0.01, the next 50 at 0.005, and the last 50 at 0.001.

C.2 ResNet-20

We use the implementation and training routine provided here: https://github.com/akamaster/
pytorch_resnet_cifar10. When replacing operations in the backbone we substitute for both
the Conv3×3 operations and the skip-connections Id; some of the latter are downsampled, which
XD-operations can handle as strides.

C.3 WideResNet-40-4

We use the same implementation as for ResNet-20 but adapt the original WRN training routine [48],
except with weight-decay set to 10−4 (as in ResNet-20); on the regular CIFAR-10 tasks this does not
seem to affect performance. To conserve computation and memory, we do not tune the architecture
optimizer parameters here and simply use the same ones used for ResNet-20; furthermore, we fix the
channel and bias parameters of XD-operations and do not allow the kernel size to be larger the 3× 3.
Because of these modifications, we only use our evaluation here as a sanity check for large-network
performance of XD-operations and do not include it in the main results.
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Table 6: Search space comparison on CIFAR-10. Validation accuracies are
averages of three trials.

Backbone Search Space CIFAR-10 Permuted∗ Cost (hours†)

LeNet
backbone 75.5± 0.1 43.7± 0.5 0.3
S̃discrete 75.6± 3.4 47.7± 1.0 1.0
SXD 77.7± 0.7 63.0± 1.0 0.9

ResNet-20
backbone 91.7± 0.2 58.6± 0.7 0.6
S̃discrete 92.7± 0.2 58.0± 1.0 5.3
SXD 92.4± 0.2 73.5± 1.6 5.6

WRN-40-4
backbone 95.2± 0.1 64.7± 0.9 4.6
S̃discrete 95.2± 0.2 61.3± 1.3 19.9
SXD 95.0± 0.1 72.9± 0.8 14.3

ResNet-18 DenseNAS 94.5± 0.3 61.6± 3.3 3.6
Cell DARTS‡ 96.0± 0.2 66.3± 0.5 28.6
∗ No data augmentation used in the permuted case.
† On a V100 GPU; time for DARTS Cell is training cost only.
‡ Search using GAEA PC-DARTS [25]; training using “base” routine [46].

C.4 DARTS Cell Search

To search the full DARTS search space, which is a standard NAS benchmark, we use GAEA
PC-DARTS, a recent state-of-the-art method [25], using code made available by the authors here:
https://github.com/liamcli/gaea_release. On CIFAR-10 we simply use their best reported
cell but evaluate it using the “base" routine [46], i.e. without auxiliary losses or additional data
augmentation; this is to obtain fair comparison with the other backbone models. Note that the model
is still much larger and the training routine much more intensive. On permuted data we follow the
standard three-stage pipeline in which we run search four times, train all four found cells and select
the best one, and finally train that cell multiple times.

C.5 DenseNAS Search

We use the DenseNAS search and evaluation code released by the authors here: https://github.
com/JaminFong/DenseNAS. While the search space is designed for ImageNet [39], we adapt it to
CIFAR-10 by taking the DenseNAS-R1 setting and downscale the input sizes to match 32x32 images
used.
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D Experimental Details: Solving PDEs

For our PDE experiments, we use the FNO code and setup [30] provided here: https://github.
com/zongyi-li/fourier_neural_operator. We use the same training routine and settings as
the backbone architecture for each task and only tune the architecture optimizer. We consider
the following hyperparameters for the architecture optimizer: Adam vs. SGD (with or without
momentum), initial learning rate, and number of warmup epochs. The final hyperparameters for
each task can be found in Table 7. Our CNN backbone is analogous to the FNO architecture used
for each problem. In particular, the CNN backbone architecture used for each task is simply the
FNO architecture where FNO layers of dimension N with m modes are replaced by N -dimensional
convolutional layers with filters of size (m+ 1)N and circular padding to match the dimensionality
of FNO. In Table 8 and Table 9 we present reported [30], reproduced, and our own results on the 1d
Burgers’ equation and 2d Darcy Flow.

For AutoDL we use the code and setup provided here: https://github.com/NoamRosenberg/
autodeeplab. We only conduct search on the lowest resolution and use the resulting architecture
at higher resolutions. Search was conducted for 40 epochs, as in the original paper, and the search
learning rate was tuned.

Table 7: Architecture optimizer settings on PDE tasks. Note that the step-size is updated using the
same schedule as the backbone.

task optimizer initial step-size warmup epochs
1d Burgers’ equation Adam 1E-3 0
1d Burgers’ equation (FNO init) Momentum(0.5) 1E-4 250
2d Darcy Flow Momentum(0.5) 1E-1 0
2d Darcy Flow (FNO init) Momentum(0.5) 1E-1 0
2d Navier Stokes (ν = 10−4, T = 30) Momentum(0.5) 5E-3 0
2d Navier Stokes (ν = 10−5, T = 20) Momentum(0.5) 1E-3 0

Table 8: Test relative errors on the 1d Burgers’ equation. We were not able to match the FNO-
1d results reported by the authors [30] using their published codebase, however, our proposed
XD operations outperform our reproduction of their results at every resolution. Furthermore, we
outperform their reported test relative errors on every resolution except s = 4096, where we roughly
match their performance.

Method (source) s = 256 s = 512 s = 1024 s = 2048 s = 4096 s = 8192
NN [30] 0.4714 0.4561 0.4803 0.4645 0.4779 0.4452
GCN [30] 0.3999 0.4138 0.4176 0.4157 0.4191 0.4198
FCN [30] 0.0958 0.1407 0.1877 0.2313 0.2855 0.3238
PCANN [30] 0.0398 0.0395 0.0391 0.0383 0.0392 0.0393
GNO [30] 0.0555 0.0594 0.0651 0.0663 0.0666 0.0699
LNO [30] 0.0212 0.0221 0.0217 0.0219 0.0200 0.0189
MGNO [30] 0.0243 0.0355 0.0374 0.0360 0.0364 0.0364
FNO-1d [30] 0.0149 0.0158 0.0160 0.0146 0.0142 0.0139
CNN (ours) 0.0518 0.1220 0.1830 0.2280 0.2730 0.2970
FNO-1d (reproduced) 0.0181 0.0191 0.0188 0.0184 0.0183 0.0183
CNN XD (ours) 0.0141 0.0079 0.0154 0.0099 0.0145 0.0123
FNO-1d XD (ours) 0.0153 0.0154 0.0154 0.0167 0.0160 0.0155
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Table 9: Test relative errors on 2d Darcy Flow. Our reproduction of the FNO-2d
results outperform those reported by the authors [30]. Nonetheless, our proposed
XD operations outperform both our reproduction and the reported results at every
resolution.

Method (source) s = 85 s = 106 s = 141 s = 211 s = 421
NN [30] 0.1716 - 0.1716 0.1716 0.1716
GCN [30] 0.0253 - 0.0493 0.0727 0.1097
FCN [30] 0.0299 - 0.0298 0.0298 0.0299
PCANN [30] 0.0244 - 0.0251 0.0255 0.0259
GNO [30] 0.0346 - 0.0332 0.0342 0.0369
LNO [30] 0.0520 - 0.0461 0.0445 -
MGNO [30] 0.0416 - 0.0428 0.0428 0.0420
FNO-2d [30] 0.0108 - 0.0109 0.0109 0.0098
CNN (ours) 0.0404 0.0495 0.0613 0.0813 0.1150
FNO-2d (reproduced) 0.0096 0.0092 0.0091 0.0091 0.0091
CNN XD (ours) 0.0065 0.0065 0.0065 0.0071 0.0066
FNO-2d XD (ours) 0.0082 0.0079 0.0077 0.0076 0.0074
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Figure 5: Training curves (dotted) and test curves (solid) on Darcy Flow at resolution 141, showing
better generalization of XD-operations.

E Experimental Details: Protein Folding

Table 10: Architecture optimizer settings on for our protein folding
experiments, across different ResNet depths. Note that the same step-
size is used throughout since the backbone has no step-size schedule.

search space optimizer step-size warmup epochs
ResNet-4 XD Adam 1E-4 2
ResNet-6 XD Momentum(0.99) 1E-4 2
ResNet-10 XD Momentum(0.99) 1E-3 2
ResNet-18 XD Momentum(0.9) 5E-4 2
ResNet-34 XD Momentum(0.9) 5E-4 2

Table 11: Test MAE8 of the Dilated ResNet of [1], compared to a standard ResNet backbone and
XD-operations applied to ResNet. Results are averaged over 3 trials.

Method depth = 4 depth = 6 depth = 10 depth = 18 depth = 34
ResNet 5.99± 0.43 5.30± 0.11 4.91± 0.25 4.80± 0.07 4.66± 0.15
Dilated ResNet 6.04± 0.33 5.49± 0.02 4.64± 0.08 4.59± 0.22 4.50± 0.13
ResNet XD 5.59± 0.09 4.59± 0.17 4.25± 0.16 4.22± 0.03 4.00± 0.07
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For our protein folding experiments, our code is a PyTorch re-implementation of the PDNET code
and setup [1] provided here: https://github.com/ba-lab/pdnet. As before, we use the same
training routine and settings as the Dilated ResNet architecture and only tune the architecture
optimizer. We consider the following hyperparameters for the architecture optimizer: Adam vs. SGD
(with or without momentum), learning rate, and number of warmup epochs. The final hyperparameters
for each depth can be found in Table 10. Our ResNet backbone differs from Dilated ResNet in that its
dilation rate is set to 1 in every convolutional layer. In Table 11, we present average MAE8 on the
PSICOV test set for each method at each depth.

F Experimental Details: Music Modeling and Sequence Modeling

Table 12: Architecture optimizer settings on sequence modeling tasks.
Note that the step-size is updated using the same schedule as the back-
bone.

task optimizer initial step-size warmup epochs
Permuted MNIST Adam 2E-4 0
JSB Chorales Adam 2E-4 25
Nottingham Adam 2E-3 0
Penn Treebank Adam 2E-6 0

Table 13: XD-operations applied to TCNs compared to recent empirical results in sequence
modeling. Our results are averages of three trials. Methods achieving within one deviation of the
best performance are bolded.

Permuted MNIST∗ JSB Chorales Nottingham Penn Treebank
Method (source) (error) (loss) (loss) (perplexity)
LSTM [5] 14.3 8.45 3.29 78.93
GRU [5] 12.7 8.43 3.46 92.48
RNN [5] 74.7 8.91 4.05 114.50
TCN backbone [5] 2.8 8.10 3.07 88.68
TrellisNet [6] 1.87 - - 54.19
R-Transformer [44] - - 2.37 84.38
HiPPO-LegS [14] 1.7 - - -
TCN backbone (reproduced) 2.89± 0.04 8.17± 0.01 2.97± 0.01 88.49± 0.31
TCN backbone XD (ours) 1.75± 0.11 8.07± 0.02 2.81± 0.05 84.11± 0.25
Undilated TCN (ours) 11.3± 2.1 8.16± 0.04 3.21± 0.02 94.30± 0.33
Undilated TCN XD (ours) 1.77± 0.10 8.07± 0.01 2.84± 0.02 85.04± 0.49
∗ We use depth d = (3, 3, 3) XD-operations for permuted MNIST experiments; elsewhere we

use (1, 3, 1). Results within a standard deviation of the best are bolded.

For our sequence modeling experiments we use the TCN code [5] provided here: https://github.
com/locuslab/TCN. As before we use the same settings and training routine as the backbone for
all tasks, tuning only the architecture optimizer. The specific settings are provided in Table 12. For
both the baselines and XD-operations we use the same optimizer settings for both the dilated and
undilated TCN backbones. In Table 13 we present results for both music modeling and for two
additional benchmarks—permuted MNIST and Penn Treebank—on which we see a similar pattern
of XD-operations being able to recover and even beat (dilated) TCN performance starting from an
undilated network.
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