
Appendix

In this section we first show adversarial examples obtained by different `p attacks on MNIST and
CIFAR10 data for visual comparison. These examples highlight the different behavior exhibited
by each attack. We then report the query-distortion curves for all datasets, models and attacks used
in this paper, showing that our attack outperforms current attacks on the `1 norm and rivals their
performance on other norms, while typically converging with much fewer queries.

A1. Adversarial Examples

In Figs. 3-4, we report adversarial examples generated by all attacks against model M2 and C2,
respectively, on MNIST and CIFAR10 datasets, in the untargeted scenario.

The clean samples and the original label are displayed in the first row of each figure. In the remaining
rows we show the perturbed sample along with the predicted class and the corresponding norm of
perturbation ‖δ?‖p. It is worth noting that the output class for different untargeted attacks is not
always the same, which might sometimes explain differences in the perturbation sizes. An example
is given in Fig. 4b, where the sample in the fourth column, labeled as “ship”, is perturbed by most
of the attacks towards the class “airplane”, while in our case it outputs the class “dog” with a much
smaller distance.

A2. Query-distortion Curves

In Sect. 3.2 we introduced the query-distortion curves as an efficiency evaluation metric for the
attacks. We report here the complete results for all models, in targeted and untargeted scenarios.

On the MNIST dataset, our attacks generally reach smaller norms with fewer queries, with the
exception of M2 (Figs. 5-6), where it seems to reach convergence more slowly than BB in `0 and `∞.
In `2, the CW attack is the slowest to converge, due to the need of carefully tuning the weighting
term, as described in Sect. 4.

On the CIFAR10 dataset (Figs. 7-8), our attack always rivals or outperforms the others, with the
notable exception of DDN for the `2 norm, which sometimes finds smaller perturbations more quickly,
as also shown in Table 3.
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Figure 3: Adversarial examples on MNIST dataset.
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Figure 4: Adversarial examples on CIFAR10 dataset.
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Figure 5: Query-distortion curves for untargeted (U) attacks on the M1, M2, M3, and M4 MNIST
models.
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Figure 6: Query-distortion curves for targeted (T) attacks on the M1, M2, M3 and M4 MNIST
models.
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Figure 7: Query-distortion curves for untargeted (U) attacks on the C1 (top), C2 (middle), and C3
(bottom) CIFAR10 models.
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Figure 8: Query-distortion curves for targeted (T) attacks on the C1 (top), C2 (middle), and C3
(bottom) CIFAR10 models.
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