
A Supplementary material to Local policy search with Bayesian optimization

This document contains the Appendix for the paper Local policy search with Bayesian optimization.
Here, we describe further details about the proposed method and experimental setups to improve
the reproducibility of our results. Additionally, a Python implementation as well as scripts to
reproduce the presented empirical results presented in Sec. 4 are available at https://github.com/
sarmueller/GIBO. This Appendix is broken up into several sections

A.1 Derivatives of the squared exponential kernel. First and second derivatives of the squared
exponential kernel with respect to the data points.

A.2 Derivation of the acquisition function. A detailed derivation of a simpler form for opti-
mizing our acquisition function.

A.3 Gradient normalization. Background information and intuitive explanation for our algo-
rithmic extension ‘gradient normalization’.

A.4 Synthetic experiments. Further information about the synthetic experiments. First, we
explain how we find the global optimum of the test functions for within- and out-of-model
comparison; second, we present the lengthscale distribution; third, error bars for the within-
model experiments are shown; fourth, we show our results for out-of-model experiments.

A.5 Gym and MuJoCo. Details for the Gym and MuJoCo experiments.
A.6 Linear quadratic regulator. Details about the linear quadratic regulator experiment.
A.7 Hyperparameters. Tables with hyperparameters for all experiments.
A.8 Software licenses. Some remarks about our implementation.

A.1 Derivatives of the squared exponential kernel

The SE kernel is given as

k(x1, x2) = σ2
f exp

(
−1

2
(x1 − x2)TL(x1 − x2)

)

where the lengthscale matrix L ∈ Rd×d could be any positive-semidefinite matrix, but in practice
it is often chosen to be a diagonal one L = diag(1/`21, . . . , 1/`

2
d). The derivative of the kernel with

respect to the first argument is given by

∂k(x1, x2)

∂x1
= −L(x1 − x2)k(x1, x2).

The derivative of the SE-kernel with respect to the second argument is given by

∂k(x1, x2)

∂x2
= −∂k(x1, x2)

∂x1
= L(x1 − x2)k(x1, x2).

For the second derivative we get

∂2k(x1, x2)

∂x1∂x2
= L

(
I − (x1 − x2)(x1 − x2)TL

)
k(x1, x2)

with the relationship

∂2k(x1, x2)

∂x21
=
∂2k(x1, x2)

∂x22
= −∂

2k(x1, x2)

∂x1∂x2
= −∂

2k(x1, x2)

∂x2∂x1
.

In case of x1 = x2 = x, the second derivative of the SE kernel yields

∂2k(x, x)

∂x2
= Lσ2

f .

14

https://github.com/sarmueller/GIBO
https://github.com/sarmueller/GIBO

A.2 Derivation of the acquisition function

Starting again from (4) the expected utility can then be written as the Lebesgue-Stieltjes integral

αGI(θ|θt,D) =

∫
Tr (Σ′(θt|D))− Tr (Σ′ (θt| {D, (θ, y)})) dF (θ)

where F (θ) is the distribution function. When optimizing the acquisition function with respect to the
next query parameter θ ∈ Rd, constants can be omitted and the integral simplifies to

arg max
θ

αGI(θ|θt,D) = arg max
θ

∫
−Tr (Σ′ (θt| {D, (θ, y)})) dF (θ).

This can be reformulated to a Riemann integral

arg max
θ

αGI(θ|θt,D) = arg min
θ

∫

R
Tr (Σ′ (θt| {D, (θ, y)})) · p(f(θ) = y|D) dy.

A property of a Gaussian distribution is, that the covariance function is independent of the observed
targets y as shown in Equation (3). Hence, the acquisition function can further be simplified to

arg max
θ

αGI(θ|θt,D) = arg min
θ

Tr (Σ′ (θt| {D, (θ, y)}))
∫

R
p(f(θ) = y|D) dy

︸ ︷︷ ︸
=1

= arg min
θ

Tr (Σ′ (θt|[X, θ]))

where the variance only depends on a virtual data set X̂ = [θ1, . . . , θn, θ] =: [X, θ].

A.3 Gradient normalization

Fist-order methods, like gradient ascent, use the gradient gt (first derivative) to update their parameters

θt+1 = θt + η · gt(θt).

The gradient vector can be divided into magnitude and direction

gt(θt) = ‖gt(θt)‖2
︸ ︷︷ ︸

magnitude

· gt(θt)

‖gt(θt)‖2︸ ︷︷ ︸
direction

.

This leads to the integration of the gradient’s magnitude into the steplength, defined by

‖θt+1 − θt‖2 = η · ‖gt(θt)‖2 .

The parameter update is dividable into a magnitude- (steplength) and a direction-update, both
depending on the gradient

θt+1 = θt + η · ‖gt(θt)‖2
︸ ︷︷ ︸

magnitude

· gt(θt)

‖gt(θt)‖2︸ ︷︷ ︸
direction

.

We can see that the update step inherits its direction and its magnitude from the gradient respectively.
While it is beneficial for an optimizer to follow the gradient’s direction, research has discovered
several problems when using a scaled version of the gradient’s magnitude as steplength [42]: (i)
divergent oscillation from the optimum, (ii) loss of gradient at plateaus or saddle points, (iii) getting
stuck in local optima. Hence, a striking trend in the development of first-order gradient methods is
the adaption of the steplength. Many state-of-the-art methods introduce heuristics to estimate proper
steplength like Momentum [43], AdaGrad [44], RMSProp [42] or Adam [30].

All presented methods have in common that they use the gradient’s direction, but introduce new ideas
to set a proper steplength. For our approach, modeling the objective function with a GP, we gain
more knowledge about the error surface than the mentioned state-of-the-art methods. More precisely,
the hyperparameters of the GP give valuable insights we want to exploit for the steplength of our
gradient descent optimization.

15

One interesting property is that lengthscales of a SE-kernel and correlation length are directly related.
For a SE-kernel with outputscale σf = 1 and the same lengthscale ` = `1, . . . , `d for every dimension
the kernel equation results in

k(x, x̂) = exp

(
−
‖x− x̂‖22

2`2

)
.

For f ∼ GP(0, k) the correlation between f(x) and f(x̂) is exactly k(x, x̂). With a SE-kernel any
two points have positive correlation, but it decreases to zero quickly with increasing distance:

• ‖x− x̂‖2 = `, the correlation is exp(− `2

2`2) = exp(− 1
2) ≈ 0.61,

• ‖x− x̂‖2 = 2`, the correlation is exp(− 22

2) ≈ 0.14,

• ‖x− x̂‖2 = 3`, the correlation is exp(− 32

2) ≈ 0.01.

Because of the equivalence of lengthscales and correlation length for the SE-kernel, it appears natural
to set the steplength proportional to the lengthscales. Therefore, we normalize the gradient using the
SE lengthscales L

ĝt = E [∇θJ(θ)]
∣∣
θ=θt

, ∆θt =
ĝt
‖ĝt‖L

,

where ‖x‖L =
√
xTLx is the Mahalanobis norm. We update the parameters with

θt+1 = θt + η ·∆θt.

With this extension, the constant stepsize η is the proportional factor for scaling the lengthscales
for the steplength. For instance a stepsize of η = 1 means our steplengths are the lengthscales for
every search direction, resulting in a correlation of approximately 0.61 between our new parameters
θt+1 and our old parameters θt. This leads to a much more intuitive way to set a stepsize. Moreover,
with a hyperparameter optimization for our GP model we adapt not only the lengthscales but also the
steplengths for every search direction.

A.4 Synthetic experiments

To calculate the regret, the global optimum of each test function was approximated by local optimiza-
tion with a much higher sample budget. The start point of the local optimization was the best point of
the 1000 sampled function values. This information was never revealed to the algorithms under test.
After each parameter update, the algorithms were asked to return the best-sampled point in the input
space so far, which yields the regret curves in Fig. 3 and Fig. 11.

Lengthscale distribution

To be able to perform similar computationally expensive experiments with the same number of
training samples in higher dimensional domains, lengthscales were scaled with the expected distance
∆(d) between randomly picked points from a unit d-dimensional hypercube. There is no closed form
solution for this hypercube line picking, but it can be bounded with [45]

1

3
d1/2 ≤ ∆(d) ≤

(
1

6
d

)1/2

√√√√1

3
+

[
1 + 2

(
1− 3

5d

)1/2
]
.

The upper and lower bound are shown in blue and orange, respectively, in Fig. 9. To be still
comparable to the experiments from Hennig and Schuler [34], the upper bound is scaled down such
that it fulfills ∆(2) = 0.1 for the 2-dimensional domain. The resulting scaled upper bound in green
in Fig. 9 serves for an orientation for the chosen lengthscale sample distribution

`(d) ∼ U(2 ·∆(d)sub(1− γ), 2 ·∆(d)sub(1 + γ)),

in red in Fig. 9, where ∆(d)sub is the scaled upper bound function and γ = 0.3 corresponds to the
noise parameter.

16

1 10 20 30 40 50

d

0.0

0.5

1.0

1.5

2.0

2.5

3.0

∆
(d

)

upper bound

lower bound

scaled upper bound

2 * scaled upper bound

Figure 9: Lengthscale sample distribution: The image shows approximations of the expected distance
∆(d) between two randomly picked points in a unit domain.

Within-model comparison

0

1

f
∗
−
f̂
∗

f
∗

4-dim. domain 8-dim. domain 16-dim. domain 20-dim. domain

0 100 200 300

of evaluations

0

1

f
∗
−
f̂
∗

f
∗

24-dim. domain

0 100 200 300

of evaluations

28-dim. domain

0 100 200 300

of evaluations

32-dim. domain

0 100 200 300

of evaluations

36-dim. domain

ARS Vanilla BO CMA-ES GIBO

Figure 10: Standard deviation of within-model comparison: We show the same results as in Fig. 3,
but include the standard deviation (shaded region) over the 40 objective functions per domain and
therefore show the regret on a linear scale.

As with Fig. 4, the error bars in Fig. 10 show consistently lower variance in regret of GIBO compared
to the benchmark algorithms.

Out-of-model comparison

For the out-of-model comparison, we sample the objective function from the same prior as in
the within-model comparison 4.1. However, the true parameters of the prior distribution are not
revealed to the GP-based algorithms to investigate the effect of model mismatch and hyperparameter
optimization. We set proper hyperprior distributions for GIBO and Vanilla BO to perform maximum a
posteriori (MAP) estimation for hyperparameters determination from data. The noise of the likelihood
is fixed to the true value σn = 0.1, since this value can usually be estimated easily in additional
experiments. Since the GP-based methods had to learn their hyperparameters, we no longer scaled
the hyperparameters of ARS and CMA-ES with the mean of the lengthscale’s sample distribution.

17

10−1

100

f
∗
−
f̂
∗

f
∗

4-dim. domain 8-dim. domain 16-dim. domain 20-dim. domain

0 100 200 300

of evaluations

10−1

100

f
∗
−
f̂
∗

f
∗

24-dim. domain

0 100 200 300

of evaluations

28-dim. domain

0 100 200 300

of evaluations

32-dim. domain

0 100 200 300

of evaluations

36-dim. domain

ARS Vanilla BO CMA-ES GIBO

Figure 11: Out-of-model comparison: Mean of the normalized distance of the function value at
optimizers’ best guesses from the true global maximum for eight different dimensional function
domains. For the GP-based methods, hyperparameters were optimized. 40 runs. Logarithmic scale.

Fig. 11 shows similar performance of the GP based methods for the within- and out-of-model
comparison. This can be interpreted as a result of a well performing hyperparameter optimization,
when proper hyperpriors are given. The most obvious difference is the performance change of
ARS and CMA-ES. With no scaling of the space-dependent hyperparameters of these algorithms,
i.e., prior knowledge of the objective function, the performance decreases drastically compared to
GIBO. We interpret these results such that GIBO is able to learn relevant properties of the objective
function, using the available data points and the hyperpriors effectively. This shows the benefits of
the probabilistic model of the objective function even when hyperparameter are not known exactly.

4 12 20 28 36

dimensions

0.00

0.25

0.50

0.75

1.00

f
∗
−
f̂
∗

f
∗

ARS

4 12 20 28 36

dimensions

Vanilla BO

4 12 20 28 36

dimensions

CMA-ES

4 12 20 28 36

dimensions

GIBO

Figure 12: Out-of-model comparison: Boxplots (40 runs) show the the normalized distance of
optimizers’ best found values after 300 function evaluations from true global maximum. For the
GP-based methods, hyperparameters were optimized. The whiskers lengths are 1.5 of the interquartile
range; the black horizontal lines represent medians, green dots the means.

In Fig. 12 and Fig. 13 we can see that only our proposed algorithm seems to be able to maintain
performance, despite the need for hyperparameter optimization. This can be explained by only having
a local model of the function, which results in an easier hyperparameter optimization.

18

0

1
f
∗
−
f̂
∗

f
∗

4-dim. domain 8-dim. domain 16-dim. domain 20-dim. domain

0 100 200 300

of evaluations

0

1

f
∗
−
f̂
∗

f
∗

24-dim. domain

0 100 200 300

of evaluations

28-dim. domain

0 100 200 300

of evaluations

32-dim. domain

0 100 200 300

of evaluations

36-dim. domain

ARS Vanilla BO CMA-ES GIBO

Figure 13: Standard deviation of within-model comparison: We show the same results as in Fig. 11,
but include the standard deviation (shaded region) over the 40 objective functions per domain and
therefore show the regret on a linear scale.

A.5 Gym and MuJoCo

CartPole-v1. The linear policy for CartPole maps 4 states to 2 discrete actions. With the help of a
case distinction

πθ(s) =

{
1 As > 0

0 else

this is realized with only 4 parameters, integrated in A ∈ R4. During training we normalized the
reward axis for GIBO with the maximum achievable reward rt = rt/500, making it easier to model a
GP to the policy space.

Swimmer-v1. The linear policy for Swimmer πθ consists of 16 parameters, for A ∈ R8×2. We again
normalized the reward axis with rmax = rt/350.

Hopper-v1. The Hopper MuJoCo locomotion tasks needs a search space of 36 dimensions, integrated
into an affine linear policy with A ∈ R11×3 and b ∈ R3. In the work of Mania et. al [1] they showed
an increase in performance for the Hopper environment when making use of the state normalization.
Therefore, both algorithms are using this algorithmic extension. Moreover, the reward is manipulated
by subtracting the survival bonus and normalizing it rt = (rt − 1)/1000.

A.6 Linear quadratic regulator

For the LQR experiment a discrete time infinite horizon average cost LQR problem with additive
i.i.d. Gaussian noise is considered and can be formalized with

min
u0,u1,...

lim
T→∞

1

T
E

[
T−1∑

t=0

xTt Qxt + uTt Rut

]

s.t. xt+1 = Axt +But + wt.

With discrete-time index t ∈ N, state xt ∈ Rn, control input ut ∈ Rp, system matrix A ∈ Rn×n,
B ∈ Rn×p, Q ∈ Rn×n, R ∈ Rp×p, and the independent identically distributed (i.i.d.) Gaussian
noise wt ∼ N(0,W). The system is assumed to be (A,B)-stabilizable. Hence, the optimal control
law is a stationary linear feedback policy ut = Kxt and the feedback gain K ∈ Rp×n is given by
solving the discrete algebraic Ricatti equation

P = ATPA−ATPB(R+BTPB)−1BTPA+Q,

setting

K = −(R+BTPB)−1BTPA.

19

We consider the LQR instance from [1] (also used in [40], originally from [41]), a challenging
instance for LQR with unknown dynamics and

A =

[
1.01 0.01 0
0.01 1.01 0.01

0 0.01 1.01

]
, B = I, Q = 10−3I, R = I

with n = 3 and p = 3. The matrix A has eigenvalues greater than 1, hence the system is unstable
without control. Moreover, with a control signal of zero the system has a spectral radius of ρ ≈ 1.024
resulting in slowly diverging states. Hence, long trajectories are required to evaluate the performance
of the controller.

Our metric of interest is the relative error J(K̂)−J∗
J∗

, where J∗ is the optimal infinite horizon cost on
the average cost objective, and J(K̂) is the infinite horizon cost of using the controller K̂ in feedback
with the true system specified. The exact calculation of the metric is given for K̂ that stabilizes
(A,B) in Lemma 4.0.5 of the technical report [46] with

J(K̂)− J∗ = Tr (WP̂)− Tr (WP)

= Tr (Σ(K̂)(K̂ −K)T (R+BTPB)(K̂ −K))

where Tr the trace operator and Σ(K̂) the stationary covariance matrix of (A,B) in feedback with
K̂. Σ(K̂) is solvable with the discrete Lyapunov equation

Σ(K̂) = (A+BK̂)Σ(K̂)(A+BK̂)T +W.

The experiments were run by collecting M independent trajectories of length N = 300 of the system

specified above. This produces a collection of MN tuples D =
{(
x
(l)
k , u

(l)
k , r

(l)
k , x

(l)
k+1

)}N,M
k=1,l=1

.

The process is repeated 100 times. In our experiments we will refer to the value M ·N as the number
of timesteps, and each set D of MN tuples as a trial. The optimized reward is defined by the negative
quadratic cost of the LQR problem. Since the cost is blowing up when the controller is unstable, the
reward is manipulated to

r
(l)
k = − log(1− r(l)k).

A.7 Hyperparameters

Synthetic experiments

Table 1: Hyperparameters (and hyperpriors) for the synthetic within-model and out-of-model exper-
iments. d refers to the dimension of the domain. `(d) is the lengthscale’s sample distribution and
2 ·∆(d)sub its mean. The operator // refers to integer floor division. VBO stands for ‘Vanilla BO’.

Method Hyperparameters Within-model Out-of-model

ARS
α 0.02 0.02
ν 0.1 · 2 ·∆(d)sub 0.01
N 1 + d//8 1 + d//8

CMA-ES σ 0.3 ·∆(d)sub 0.5

GIBO & VBO
lengthscales `(d) `(d)
signal variance σf 1.0 U(0.1, 5)
likelihood noise σn 0.1 0.1

GIBO

optimizer SGD SGD
η 0.25 0.25
M d d
Nm 5 · d 5 · d
δb 0.2 0.2
norm. gradient True True

20

Linear quadratic regulator

Table 2: Hyperparameters (and hyperpriors) for the LQR experiment.

Method Hyperparameters LQR

GIBO

lengthscales U(0.01, 0.3)
signal variance σf N (20, 5)
likelihood noise σn 2
optimizer SGD
η 1.
M 9
Nm 40
δb 0.1
norm. gradient True

Gym and MuJoCo

Classic control and MuJoCo (mujoco-py v0.5.7) tasks included in the OpenAI Gym-v0.9.3.

Table 3: Hyperparameters (and hyperpriors) for Gym and MuJoCo experiments.

Method Hyperparameters CartPole-v1 Swimmer-v1 Hopper-v1

ARS

α 0.025 0.02 0.01
ν 0.02 0.01 0.025
N 8 1 8
b 4 - 4

GIBO

lengthscales U(0.01, 0.3) U(0.01, 0.3) U(0.01, 0.5)
signal variance σf N (2, 1) N (2, 1) N (2, 1)
likelihood noise σn 0.5 0.01 0.01
optimizer SGD SGD SGD
η 1. 0.5 0.5
M 8 16 8
Nm 20 32 48
δb 0.1 0.1 0.2
norm. gradient True True True
state norm. False False True

A.8 Software licenses

The implemention of GIBO is based on GPyTorch [47] and BoTorch [31] both published under the
MIT License.

The RL benchmarks provided by the OpenAI Gym [35] published under the MIT License and the
MuJoCo pyhsics engine [36] has a proprietary license https://www.roboti.us/license.html.

21

https://www.roboti.us/license.html

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We point out during the paper

and especially in the conclusion Sec. 5 that the performance of GIBO hinges on prior
knowledge of the objective function in the form of GP hyperparamters.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Our
work doesn’t describe a specific application, but a general optimization algorithm. We
shortly discuss automated decision making in the conclusion Sec. 5.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main

experimental results (either in the supplemental material or as a URL)? [Yes]
https://github.com/gibo-neurips-2021/GIBO.git

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix A.7.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Sec. 4 for the variance after 300 query points. We
choose not to plot error bars in the learning curves for readability reasons. Since the
results are plotted on a log scale the error bars are hard to read.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] We used a virtual machine (VM)
of an internal VM cluster, 16 GB RAM, 8 VCPUs, total disk 160 GB, no GPU.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We use the OpenAI

Gym environments as well as the MuJoCo engine.
(b) Did you mention the license of the assets? [Yes] See Appendix A.8.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

22

https://github.com/gibo-neurips-2021/GIBO.git

	Introduction
	Preliminaries
	Problem setting
	Jacobian GP model
	Related work

	Gradient informative Bayesian optimization
	Maximizing gradient information
	The GIBO algorithm
	Implementation choices

	Empirical results
	Within-model comparison
	Linear quadratic regulator
	Gym and MuJoCo
	Ablation study

	Conclusion
	Supplementary material to Local policy search with Bayesian optimization
	Derivatives of the squared exponential kernel
	Derivation of the acquisition function
	Gradient normalization
	Synthetic experiments
	Gym and MuJoCo
	Linear quadratic regulator
	Hyperparameters
	Software licenses

