
Appendices
A Architecture Details

A.1 Birdseye View of Overall Design

We present the organization of the components for the proposed CP agent in Fig 9. For
the model-free baseline agent, we contributed the design of the state set encoder and the
set-based value estimator. For the model-based agent, we additionally devised the design of
two transition models, one with the conscious bottleneck and another without.
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Figure 9: Overall organization of the proposed components for the CP agent. The transition model
includes the reward-termination estimator, the dynamics estimator and the optionally the conscious
bottleneck. Drawing similarity to the human mind, the 3-layered design corresponds naturally to
human perception, inner representation and the conscious planning models.

A.2 Action-Conditioned Transformer Layer

A classical transformer layer consists of two consecutive sub-layers, the multi-head SA
and the fully connected, each containing a residual pass. Similar to the processing of the
positional embedding, we first embed the discrete actions into a vector and then concatenate
it to every intermediate object output by the SA sub-layer. This way, each transformer layer
becomes action-conditioned. An illustration of the component is provided as Figure 10.
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Figure 10: The computational flow of the action-conditioned transformer layer: compared to the
classical transformer layers, we concatenate additionally the action embedding to the end of every
intermediate object embeddings in the FC pass. The FC pass facilitates -′ = - + 5 (20C[-, 0]), where
- is the set of objects input to the FC part of the action-conditioned transformer layer, 20C([-, 0]]) is
the concatenation of action embedding a to every object embedding in - and -′ is the output set.
Note that 5 downscales the dimensionality of its input to match -.

A.3 Bottleneck Dynamics

The architecture for the bottleneck dynamics (the dynamics operator that simulates 2̂C+1
from 2C , 0C) is a stack of action-conditioned transformer layers.
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Figure 11: Design of the reward-termination estimator: the state / bottleneck set, the imagined state /
bottleneck set as well as the embedding of the action are aligned and concatenated to predict the two
outputs. When there is a conscious bottleneck, 2C comes from the selection, 2̂C+1 is the output of rolling
2C into the dynamics model with 0C ; When there is not, B̂C+1 comes from the forward simulation of the
model. With deterministic, it is sufficient to predict the reward and termination with only BC and 0C .
This design would be compatible if the dynamics simulation could handle stochastic dynamics.

In the experiments, we wanted functional architectures with minimal sizes for all the
components. Thus, globally for the set-input architectures, we have limited the depth of
the transformer layers to be # = 1 wherever possible. The FC components are MLPs with
1-hidden layer of width 64. Exceptionally, we find that the effectiveness of the value estimator
needs to be guaranteed with at least 3-transformer layers. For the distributional output,
while the value estimator has an output of 4 atoms, the reward estimator has only 2.
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A.5 Bottleneck Selector
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Figure 12: Design of the Bottleneck Compressor: the bottleneck set 2C is obtained by querying the
whole set BC with a learned query set of size :, using semi-hard multi-head attention. The selection is
conditioned on the chosen action. Please refer to Section B.1 for more details of the query operation.

A.6 Bottleneck Integrator
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Figure 13: Design of the Bottleneck Integrator: B̂C+1 is generated by using the action-augmented BC to
query the imagined bottleneck set 2̂C+1. Note that there is the similar operation of downscaling objects
to features and copying the positional tails. Please refer to Section B.1 for more details of the query
operation.

B Prerequisites

Here, we introduce some prerequisites for better understanding of the used operations.

B.1 Attention

One of the most important permutation invariant operations on sets of objects is the attention
querying, which leads to the variants of attention mechanisms [4]. Here, we revisit a generic
set query procedure:
For an object to query another set of objects, the following steps are taken:

1. The object is transformed into a query vector. This is generally done via linear transfor-
mations.
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2. The set of objects is independently transformed into two other sets of the same cardinality,
named the key set and the value set, respectively.

3. The query vector now compares itself with each key vector in the key set according
to some similarity function, e.g. scaled dot product, and obtain a vector of un-scaled
“attention weights” which is later normalized into a vector with unit !1 norm.

4. The value vectors are weighted by the normalized attention weight vector and combined
(typically by linear transformations), yielding the output vector; Querying a set with
another set is no different from independently applying the described procedure multiple
times. The number of outputs always matches the size of the query set.

Using a set to query itself using the above procedure yield the so-called “self-attention”.
Using multiple groups of linear transformations and computing the final output from the
ensemble of query results is called “multi-head attention”. If we erase the lowest attention
weights and keep only the top-: ones before the !1 re-normalization, the resulting method
is called “semi-hard” attention: for the top-: matches, the attention is soft while for the bad
matches, the attention is hard.

B.2 Distributional Outputs

In this paper, we adopt distributional outputs for the designs of the value and reward
estimators. In a nutshell, a distributional output converts a scalar prediction problem with a
1-dimensional output to a predicting a distribution, which is later converted to a scalar by a
weighted sum corresponding to the support. This greatly alleviates the problem introduced
by the difference in the magnitude of outputs. Please check [6] for more details and [19] for
a representative use case.

C Experiment Insights

Integer Observations For MiniGrid worlds, the observations are consisted of integers
encoding the object and the status of the grids. We found that for the UP models with
these integer observations, the transformer layers are not sufficiently capable to capture the
dynamics. Such problem can be resolved after increasing the depth of the FC layer depth by
another hidden layer. This is one of the reasons why we prioritized on using CP models for
the observation-level learning of Dyna, i.e. CP models can handle integer features without
deepening.
Similarly, we have tested the effect of increasing the depth of the linear transformations in
SA layers. We did not observe significance in the enhancement of the performance, in terms
of model learning or RL performance.

Addressing Memorization with Noisy Shift We discovered a generic trick to enforce
better generalization based on our state-set encoding: if we use fixed integer-based positional
tails which correspond to the absolute coordinates of the objects, we can add a global
noise to all the G and H components in a set whenever one is encoded. By doing so, the
coordinate systems would be randomly shifted every time the agent updates itself. Such
shifts would render the agent unable to memorize based on absolute positions. This trick
could potentially enhance the agents’ understanding of the dynamics even if in a classical
static RL setting, under which the environments are fixed.

D Experiment Configurations

The source code for this work is implemented with TensorFlow 2.x and open-source at
https://github.com/PwnerHarry/CP.
Multi-Processing: we implement a multi-process configuration similar to that of Ape-X [20],
where 8 explorers collect and sends batches of 64 training transitions to the central buffer,
with which the trainer trains. A pause signal is introduced when the trainer cannot consume
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fast enough s.t. the uni-process and the multi-process implementation have approximately
the same performance, excluding the wall time.
Feature Extractor: We used the Bag-Of-Word (BOW) encoder suggested in [21]. Since
the experiments employ a fully-observable setting, we did not use frame stack. In gym-
MiniGrid-BabyAI environments, a grid is represented by three integers, and three trainable
embeddings are created for the BOW representation. For each object (grid), each integer
feature would be first independently transformed into embeddings, which is then mean-
pooled to produce the final feature. The three embeddings are learnable and linear (with
biases).
Stop criterion: Each runs stops after 2.5 × 106 agent-environment interactions.

Replay Buffer: We used prioritized replay buffer of size 106, the same as in [19]. We do not
use the weights on the model updates, only the TD updates.

Optimization: We have used Adam [27] with learning rate 2.5 × 10−4 and epsilon 1.5 × 10−4.
The learning rate is the same as in [30]. Our tests show that using 6.25 × 10−5, as suggested
in [19], would be too slow. The batch size is the same for both value estimator training and
model training, 64. The training frequency is the same as in [19]: every 4 agent-environment
interactions.
�: Same as in [19]. 0.99.
Transformers: For the SA sublayers, we have used 8 heads globally. For the FC sublayers, we
have used 2-layerMLPwith 64 hidden units globally. All the transformer related components
have only 1 transformer layer except for that of the value estimator, which has 3 transformer
layers before the pooling. We found that the shallower value estimators exhibit unstable
training behaviors when used in the non-static settings.
Set Representation: The length of an object in the state set has length 32, where the feature
is of length 24 and the positional embedding has length 8. Note that the length of objects
must be dividable by the number of heads in the attentions. The positional embeddings
are trainable however their initial values are constructed by the absolute GH coordinates
from each corner of the gridworld (4 × 2 = 8). We found that without such initialization the
positional embedding would collapse.
Action Embedding: Actions are embedded as one-hot vectors with length 8.
Planning steps: for each planning session, the maximum number of simulations based on
the learned transition model is 5.
Exploration: & takes value from a linear schedule that decreases from 0.95 to 0.01 in the
course of 106 agent-environment interactions, same as in [19]. For evaluation, & is fixed to be
10−3.
Distributional Outputs: We have used distributional outputs [6] for the reward and value
estimators. 2 atoms for reward estimation (mapping the interval of [0, 1]) and 4 atoms for
value estimation (mapping the interval of [0, 1]).
Regularization: We find that layer norm is crucial to guarantee the reproducibity of the
performance with set-representations. We apply layer normalization [1] in the sub-layers of
transformers as well as at the end of the encoder and model dynamics outputs. This applies
for the NOSET baseline as well.
Modelfree baseline: We did not use the full Rainbow agent [19] as the baseline for that we
want to keep our agent as minimalist as possible. The agent does not need the dueling head
and the noisy net components to perform well, according to our preliminary ablation tests.
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E More Experimental Analyses

E.1 In-Distribution Model Accuracy

We intend to demonstrate how well the bottleneck set captures the underlying dynamics
of the environments. For each transition, we split the grid points into two partitions: one
containing all relevant objects that changed during the transition or have an impact on
reward or termination, while the other contains the remaining grid points. As a result, the
dynamics error is split into into two terms which correspond to the accuracy of the model
simulating the relevant and irrelevant objects respectively.
Acknowledging the differences in the norm of the learned latent representations, we use the
element-wise mean of !1 (absolute value) difference between B̂C+1 and BC+1 but normalize
this distance by the element-wise mean !1 norm of BC+1, as a metric of model accuracy, which
we name the relative L1. This metric shows the degree of deviation in dynamics learning:
the lower it is, the more consistent are the learned and observed dynamics.
Figure 14 (a) presents the relative L1 error of the a CP configuration during the in-distribution
learning. With the help of the bottleneck, the error for the irrelevant parts converge
very quickly while the model focuses on learning the relevant changes in the dynamics.
Additionally, we provide the model accuracy curves of the WM and Dyna baselines in the
Appendix.
For reward and termination estimations, our results show no significant difference in
estimation accuracy with different bottleneck sizes. However, they do seem to have
significant impact on the dynamics learning. In Figure 14 (b), we present the convergence of
the relative dynamics accuracy of different CP and UP agents. CP agents learn as fast as UP,
which indicates low overhead for learning the selection and integration.
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Figure 14: Curves showing in-distribution evaluation: Each band shows the mean curve (bold) and
the standard deviation interval (shaded) obtained from 20 independent seed runs. a) Partitioning of
the relative L1 dynamics prediction errors into that of the relevant objects and the irrelevants: The
difference in the errors shows that the bottleneck learns to ignore the irrelevance while prioritizing on
the relevant parts of the state; b) Comparison of the overall relative L1 errors (not partitioned). For CP
variants, the numbers in the parentheses correspond to the bottleneck sizes and the suffixes the types
of attention for the bottleneck selection. Semi-hard attention learns more quickly than soft attention
at early stages but they both converge to similar accuracy levels. This is likely due to the fact that
semi-hard attention is forced to pick few objects and thus to ignore irrelevant objects even at early
stages of training.

E.2 More Ablation Results

Figure 15 visualizes more experiments which highlight the effectiveness of the bottleneck’s
contribution towards OOD generalization.
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(a) Attention Type: semi-hard attention outper-
forms better when used in bottleneck selection
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perform similarly the best within {2, 4, 8, 16}.
Also, the performance with bottlenecks is con-
sistently better than thatwithout (UP), showing
the bottlenecks’ effectiveness for OOD general-
ization
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(c) Action Quality: we record if the actions
taken by the methods are optimal. For in-
distribution evaluation, the methods both per-
form well. Interestingly, the model-free agent
performs superior possibly due to its simple
value-based greedy policy. However in OOD
evaluation, only the CP agent with the random
heuristic shows neither significant deteriora-
tion nor signs of overfit in the action qualities.
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(d) Tree Search Dynamics Accuracy: the curves
show the cumulative L1 error of the chosen tra-
jectory during tree search. These are obtained
by comparing the imagined states simulated
through multi-step planning with the help of a
perfect environment model. The curves show
no signs of overfit as the cumulative trajectorial
dynamics accuracy during OOD evaluation is
growing over time.

Figure 15: Ablation results with difficulty 0.35: each band is consisted of the mean curve and the
standard deviation interval shades obtained from 20 independent seed runs.
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E.3 Planning Steps

Intuitively we know there should be a good value for the planning step hyperparameter. If
the planning steps are too few, then the planning would have little gain over model-free
methods. While if the planning steps are too many, we suffer from cumulative planning
errors and potentially prohibitive wall time. We tried different number of planning steps for
8-picks semi-hard CP. Note that the planning steps during training and OOD evaluation are
equivalent. Such particular choice is to make sure that the planning during evaluation would
be carried out to the same extent during training. The results visualized in 16 suggested
that 5 planning steps achieves the best performance in OOD with difficulty 0.35.
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Figure 16: Success rate of CP(8) agent under OOD difficulty 0.35. Note that for each agent variant,
the planning steps used in training and OOD evaluation are the same.

E.4 Action Regularization

We applied an additional regulatory loss that predicts the action 0C with 2C and 2̂C+1 as
input, resembling the essence of an inverse model [12]. The loss is a unscaled categorical
cross-entropy, like that of the termination prediction. This additional signal is shown in
experiments to produce better OOD results, especially when the bottleneck is small, as
visualized in Figure 17.
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Figure 17: Impact on the success rate of CP(4) agents under OOD evaluation with difficulty 0.35 by
the action regularization loss in the bottleneck. The “predact” configuration is by default enabled
in the main manuscript, i.e. all the CP results shown except in this figure has action regularization
enabled. Each point of the band correspond to the mean and standard deviation of the success rate of
OOD evaluation during the last 5 × 105M agent-environment interactions (last 20% training stage).

E.5 Potential of WM Baseline

In case the readers are curious about how the WM baseline would evolve after the 2.5 × 106

steps cutoff, we provide an additional set of experiments featuring a free unsupervised
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learning phase of 106 agent-environment interactions. As illustrated in Figure 18, observa-
tions suggest that WM baseline could not achieve similar performance as that of CP due to
that the representation is not jointly shaped for value estimation. The results show promise
of the methodology of representation learning with joint signals. However, this is not to say
that an unsupervised learning of a world model is not beneficial in general, just limited to
this case and this planning methodology.
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Figure 18: OOD performance comparing CP and WM under a spectrum of difficulty. WM(8) is
the WM baseline which uses the same architecture as CP(8), for fair comparison. The WM(8) results
are shifted for a free unsupervised world model learning phase of 106 steps. All error bars are obtained
from 20 independent runs.

E.6 Tests on Different World Sizes

To inspect the scalability of the proposed method, we compare the methods CP(8), UP and
model-free in a gradient of gridworld sizes. The results are presented in Figure 19.
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Figure 19: OODperformance under a spectrum of difficulty andworld sizes. The G-axes are ticked
with #grids in each gridworld size, representing the number of entities for in the state set, thus
non-uniform. The smaller the world sizes, the better and the closer the performance of the three
methods are. The fact that the CP(8) performance deteriorates slower than UP suggests that the
bottleneck may contribute to more scalable performance in tasks with larger amount of entities. All
error bars are obtained from 20 independent runs.

E.7 Different Tasks

To test the applicability of CP onmore scenarios, we craft some additional sets of experiments
with MiniGrid to test the robustness. For these extra sets of experiments, we prioritize on
presenting the comparison of the CP, UP and modelfree agents’ performance.

E.8 Alternative Dynamics

First, we want to see if the experimental conclusions would still hold on a task with different
action dynamics. Thus, we modify the original task in the main manuscript by a new set of
Turn-And-Forward dynamics: the action space is re-resigned to include 4 composite actions
which first turns to some directions (forward, left, right or back based on the current facing
direction) and then move forward if possible (if not stepping out of the world).
Intuitively, this set of new dynamics can be seen as a composition of the original and hence
is easier to solve and more effective in terms of planning, i.e. the same number of planning
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steps would lead deeper into the future. In Figure 20, we observe that all three methods
are performing better compared to the original tasks and the experimental conclusions are
re-validated.
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Figure 20: OOD performance under a gradient of difficulty in Turn-and-Forward tasks. All error
bars are obtained from 20 independent runs.

E.8.1 Cluttering Effect

For the second set, upon the turn-and-forward environments, we add randomly changing
colors to every grid so that a cluttering effect is posed to hinder the agents fromunderstanding
the object interactions as well as disturbing the bottleneck selection. Specifically, the
distracting colors are sampled uniformly randomly from 6 possibilities for each grid of
each observation. We add one additional baseline named CP(8)+, which denotes a CP(8)
agent with noise injection at the input of the dynamics model. Specifically, we sample an
8-dimensional 0-mean identify variance Gaussian noise that is replicated and concatenated
to every bottleneck object.
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Figure 21: OOD performance under a gradient of difficulty in Turn-and-Forward tasks with color
distractions. All error bars are obtained from 20 independent runs.

From Figure 21, we observe that CP(8) still performs better than UP therefore re-validating
the effectiveness of the bottleneck mechanism. It is likely that our state set encoder to
learn to ignore the distractions and thus make the bottleneck selector to be able to direct
attention to the relevant objects as what we have done for the tasks with the old dynamics.
Furthermore, CP(8)+ seems to achieve similar performance as CP(8) but converges faster.
This experimental observation suggests that noisy inputs may be beneficial to the learning
behavior of the dynamics model for a noisy environment. Yet across the paper, we have
tried not to use any other additional means to enhance the performance of our agents in
order to isolate impact of unwanted components.

E.8.2 Key-Chest Unlocking

We built the final set of experiments built upon the logic of MiniGrid’s MiniGrid-Unlock-v0
and Turn-and-Forward dynamics. The agent needs to navigate the gridworld while avoiding
obstacles (0 reward, end of episode) to get a key first (+0.5 reward) and then unlock a chest
(+0.5 reward, end of episode, considered as success) to finish the task.
In this task in particular, the bottleneck is tested against a conditional selection: the reward
and termination feedbacks on the chest is conditioned on if the key is still not acquired.
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Figure 22: OODperformance under a gradient of difficulty in Key-Chest Unlock Task. The H-axes
values are undiscounted cumulative episodic return. All error bars are obtained from 20 independent
runs.

Hence, in the bottleneck, when the agent plans to step into the chest, the bottleneck should
additionally select the key to predict well the outcome. From Figure 22, the results of the
three compared methods are more differentiable than the original turn-or-forward setting
and the pattern remains consistent across all settings, the bottleneck-equipped CP agent
performs better than UP and modelfree.

E.9 Learning Capable Representation with Non-Conflicting Joint Signals

We have gathered more empirical evidence regarding the non-conflicting training of the
state-representation based on the signals. In terms of model learning accuracy, according
to our results related to WM baseline, removing the value estimation signal would result
in poorer representation but not lower accuracy when predicting other relevant signals;
Removing termination signal would not impact the convergence of reward prediction
accuracy or that of the state prediction however the RL performance is hindered. Removing
the reward signal or the next state prediction signal leads to total collapse of the tree-search
based behavior policy however the convergence of the remaining model training signals is
not affected much. With these, we would like to suggest that we have, at least in this task
setting, learned a set-based representation capable of predicting all interesting quantities.

F Visualization of Selection

We present some visualization of the object selection during the planning steps in Figure 23.
In (a), with the intention of turning left, the agent takes into the bottleneck the location of
itself within the grid (visualized as the teal triangle with white surroundings, color-inverted
from red-black); For (b), the agent additionally pays attention to the lava grid on its right
while trying to turn right. In (a) and (b), the goal square (pink, color-inverted from green) is
also paid attention but we cannot interpret such behavior. Finally in (c), we can see that
the agent takes consideration into the grid (the blue lava grid, color-inverted from orange)
that it is facing before taking a step-forward action. Though these visualization provides an
intuitive understanding to the agents’ behavior, they do not serve statistical purposes.
We additionally have collected the coverage ratio of all the relevant objects by the selection
phase in all the in-distribution and OOD evaluation cases along the process of learning. The
collected data on bottleneck sizes 4, 8 and 16 indicate that the coverage is almost perfect very
early on during training. We do not provide these curves because the convergence to 100%
is so fast that the curves would all coincide with line H = 1, with some minor fluctuations of
the standard deviation shades.

G Details of Compared Baseline Methods

G.1 Staged Training (World Models)

The agents with World Model (WM) trained in stages share the same architectures as their
CP or UP counterparts. The main difference is that the WM agents adopt a 2-staged training
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(a) Turn Left (b) Turn Right (c) Step Forward

Figure 23: Visualization of the bottleneck selection given the observation and specific actions. These
figures are extracted from a fully trained CP(2) agent under OOD evaluation. The bottleneck is set
to very small for clearer visualization purposes. We invert the color of the selected objects by the
best performing head, i.e. the head that covers the most relevant objects, though the selection quality
would be sufficiently justified if all the heads could cumulatively cover all the interested objects. The
grids of the selection would be at least 2 but at most 4 due to the design.

strategy: In the first 106 agent-environment interactions, only the model is trained and
therefore the representation is only shaped by the model learning. In the first stage the agent
relies on a uniformly random policy. After 106 interactions, the agent freezes its encoder
as well as the model to carry out value estimator learning. Note that the agent carries out
tree-search MPC with the frozen model in the second stage. Compared to CP or UP, the
exploration scheme is delayed but unchanged. Also, the training configurations do not
change.

G.2 Dyna

The Dyna agents share the model-free part of the architecture as CP or UP. The models that
Dyna baselines learn are powered by our action-conditioned set-to-set architecture on an
observation-level. The training timings for both the model and the value estimator are not
changed, though they do not jointly shape the representation and are used very differently
compared to CP or UP. In our implementation, the generation of imagined transitions is
carried out by dedicated processes. These processes generate transitions and send them to a
dedicated global replay buffer of size 1024. The small size is to ensure that the delusional
transitions would be washed out soon after the model is effective. The TD learning of the
value estimator samples a double-sized mini-batch, half from the buffer of real transitions
and half imagined. While the model training uses only the true transitions, with unit-sized
batches. Since our model is not generative, we rely on free-of-budget model-free agents
to collect true 〈B, 0〉 pairs from the environment and then complete the missing parts of
the transitions (reward, termination and next observation) using the model (for the Dyna
baseline with true dynamics, we just collect the whole transition exclude the model). This
way, the transitions would follow the state-action occupancy jointly defined by the MDP
dynamics and the policy. The approach is a compromise to implement a correctly performing
Dyna agent with a non-generative model.

G.3 NOSET

The NOSET baselines embraces traditional vectorized representations. We use the same
encoder but instead of transforming the feature map into a set, we flatten it and the linearly
project it to some specific dimensionality (256). This vector would be treated as BC , the same
as the most existing DRL practices. Since all set-based operations would be now obsolete for
the vectorized representation, they are substituted with 3-layered FCs with hidden width
512. The 2-layered dynamics model employ a residual connection with the expectation
that the model might learn incremental changes in the dynamics. In our experiments with
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randomly generated environments for each episode, the NOSET baseline performsmiserably.
However, if we instead randomly generate an environment at the start of the run and use
the same one for the whole run, i.e. adopt the more classical RL setting, we find that the
NOSET baseline is able to perform effectively, as shown in Figure 24.
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Figure 24: NOSET baseline performance on randomized and static random environments. Each
band is consisted of the mean curve and the standard deviation interval shades obtained from 20
independent seed runs.

The dimension of the state representation, the widths and the depths of the FC layers are
obtained through coarse grid tuning of the exponents of 2. We find that architectures
exceeding the chosen size are hardly superior in terms of performance.

H Tree Search MPC

The agent (re-)plans at every timestep using the learned model in the hidden state level.
The in-distribution planning strategy is a best-first search MPC heuristic. While the OOD
planning heuristic is random search. Note that no matter which heuristic is used, the chosen
action is always backtracked by the trajectory with the most return.
We present the pseudocode of the tree search MPC in Algorithm 1. Additionally, we provide
an example showing how the best-first heuristic works in an assumed decision time with
� = 1 and |A| = 3 and maximum planning steps 3.

I Failed Experiments

We list here some of our failed trials along our way of exploring the topic of this work.

I.1 Straight-Through Hard Subset Selection with Gumbel

We initially tried to use Gumbel subset selection [49] to implement a hard selection based
bottleneck but to no avail. We expect the model to pick the right objects by generating a
binary mask and then use the masked objects as the bottleneck set. This two-staged design
would align more with the consciousness theories and would yield clearer interpretability.
However, it suffers from an implicit chicken-and-egg problem that we have not successfully
addressed: to learn how to pick, the model should first understand the dynamics. Yet if
the model does not pick the right objects frequently enough, the dynamics would never
be understood. Our proposed semihard / soft approaches address such problem by
essentially making the two staged selection and simulation as a whole for the gradient-based
optimization.
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Figure 25: Example of the Best-First Heuristic: Step 0 / 3) Start of planning, with the root node and
three branches. The branch 〈B0 , 00〉 is chosen due to the best-first heuristic. If we employ the random
search heuristic, like what we do in OOD evaluation, a random branch would be chosen; Step 1 / 3)
We expand the chosen branch, popped out of the priority queue. A new node is constructed, together
with its out-reaching branches, which are added to the queue. Now the queue has 5 branches in it. The
heuristic marks 〈B0 , 02〉 to be the next simulated branch; Step 2 / 3) Simulation of 〈B0 , 02〉 is finished
and 〈B2 , 00〉 is marked; Step 3 / 3) Node S3 is imagined via 〈B2 , 00〉 but it is estimated to be a terminal
state. Now, the tree search budget is depleted. We locate the root node branch 〈B0 , 02〉 which leads to
the trajectory with the most promising return 0.4.
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Algorithm 1: Prioritized Tree-Search MPC
Input: B0 (current state),A (action set),ℳ (model), Q (value estimator), � (discount)
Output: 0∗ (action to be taken)
@ = queue(); @) = queue() //@) for terminal nodes
=D = NODE(B0 , root = True) //=D denotes a node with branches unprocessed nor in @
while True do

if =D .$ then
@) .add(〈=D , =D .�〉) //identified as a terminal state. =D is added to @) using
bisection, together with the discounted sum of the simulated rewards along the
way =D .�

else
for 0 ∈ A do @.add(〈=D , 0, =D .� + �=D .depth · &(=D .B , 0)〉) //bisect w.r.t. priority ;

if isempty(@) then break //tree depleted;
=2 , 02 , E4 = @.pop() //get branch with highest priority; for in-distribution setting,
priority is the estimated value of the leaf trajectory
if budget depleted then break //termination criterion met;
B̂ , Â , $̂ =ℳ(=2 .B , 02) //simulate the chosen branch
=D = NODE(B̂ , parent = =2)
if =2 .depth > 0 then =D .01 = =2 .01 ; else =D .01 = 02 //descendants trace root action;
=D .$ = $̂; =D .� = =2 .� + �=2 .depth · Ĉ

=2 , 02 , E4 = @.pop(‘highest value’) //get branch with highest value within the
expandables
=∗ = =2 ;
if ¬isempty(@)) then

=) = @) .pop(‘highest value’) //get node with highest value within simulated
terminal states

if =) .value ≥ E4 ∨ isempty(@) then =∗ = =) ;
if isroot(=∗) then 0∗ = 02 ; else 0∗ = =∗.01 ;

J More Discussions on Limitations & Future Directions

This paper serves as a proof-of-concept of an interesting research direction: System-2 DRL. It
is healthy to point out the limitations of this work as well as some interesting future research
directions:

• This paper does not solve the “planning horizon dilemma”, a fundamental issue of error
accumulation of tree search expansion using imperfect models [23]. We strongly believe
that incorporating temporal abstraction of actions, e.g. options or subjective time models
[51] would gracefully address such problem. Promising as this is, introducing temporal
abstraction to model-based RL is non-trivial and requires considerate investigation.

• Constant replanning may be prohibitive in reaction-demanding environments, especially
when equipped with a computationally expensive set-based transition model. A planning
strategy could be devised to control when or where for the agent to carry out planning,
through the means of capturing uncertainty.

• The CP model cannot yet learn stochastic dynamics. The difficulty lies in the design of a
compatible end-to-end trainable set-to-set machinery. We would like to address this in
future.

K Potential Negative Societal Impacts

We do not anticipate potential negative societal impacts since this paper is fundamental
research regarding reinforcement learning methodology.
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