
Model-Based Reinforcement Learning via Imagination
with Derived Memory

Yao Mu
The University of Hong Kong

muyao@connect.hku.hk

Yuzheng Zhuang ∗

Huawei Noah’s Ark Lab
zhuangyuzheng@huawei.com

Bin Wang
Huawei Noah’s Ark Lab
wangbin158@huawei.com

Guangxiang Zhu
Tsinghua University

guangxiangzhu@outlook.com

Wulong Liu
Huawei Noah’s Ark Lab
liuwulong@huawei.com

Jianyu Chen
Tsinghua University

jianyuchen@tsinghua.edu.cn

Ping Luo
The University of Hong Kong

pluo@cs.hku.hk

Shengbo Eben Li
Tsinghua University

lishbo@tsinghua.edu.cn

Chongjie Zhang
Tsinghua University

chongjie@tsinghua.edu.cn

Jianye Hao
Huawei Noah’s Ark Lab
haojianye@huawei.com

A Appendix

A.1 Detailed Structure of R2S2 Model

The robust world model consists of the representation model, the transition model, the observation
model, the reward model and a decoding constraint which is used to ensure the relevancy between the
derived memory and real physical states.

The representation model aims to infer approximate state posteriors from past observations and
actions, where q (st | zt−1, at−1, ot) is a diagonal Gaussian with mean and variance parameterized
by a convolutional neural network (CNN) followed by a fully connected neural (FC) network. In
order to enable accurate long-term predictions, the transition model is designed with both stochastic
and deterministic paths. The latent state is split into a stochastic state st and a deterministic hidden
state ht, where the stochastic state st is Gaussian with mean and variance parameterized by a fully
connected neural network. The transition model f (ht−1, st−1, at−1) is implemented as a recurrent
neural network (RNN). The observation model is Gaussian with mean parameterized by a transposed
convolutional neural network and identity covariance. The reward model q(rt|zt) is a scalar Gaussian
with mean parameterized by a fully connected (FC) neural network and unit variance.

To improve the latent model’s robustness, we add a decoding constraint to the model learning, which
ensures the consistency between derived latent states and the real physical states. We perform random
transformation on the latent state, in which the noise ξh is added to the hidden state ht and the noise
ξs is added to st. The decoding constraint is between the ot which is reconstructed from (ht, st) and
the o′t which is reconstructed from (h′t, s

′
t).

∗Yuzheng Zhuang is the corresponding author. Yao Mu conducted this work during the internship in Huawei
Noah’s Ark Lab.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

A.2 Algorithm Flowchart

The IDM framework is implemented as Algorithm 1, which mainly contains 4 key processes: (1)
learning the R2S2 model, (2) imagination from derived memory and original memory, (3) behaviour
learning, and (4) environment interaction. We denote imagined quantities with τ as the time index.
You can see details from the Algorithm 1.

Algorithm 1: Imagination with Derived Memory for MBRL (IDM)
Initialize dataset D with S random seed episodes.
Initialize neural network parameters θ, φ and ψ.
while not convergence do

for update step c = 1 . . . C do
// Learning the R2S2 model
Draw B data sequences {(at, ot, rt)}k+Lt=k ∼ D.
Compute latent state zt ∼ pθ (zt | zt−1, at−1, ot).
Update θ by minθ {JM} with the decoding constraint.
//Imagination with derived memory and original memory
Derived memory generation: z′t = (h′t, s

′
t), h

′
t ∼ N(ht, σ

2
h), s

′
t ∼ N(µs, (σs + σs′)

2).
Imagine trajectories {(zτ , aτ)}t+Hτ=t from each zt and {(z′τ , a′τ)}

t+H
τ=t from each z′t.

Compute the reliability weights w(zτ) and w(z′τ) by the evaluator and normalize them in
the mini batch.

Predict rewards E (qθ (rτ | zτ)) and values vψ (zτ).
Compute value estimates Vλ (zτ).
// behaviour learning
Update φ← φ+ α∇φ

∑t+H
τ=t w(zτ)Vλ (zτ).

Update ψ ← ψ − α∇ψ
∑t+H
τ=t

w(zτ)
2 ∥vψ (zτ)−Vλ (zτ)∥2.

/ / Environment interaction
o1 ← env.reset () .
for time step t = 1 . . . T do

rt, ot+1 ← env.step (at).

Add experience to dataset D ← D ∪
{
(ot, at, rt)

T
t=1

}
.

A.3 Video Prediction by the R2S2 Model

As shown in Figure 1, our R2S2 model achieves pixel-accurate predictions in various environments.
We randomly selected action sequences from test episodes collected with action noise alongside
the training episodes. The first row is the ground-truth image input, the second row is the image
reconstructed with the random noise on the latent states, and the third row is reconstruction error.

A.4 Experimental details and Hyper Parameters

We use a single Nvidia K80 GPU for each training run. We implement our algorithms based on the
Tensorflow-v2 version code 2 of Dreamer released by its author. We use the same hyperparameters of
Dreamer across all continuous control tasks. The main parameters of the IDM algorithm are listed in
Table 1. The detailed training process of the trajectory evaluator is shown in Figure 2.

Here, we discuss some tricks used in the implementation. We scale down gradient norms that exceed
100 and clip the KL-divergence in Equation (1) below 3 free nats as in Dreamer and PlaNet. We
compute the vλ targets with γ = 0.99 and λ = 0.95. The dataset is initialized with S = 5 episodes
collected using random actions. We iterate between 100 training steps and collect 1000 new transition
data. At the beginning of the algorithm, we add a zero-mean Gaussian noise with a standard deviation
of 5 to the initial policy when collecting data. Instead of manually selecting the action repeat for each
environment as in DrQ and Rad, we fix the action repeat to 2 for all environments like Dreamer. The
DrQ algorithm used in the comparative experiments is implemented with official open-source code 3.

2https://github.com/danijar/dreamer
3https://github.com/denisyarats/drq

2

(a) Video Prediction in Walker-Run (b) Video Prediction in Cheetah-Run

(c) Video Prediction in Finger-Spin (d) Video Prediction in Walker-Walk

Figure 1: Video Prediction by the R2S2 Model

𝑧0 𝑧1 𝑧2 𝑧3 𝑧4

𝑎0 𝑎1 𝑎2 𝑎3

𝑧0 Ƹ𝑧1 Ƹ𝑧2 Ƹ𝑧3 Ƹ𝑧4

𝑎0 𝑎1 𝑎2 𝑎3

Evaluator

𝑧0 𝑧1 𝑧2

𝑎0 𝑎1

𝑧1 𝑧2 𝑧3

𝑎1 𝑎2

𝑧2 𝑧3 𝑧4

𝑎2 𝑎3

𝑧0 Ƹ𝑧1 Ƹ𝑧2

𝑎0 𝑎1

Ƹ𝑧1 Ƹ𝑧2 Ƹ𝑧3

𝑎1 𝑎2

Ƹ𝑧2 Ƹ𝑧3 Ƹ𝑧4

𝑎2 𝑎3

Real Samples
Fake Samples

Real Sequence Overshoot/Fake Sequence

Figure 2: The training process of the evaluator

A.5 Proof for Returns Estimation Error Upper Bound

In this section, we prove the upper bound of the value estimation error for MBRL under the IDM
framework based on Janner’s work [1]. The gap between true returns and model returns can be
expressed in terms of two error quantities of the model: generalization error ϵm due to sampling, and
distribution shift ϵπ due to the updated policy encountering states not seen during model training.

We denote the policy distribution shift between the current policy π and the data-collecting pol-
icy policy as maxzDTV (π∥πD) ≤ ϵπ by the maximum total-variation distance and the model
generalization error as ϵm = maxEz∼D [DTV (p (z′, r | z, a) ∥p′ (z′, r | z, a))].
Next, we analyze the IDM framework based on Janner’s work [1]. Denote pθ (z′ | z, a) as the
state transition probability predicted by model. The data which used to optimize the policy in

3

Table 1: Hyper parameters table
Name Symbol Value
Collect interval C 100
Interact interval T 1000
Batch size B 50
Size of s ns 30
Size of h nh 200
Sequence length L 50
Imagination horizon H 15
Learning rate for model α0 6e− 4
Learning rate for critic α1 8e− 5
Learning rate for actor α2 8e− 5
Scale of the KL divergence β 1
Constraint penalty coefficient β′ 1

the IDM framework is reweighted by w(z). Therefore, the p′ (z′ | z, a) in the IDM is equal to
w(z)pθ (z

′ | z, a). In the IDM framework, the reliability weight w(z) aims to approximate the
important sampling factor between the data from the real environment and the imagined data, and it
is the most significant difference between IDM and Dreamer. We assumed that w(z) is bounded by

max

{∣∣∣∣w(z)− p (z′ | z, a)
pθ (z′ | z, a)

∣∣∣∣} ≤ ϵw. (1)

Thus, the total variance distance between the pθ (z′ | z, a) and p (z′ | z, a) can be derived as

DTV (p (z′ | z, a) ||p′ (z′ | z, a))

=

∫
(z,a,z′)

|p (z′ | z, a)− w(z)pθ (z′ | z, a)| .
(2)

When p (z′ | z, a)− w(z)pθ (z′ | z, a) > 0, we have∫
(z,a,z′)

p (z′ | z, a)− w(z)pθ (z′ | z, a)

=

∫
(z,a,z′)

p (z′ | z, a)− w(z)pθ (z′ | z, a)

≤
∫
(z,a,z′)

p (z′ | z, a)−
(
p (z′ | z, a)
pθ (z′ | z, a)

− ϵw
)
pθ (z

′ | z, a)

=

∫
(z,a,z′)

ϵwpθ (z
′ | z, a) = ϵw.

(3)

When p (z′ | z, a)− w(z)pθ (z′ | z, a) ≤ 0, we have∫
(z,a,z′)

p (z′ | z, a)− w(z)pθ (z′ | z, a)

=

∫
(z,a,z′)

w(z)pθ (z
′ | z, a)− p (z′ | z, a)

≤
∫
(z,a,z′)

(
ϵw +

p (z′ | z, a)
p (z′ | z, a)

)
p (z′ | z, a)− p (z′ | z, a) = ϵw.

(4)

Therefore the ϵm could be bounded by ϵw. The total variance distance between the p′ (z′ | z, a) and
p (z′ | z, a) can be derived as (5).

DTV (p (z′ | z, a) ||p′ (z′ | z, a))

=

∫
(z,a,z′)

|p (z′ | z, a)− w(z)pθ (z′ | z, a)| ≤ ϵw.
(5)

4

Thus, the ϵm is bounded by ϵw. If we can instead approximate the model error on the distribution of
the current policy π, which we denote as ϵ′m, and approximate the ϵ′m with a linear function of the
policy divergence yields: ϵ̂m′ (ϵπ) ≈ ϵm + ϵπ

dϵm′
dϵπ

, the upper bound of returns estimation error of
k-branched model rollout is illustrated as the Theorem A.5.1.

Theorem A.5.1 . Under the IDM framework, if the model error under the updated policy is bounded
by ϵm′ ≥ maxEz∼(Dori,Daug) [DTV (p (z′ | z, a) ||p′ (z′ | z, a))] and the reweighting coefficient is
bounded by max {|w(z)− p (z′ | z, a) /pθ (z′ | z, a)|} ≤ ϵw, then the returns estimation error upper
bound is

ηbranch [π]− η[π] ≤ 2rmax

[
γk+1ϵπ
(1− γ)2

+
γkϵπ

(1− γ)
+

k

1− γ
ϵ′w

]
(6)

where ϵ′w = ϵw + ϵπ
dϵw′
dϵπ

.

Proof: As in the proof for Theorem A.5.1, the proof for this theorem requires adding and subtracting
the correct reference quantity and applying the corresponding returns bound (the Lemma B.4 in [1]).

The choice of reference quantity is a branched rollout which executes the old policy πD under the
true dynamics until the branch point, then executes the new policy π under the true dynamics for k
steps. We denote the returns under this scheme as ηπD,π . We can split the returns as follows:

η[π]− ηbranch = η[π]− ηπD,π︸ ︷︷ ︸
L1

+ ηπD,π − ηbranch︸ ︷︷ ︸
L2

. (7)

We can bound both terms L1 and L2 using the Lemma B.4 in [1]. L1 accounts for the error from
executing the old policy instead of the current policy. This term only suffers from error before the
branch begins, and we can use the Lemma B.4 in [1], setting ϵpre

π ≤ ϵπ and all other errors set to 0.
This implies:

|η[π]− ηπD,π| ≤ 2rmax

[
γk+1

(1− γ)2
ϵπ +

γk

1− γ
ϵπ

]
. (8)

L2 incorporates model error under the new policy incurred after the branch. Again we use the Lemma
B.4 in [1], setting ϵpost

m ≤ ϵm and all other errors set to 0. This implies:

|η[π]− ηπD,π| ≤ 2rmax

[
k

1− γ
ϵm′

]
≤ 2rmax

[
k

1− γ
ϵw′

]
. (9)

Adding L1 and L2 together, the returns estimation error upper bound can be derived as

ηbranch [π]− η[π] ≤ 2rmax

[
γk+1ϵπ
(1− γ)2

+
γkϵπ

(1− γ)
+

k

1− γ
ϵw′

]
. (10)

References
[1] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:

Model-based policy optimization. In Advances in Neural Information Processing Systems, pages
12519–12530, 2019.

5

	Appendix
	Detailed Structure of R2S2 Model
	Algorithm Flowchart
	Video Prediction by the R2S2 Model
	Experimental details and Hyper Parameters
	Proof for Returns Estimation Error Upper Bound

