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Abstract

Large Language Models (LLMs) have attained
human-level fluency in text generation, which
complicates the distinguishing between human-
written and LLM-generated texts. This in-
creases the risk of misuse and highlights the
need for reliable detectors. Yet, existing
detectors exhibit poor robustness on out-of-
distribution (OOD) data and attacked data,
which is critical for real-world scenarios. Also,
they struggle to provide interpretable evidence
to support their decisions, thus undermining
the reliability. In light of these challenges,
we propose IPAD (Inverse Prompt for AI
Detection), a novel framework consisting of
a Prompt Inverter that identifies predicted
prompts that could have generated the in-
put text, and two Distinguishers that exam-
ines the probability that the input texts align
with the predicted prompts. Empirical eval-
uations demonstrate that IPAD outperforms
the strongest baselines by 9.05% (Average Re-
call) on in-distribution data, 12.93% (AUROC)
on out-of-distribution (OOD) data, and 5.48%
(AUROC) on attacked data. IPAD also per-
forms robust on structured datasets. Further-
more, an interpretability assessment is con-
ducted to illustrate that IPAD enhances the
AI detection trustworthiness by allowing users
to directly examine the decision-making evi-
dence, which provides interpretable support for
its state-of-the-art detection results.

1 Introduction

Large Language Models (LLMs), characterized
by their massive scale and extensive training data
(Chen et al., 2024), have achieved significant
advances in natural language processing (NLP)
(Ouyang et al., 2022; Veselovsky et al., 2023; Wu
et al., 2025). However, with the advanced capa-
bilities of LLMs, they are subject to frequent mis-
used in various domains, including academic fraud,

*These authors contributed equally to this work.

the creation of deceptive material, and the gen-
eration of fabricated information (Ji et al., 2023;
Pagnoni et al., 2022; Mirsky et al., 2023), which un-
derscores the critical need to distinguish between
human-written text (HWT) and LLM-generated
text (LGT) (Pagnoni et al., 2022; Yu et al., 2025;
Kirchenbauer et al., 2023).

However, due to their sophisticated function-
ality, LLMs pose significant challenges in the
robustness of current AI detection systems (Wu
et al., 2025). The existing detection systems,
including commercial ones, frequently misclas-
sify texts as HWT (Price and Sakellarios, 2023;
Walters, 2023) and generate inconsistent results
when analyzing the same text using different de-
tectors (Chaka, 2023; Weber-Wulff et al., 2023).
Studies show false positive rates reaching up to
50% and false negative rates as high as 100% in
different tools (Weber-Wulff et al., 2023) when
dealing with out-of-distribution (OOD) datasets.

Another critical issue with the existing AI detec-
tion systems is their lack of verifiable evidence (Ha-
laweh and Refae, 2024), as these tools typically
provide only simple outputs like "likely written by
AI" or percentage-based predictions (Weber-Wulff
et al., 2023). The lack of evidence prevents users
from defending themselves against false accusa-
tions (Chaka, 2023) and hinders organizations from
making judgments based solely on the detection
results without convincing evidences (Weber-Wulff
et al., 2023). This problem is particularly trouble-
some not only because the low accuracy of such
systems as mentioned before, but also due to the
consequent inadequate response to LLM misuse,
which can lead to significant societal harm (Stokel-
Walker and Van Noorden, 2023; Porsdam Mann
et al., 2023; Shevlane et al., 2023; Wu et al., 2025).
These limitations highlight the pressing need for
more reliable, explainable and robust detectors.

In this paper, we propose IPAD (Inverse Prompt
for AI Detection), a novel and interpretable frame-
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Figure 1: The overall workflow of our proposed IPAD framework

work for detecting AI-generated text. As illustrated
in Figure 1, IPAD consists of two main components:
a Prompt Inverter, which reconstructs the under-
lying prompts from input texts, and two Distin-
guishers—the Prompt-Text Consistency Verifier
(PTCV), which measures the alignment between
the predicted prompt and input text, and the Regen-
eration Comparator (RC), which compares the
input with the corresponding regenerated text for
consistency. By explicitly modeling the reasoning
path from prompt inversion to final classification,
IPAD introduces a paradigm shift in AI-generated
content detection, significantly enhancing both de-
tection robustness and user interpretability.

Empirical results show that IPAD outperforms
state-of-the-art baselines by 9.05% in Average Re-
call on in-distribution datasets, 12.93% in AUROC
on out-of-distribution (OOD) datasets, and 5.48%
in AUROC under adversarial attacks. IPAD also
generalizes well to structured data. A user study
further reveals that IPAD improves trust and us-
ability in detection tasks by presenting concrete de-
cision evidence, including predicted prompts and
regenerated texts. Code is anonymously available
1.

Our contributions can be summarized as follows:

• We introduce a novel fine-tuned inverse-
prompt-based detection framework that inte-
grates prompt reconstruction and dual consis-
tency evaluation.

1https://anonymous.4open.science/r/IPAD-Inver-Prompt-
for-AI-Detection–65B6/

• We achieve superior detection performance on
in-distribution, OOD, adversarially attacked,
and prompt-structured datasets.

• We demonstrate through an interpretability
assessment that IPAD improves human trust
and interpretability in AI text detection.

2 Methodology
2.1 Preliminaries

Modules. Our method comprises a Prompt In-
verter finv, and two Distinguishers, namely
the Prompt-Text Consistency Verifier (PTCV)
fPTCV and the Regeneration Comparator (RC)
fRC. Given an input text T , the task is to determine
whether it is human-written (HWT) or generated
by an LLM (LGT). We denote by DPI the train-
ing set for finv, consisting of pairs (T, P ) where
T is an LLM-generated text and P is its original
prompt. The two distinguishers are trained using
disjoint datasets: DLGT contains LLM-generated
samples and DHWT contains human-written ones.
All components are fine-tuned using Microsoft’s
Phi3-medium-128k-instruct model.2.

Softmax-Based probability for Binary Classifica-
tion in LLM. To estimate the fine-tuned model’s
binary classification probability (i.e., the proba-
bility of predicting “yes” or “no”), we follow the
logit-based estimation approach (Yoshikawa and
Okazaki, 2023). Given the model input x, and the

2https://huggingface.co/microsoft/
Phi-3-medium-128k-instruct

https://huggingface.co/microsoft/Phi-3-medium-128k-instruct
https://huggingface.co/microsoft/Phi-3-medium-128k-instruct


output logits z, the model’s probability assigned to
ŷ is computed through the softmax function σ :

Confidenceyes = P (ŷ = “yes” | x) = σ(z)yes,

Confidenceno = P (ŷ = “no” | x) = σ(z)no

Since the fine-tuned model will only output“yes”
or “no”, we further calculate the probability for this
binary classification as:

Probabilityyes =
Confidenceyes

Confidenceyes + Confidenceno
,

Probabilityno = 1− Probabilityyes

2.2 Workflow
Our framework follows a multi-stage fine-tuning
pipeline with the following four steps, as illustrated
in Figure 1. The details of the datasets for fine-
tuning is illustrated in Appendix A.

Step 1: Training Prompt Inverter. We first fine-
tune a model finv on dataset DPI, with the data
structure shown in Figure 1. For any input text T ,
finv predicts the most likely prompt P that could
have generated it, i.e. P = finv(T ). The resulting
Prompt Inverter is then frozen and reused in the
following downstream steps.

Step 2: Training the Prompt-Text Consistency
Verifier (PTCV). Given the predicted prompt P
in step 1, and the input text T ∈ {HWT,LGT}, the
verifier fPTCV is trained to predict whether the text
T could plausibly be generated by an LLM using
the prompt P . The fine-tuning datasets DLGT and
DHWT share the same structure, with output labels
"yes" for DLGT and "no" for DHWT, as shown in
the Figure 1.

After fine-tuning this module, we applied it
to the validation set and computed the probabil-
ity score pPTCV = fPTCV(T, P ), where the confi-
dence value was estimated using the softmax-based
method described in Section 2.1.

Step 3: Training the Regeneration Comparator
(RC). With the same predicted prompt P in step
1, we use an LLM to generate a regenerated text
T ′ ← LLM(P ). By default, the LLM we use
is gpt-3.5-turbo. Then, the comparator fRC is
trained to assess whether T and T ′ can be generated
by LLM with a similar prompt. This step uses the
same dataset as in Step 2, but applies a different
structural formatting, as shown in Figure 1.

After fine-tuning this module, we also applied it
to the validation set and computed the probability
score pRC = fRC(T, P ).

Step 4: Distinguisher Merge. To determine the
final classification, we combine the two probabil-
ity scores, pPTCV and pRC, obtained from Step 2
and Step 3 on the validation set. Specifically, we
compute a weighted ensemble as p̂ = w · pPTCV +
(1− w) · pRC, and assign the prediction Ŷ = LGT
if p̂ > τ , or Ŷ = HWT otherwise. The weight
w ∈ [0, 1] and the threshold τ ∈ [0, 1] are treated
as hyperparameters and selected via grid search
on the validation set. The selected values were
w = 0.45 and τ = 0.54.

Inference. We perform inference on unseen in-
put texts T by sequentially applying the trained
modules. Given an input text T , we first use the
prompt inverter finv to recover the most plausible
prompt P . The prompt is then used to regener-
ate a candidate text T ′ via the an LLM. Next, we
compute two probability scores: pPTCV, indicating
whether T is consistent with P , and pRC, assess-
ing the likelihood that T and T ′ originate from the
same prompt. These scores are fused into a final
decision score p̂ using the gird-searched weight w,
and the predicted label is determined by comparing
p̂ against the threshold τ . The complete algorithm
can be found in Appendix B.

The inference procedure of the IPAD framework
consists of three calls through a light-weight open-
sourced LLM phi-3-medium-128k-instruct.
Phi-3 is a decoder-only Transformer, whithin
which, the self-attention complexity per layer is
O(n2 · d), where n is the sequence length and
d is the hidden dimension (Vaswani et al., 2017).
The additional api call to gpt-3.5-turbo for re-
generating texts introduces fixed latency but no
local computation cost. Therefore, the overall com-
putational cost is bounded by O(3 · L · n2 · d +
OpenAIapi), where L = 32 is the number of layers
in phi-3 (Abdin et al., 2024), which is relatively
small. All three phi-3 calls can be deployed in an
Nvidia V100 GPU as the minimum requirement.
This demonstrates that IPAD is not computation-
ally expensive and can be deployed with relatively
modest hardware requirements.

2.3 Training

The supervised fine-tuning (Wei et al., 2022) pro-
cess is performed on a Microsoft’s open model,
phi3-medium-128k-instruct, and we use low-
rank adaptation (LoRA) method (Hu et al., 2022)



on the LLaMA-Factory framework3 (Zheng et al.,
2024). We train it using six A800 GPUs for 20
hours for Prompt Inverter, 7 hours for PTCV,
and 9 hours for RC.

3 Experiments

We investigate the following questions through our
experiments:

• Assess the robustness of IPAD, which includes
using various LLMs as generators, comparing
IPAD with other detectors, and evaluating on
out-of-distribution (OOD), attacked datasets,
and prompt-structured datasets.

• Independently analyze the necessity and effec-
tiveness of the Prompt Inverter, the PTCV,
and the RC.

• Explore the user-friendliness of IPAD through
an interpretability assessment.

3.1 Robustness of IPAD

3.1.1 Evaluation Baselines and Metrics
The in-distribution experiments refer to the testing
results presented in (Koike et al., 2024), where the
data aligns with the training data used for the IPAD,
thereby serving as our baseline. This baseline
assesses how the RoBERTa classifiers (base and
large) (Park et al., 2021), the HC3 detector (Guo
et al., 2023), and the OUTFOX detector (Koike
et al., 2024) perform on standard data as well as un-
der DIPPER (Alkanhel et al., 2023) and OUTFOX
attacks.

The OOD experiments refer to the DetectRL
baseline (Wu et al., 2024), which is a comprehen-
sive benchmark, which includes four datasets: (1)
academic abstracts from the arXiv Archive (cov-
ering the years 2002 to 2017)4, (2) news articles
from the XSum dataset (Narayan et al., 2018),
(3) creative stories from Writing Prompts (Fan
et al., 2018), and (4) social reviews from Yelp Re-
views (Zhang et al., 2015). It also employs three
attack methods to simulate complex real-world de-
tection scenarios, which include (1) the prompt
attacks, (2) paraphrase attacks, and (3) perturba-
tion attacks (Wu et al., 2024). DetectRL evaluates
three classifiers on the OOD dataset: DetectLLM
(LRR) (Su et al., 2023), Fast-DetectGPT (Bao et al.,
2023), RoBERTa Classifier (Base). We included

3https://huggingface.co/papers/2403.13372
4http://kaggle.com/datasets/spsayakpaul/arxiv-paper-

abstracts/data

two more strong classifiers in our evaluation De-
tectLLM (NPR) (Su et al., 2023) and Binoculars
(Hans et al., 2024). All the testing sets have 1,000
samples in our experiments.

We further evaluate its performance on OOD
datasets with structured prompts. The Long-
Writer dataset (Bai et al., 2025), featuring an aver-
age prompt length of 1,501 tokens, reflects IPAD’s
capability to handle long-form prompts. The Code-
Feedback5 and Math datasets (Hendrycks et al.,
2021) contain highly structured prompts, in con-
trast to typical essay-like writing. We compare
IPAD with baseline detectors from DetectRL to
assess its relative performance under these chal-
lenging conditions.

The Area Under Receiver Operating Char-
acteristic curve (AUROC) is widely used for as-
sessing detection method (Mitchell et al., 2023).
Since our models predict binary labels, we follow
the Wilcoxon-Mann-Whitney statistic (Calders and
Jaroszewicz, 2007), and the formula is shown in
Appendix C. The AvgRec is the average of Hu-
manRec and MachineRec, which refers to the
recall of the Human-written texts and the LLM-
generated texts (Li et al., 2024).

3.1.2 Robustness across different LLMs

As shown in Table 1, IPAD achieves consistently
strong performance across all combinations of orig-
inal generators and re-generators, which shows its
robustness to diverse LLM as generators. The best
results are generally observed when the original
generator and the re-generator are the same, while
the gpt-3.5-turbo serves as an effective univer-
sal re-generator: it performs well even when the
original generator differs. In real-world applica-
tions where the identity of the original generator
is unknown, using gpt-3.5-turbo as a fixed re-
generator provides a practical and reliable solution.

3.1.3 Comparison of IPAD with other
detectors in and out of distribution

In Distribution. For the in-distribution data,
as shown in Figure 2, the baseline detectors like
RoBERTa, HC3, and OUTFOX perform well on
standard data but degrade significantly under DIP-
PER and OUTFOX attacks. In contrast, IPAD
maintains high accuracy across all scenarios, which
surpasses the strongest baseline 9.05% in AvgRec.

5https://huggingface.co/datasets/m-a-p/Code-Feedback



Original Generator Re-Generator HumanRec MachineRec AvgRec AUROC

gpt-3.5-turbo gpt-3.5-turbo 98.50 100 99.25 100
gpt-4 gpt-4 98.70 100 99.35 100

gpt-3.5-turbo 96.10 100 98.05 99.96
Qwen-turbo Qwen-turbo 98.60 99.80 99.20 99.96

gpt-3.5-turbo 98.40 99.50 98.95 99.86
LLaMA-3-70B LLaMA-3-70B 98.70 100 99.35 100

gpt-3.5-turbo 98.60 100 99.30 100

Table 1: Detection Accuracy (HumanRec, MachineRec, AvgRec, and AUROC %) of IPAD across Various LLMs on
In-Distribution Data
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Figure 2: The In-distribution data performance of IPAD and the baseline detectors. Since (Koike et al., 2024) only
presents the AvgRec data for the baselines, we also calculate AvgRec data for IPAD to compare.

Out of Distribution. Table 2 reports detec-
tion accuracy across four benchmark datasets,
which shows that IPAD significantly outperforms
prior baselines. Table 3 further evaluates robust-
ness under three attack types, where IPAD again
demonstrates superior resilience. Compared to the
strongest baseline, IPAD achieves a 12.93% rela-
tive improvement on standard datasets in AUROC
and a 5.48% improvement on attack datasets.
Structured Prompts. The results are shown in
Table 4, while these datasets lack HWT references
and are thus only evaluated using MachineRec, the
strong scores suggest that IPAD maintains robust-
ness even on structured diverse inputs, with an im-
provement of 9.87% against the strongest baseline
in MachineRec.

3.2 Necessity and Effectiveness of the Prompt
Inverter, PTCV, and RC

3.2.1 Necessity
To prove that it is necessary to fine-tune on IPAD
with IPAD with PTCV and RC, we conducted

ablation study to use the same finetune method on
only input texts and only predicted prompts,
with the finetune data format shown in Appendix
D. We only experimented on Prompt Inverter +
PTCV and Prompt Inverter + RC to compare
with the three-moduled IPAD.

Based on the ablation study results as shown in
Figure 3, fine-tuning only on input texts or only
on predicted prompts performs poorly across all
datasets in AUROC scores. While using Prompt
Inverter + PTCV or Prompt Inverter + RC
individually significantly improves performance,
neither approach consistently excels across both
HWT-style and LGT-style generations. In con-
trast, the full IPAD framework achieves consis-
tently high performance across all settings, which
demonstrates the necessity of the Prompt Inverter,
PTCV, and RC modules.
3.2.2 Effectiveness
Prompt Inverter. We use DPIC (Yu et al., 2024)
and PE (Zhang et al., 2024b) as baseline meth-
ods for prompt extraction. DPIC employs a zero-



Method Arxiv XSum Writing Review Average

DetectLLM (LRR) 48.17 48.41 58.70 58.21 53.37
DetectLLM (NPR) 53.85 34.59 54.96 50.09 48.37
Binoculars 84.03 77.39 94.38 90.00 86.45
Fast-DetectGPT 42.00 45.72 51.13 54.55 48.35
Rob-Base 81.06 76.81 86.29 87.84 83.00
IPAD Merge 100 99.85 99.40 98.25 99.38

Table 2: Detection Accuracy (AUROC %) on four diverse OOD datasets

Method Prompt Attack Paraphrase Attack Perturbation Attack Average

DetectLLM (LRR) 54.97 49.23 53.62 52.61
DetectLLM (NPR) 77.15 56.94 6.78 46.96
Binoculars 93.45 88.34 76.89 86.23
Fast-DetectGPT 43.89 41.15 44.38 43.14
Rob-Base 92.81 90.02 92.12 91.65
IPAD 97.30 96.00 98.10 97.13

Table 3: Detection Accuracy (AUROC %) on three attacked OOD datasets

shot approach using the prompt states in Appendix
E, while PE uses adversarial attacks to recover
system prompts. In our evaluation, we tested
1000 LGT and 1000 HWT samples. We use only
in-distribution data for testing since only these
datasets include original prompts. The metrics are
all tested on comparing the similarity of the origi-
nal prompts and the predicted prompts. The results
shown in Table 5 illustrate that IPAD consistently
outperforms both DPIC and PE across all four met-
rics (BartScore (Yuan et al., 2021), Sentence-Bert
Cosine Similarity (Reimers and Gurevych, 2019),
BLEU (Papineni et al., 2002), and ROUGE-1 (Lin,
2004)), which highlight the effectiveness of the
IPAD Prompt Inverter.
PTCV and RC. We conducted a comparison
study using the frozen Prompt Inverter but dif-
ferent distinguishing methods. The first and sec-
ond methods employed Sentence-Bert (Reimers
and Gurevych, 2019) and Bart-large-cnn (Yuan
et al., 2021) to compute the similarity score be-
tween the input texts and the regenerated texts. We
selected thresholds that maximized AvgRec, which
were 0.67 for Sentence-Bert and -2.52 for Bart-
large-cnn. The classification rule is that the texts
with scores greater than the threshold will be clas-
sified as LGT, while the texts with scores less than
or equal to the threshold will be classified as HWT.
The third method is to directly prompt ChatGPT in
Appendix D, which mimic the fine-tuning process
of PTCV and RC. The final results shown in Table
6 demonstrate that the other distinguishing meth-
ods performed worse than IPAD, highlighting the

superior effectiveness of the IPAD Distinguishers.
Compare with DPIC. DPIC first uses a zero-
shot prompt inverter to generate prompts, then ap-
plies a Siamese encoder and classifier to measure
similarity between the embeddings of the original
and regenerated texts. However, the classifier’s
reliance on embedding similarity is ambiguous,
as similar texts may stem from different prompts.
IPAD addresses this by fine-tuning directly on raw
texts and reformulating the task as a logical reason-
ing problem as shown in the instructions of PTCV
and RC. Our trained Prompt Inverter outperforms
DPIC’s generic zero-shot method as shown in Ta-
ble 5, and IPAD also achieves better performance
than DPIC overall, as results shown in Appendix
F.

3.3 Interpretability Assessment of IPAD
To assess the explainability improvement of IPAD,
we designed an interpretability assessment with ten
participants evaluating one HWT and one LGT ar-
ticle. We used IPAD version 2 due to its superior
OOD performance and attack resistance. Partici-
pants compared three online detection platforms678

with IPAD’s process (which displayed input texts,
predicted prompts, regenerated texts, and final
judgments). After evaluation, participants rated
IPAD on four key explainability dimensions. Trans-
parency received strong ratings (40%:5, 60%:4),
with participants appreciating the visibility of inter-

6https://www.scribbr.com/ai-detector/
7https://quillbot.com/ai-content-detector
8https://app.gptzero.me/



Method LongWriter Code-Feedback Math Average

DetectLLM (LRR) 32.1 29.0 30.2 30.43
DetectLLM (NPR) 41.2 45.9 56.0 47.7
Binoculars 82.1 84.6 89.4 85.4
Fast-DetectGPT 12.0 11.1 15.1 12.7
Rob-Base 81.5 89.2 82.1 84.3
IPAD 97.5 92.7 95.6 95.27

Table 4: Detection Accuracy (MachineRec %) on three structured OOD datasets

Figure 3: Ablation study. Evaluating Fine-tune only on Input, Fine-tune only on Prompt, Prompt Inverter +
PTCV, Prompt Inverter + RC, and IPAD on In-distribution datasets, standard OOD datasets, and attacked OOD
datasets.

mediate processes. Trust scores were more varied
(10%:3, 70%:4, 20%:5), but IPAD was generally
considered more convincing than single-score de-
tectors. Satisfaction was mixed (30%:3, 30%:4,
40%:5), with participants acknowledging better de-
tection but raising concerns about energy efficiency
since IPAD runs three LLMs. Debugging received
unanimous 5s, as participants could easily analyze
the predicted prompt and regenerated text to ver-
ify the decision-making process. If needed, users
could refine the generated content by adjusting in-
structions, such as specifying a word count, making
IPAD a more effective and user-friendly tool com-
pared to black-box detectors. We further analyzed
the different linguistic features of HWT prompts
and LGT prompts as illustrated in Appendix G.

4 Related Work

4.1 AI detectors Methods and challenges

AI text detection methods can be broadly catego-
rized into four approaches (Wu et al., 2025): wa-
termarking, statistics-based methods, neural-based
methods, and human-assisted methods.

Watermarking technology inserts specific pat-
terns into training datasets (Shevlane et al., 2023;
Gu et al., 2022) or manipulates the model output
during inference to embed a watermark (Lucas and
Havens, 2023). However, watermarking needs to
access the LLM deployment and can face attacks,
such as identifying and erasing the watermark (Hou
et al., 2024). Statistics-based methods analyze
inherent textual features to identify language pat-
terns (Kalinichenko et al., 2003; Hamed and Wu,
2023), but their effectiveness depends on corpus
size and model diversity (Wu et al., 2025). Some
other statistical methods use n-gram probability di-



Metric LGT HWT
DPIC PE IPAD DPIC PE IPAD

Bart-large-cnn -2.12 -2.23 -1.84 -2.47 -2.39 -2.22
Sentence-Bert 0.46 0.58 0.69 0.42 0.53 0.57
BLEU 5.61E-05 3.21E-04 0.24 8.75E-06 2.56E-08 0.13
ROUGE-1 0.04 0.25 0.51 0.06 0.13 0.39

Table 5: Comparison of prompt inverters on the similarities of the original prompts and the predicted prompts on
LGT and HWT.

Distinguish Method HumanRec MachineRec AvgRec
Sentence-Bert (Thr. 0.67) 61.20 95.20 78.20
Bart-large-cnn (Thr. -2.52) 42.60 97.20 69.90
Prompt to ChatGPT 33.20 64.50 48.85
IPAD 98.50 100.00 99.25

Table 6: Comparison of distinguishers on HumanRec, MachineRec, and AvgRec (%).

vergence (Yang et al., 2024b) or similarity between
original and revised texts (Mao et al., 2024; Zhu
et al., 2023) while still face robustness challenges
under adversarial attacks (Wu et al., 2025). Neural-
based methods such as RoBERTa (Liu et al.,
2020), Bert (Devlin et al., 2019), and XLNet (Yang
et al., 2019) have been robust in domain-specific
tasks. Adversarial learning techniques are increas-
ingly being used (Yang et al., 2024a) to increase
effectiveness in attacked datasets.

In addition to automated methods, human in-
volvement plays a key role in detecting AI-
generated text (Wu et al., 2025). Human-assisted
detection leverages human intuition and expertise
to identify inconsistencies such as semantic errors
and logical flaws that may not be easily caught
by algorithms (Uchendu et al., 2023; Dugan et al.,
2023). Moreover, given the challenges of current
AI detection tools, which often lack verifiable evi-
dence (Chaka, 2023), human involvement becomes
even more critical to ensure the reliable and ex-
plainable detection.

4.2 Prompt Inverter techniques and
applications

Prompt extraction techniques aim to reverse-
engineer the prompts that generate specific out-
puts from LLMs. Approaches include black-box
methods like output2prompt (Zhang et al., 2024a),
which extracts prompts based on model outputs
without access to internal data, and logit-based
methods like logit2prompt (Mitka, 2024), which
rely on next-token probabilities but are constrained
by access to logits. Adversarial methods can by-
pass some defenses but are model-specific and frag-

ile (Zhang et al., 2024c). Despite the success of
some zero-shot LLM-inversion based methods (Li
and Klabjan, 2024; Yu et al., 2024), they are mostly
naive usage of prompting LLMs, which makes
them poor in prompt extraction accuracy and ro-
bustness.

5 Conclusion

This paper introduces IPAD (Inverse Prompt
for AI Detection), a framework consisting of a
Prompt Inverter that identifies predicted prompts
that could have generated the input text, and two
Distinguishers that examines how well the in-
put texts align with the predicted prompts. One
is the Prompt-Text Consistency Verifier (PTCV)
which evaluates direct alignment between predicted
prompts and input text, and the other is Re-
generation Comparator (RC) that examines con-
tent similarity by comparing input texts with the
corresponding regenerated texts. Empirical eval-
uations demonstrate that IPAD outperforms the
strongest baselines by 9.05% (Average Recall) on
in-distribution data, 12.93% (AUROC) on out-of-
distribution (OOD) data, and 5.48% (AUROC) on
attacked data. The combination of the two modules
suggests that combining self-consistency checks
of generative models with multi-step reasoning for
evidential explainability holds promise for future
AI detection systems in real-world scenarios. An
interpretability assessment reveals that IPAD en-
hances trust and transparency by allowing users to
examine decision-making evidence.



Limitations

While IPAD demonstrates SOTA performance, two
limitations warrant discussion: (1) The Prompt In-
verter may not fully reconstruct prompts contain-
ing explicit in-context learning examples, as it pri-
oritizes semantic alignment over precise syntactic
replication. (2) While IPAD achieves strong perfor-
mance across diverse datasets, it relies on LLMs,
making it more computationally expensive com-
pared to lightweight detectors such as RoBERTa
or HC3. However, compared other detectors com-
pared with LLMs, such as DPIC, IPAD is more
lightweight since it calls the open-sources light-
weight Phi-3 model.
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The first three datasets aims to enhance the gen-
eral querying capability of the Prompt Inverter,
and are all released under the MIT license. All
the samples we used are the same to the samples
randomly selected in (Zhang et al., 2024a). The
last dataset aims to enhance the familiarity of the
Prompt Inverter with the data of the essay to de-
tect the LLM-generated essays, and are created and
examined by Koike et al. (2024), We specifically
used the LLM-generated essays and problem state-
ments for this supervised fine-tuning (SFT). There
are 45,400 training pairs in total.

Given that essay data are diverse, we utilize
only the OUTFOX dataset (Koike et al., 2024).
To adapt this dataset for training our Distin-
guisher, we enhance it to align with the model’s
requirements. The original dataset consists of
14,400 training triplets of essay problem state-
ments, student-written essays, and LLM-generated
essays. To further process the data, we apply the
Prompt Inverter to both student-written and LLM-
generated essays, generating corresponding Pre-
dicted Prompts. These Predicted Prompts are then
used to regenerate texts via ChatGPT, i.e. gpt-3.5-
turbo. Following this procedure, we construct a
total of 28,800 training samples, with an equal dis-
tribution of positive and negative examples (14,400
each).

The final dataset is structured as follows:

B Complete Algorithm

The complete inference pipeline is summarized in
Algorithm 1.

https://doi.org/10.18653/v1/2024.emnlp-main.819
https://doi.org/10.18653/v1/2024.emnlp-main.819
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://openreview.net/forum?id=0o95CVdNuz
https://openreview.net/forum?id=0o95CVdNuz
https://doi.org/10.18653/v1/2024.acl-demos.38
https://doi.org/10.18653/v1/2024.acl-demos.38


Table 7: Instruction, input/output structure, and inference outputs of each fine-tuned module. T is the input text, P
the predicted prompt, and T ′ the regenerated text.

Field Prompt Inverter PTCV RC

Instruction "What is the prompt
P that generates the
Input Text T?"

"Can LLM generate the
input text T through
the prompt P?"

"T ′ is generated by
LLM, determine whether
T is also generated
by LLM with a similar
prompt."

Input T (P, T ) (T ′, T )
Output P "yes"/"no" "yes"/"no"

Output in
Inference

P pPTCV pRC

Algorithm 1 IPAD Detection Procedure
Require: Input text T ; trained modules

finv, fPTCV, fRC; LLM fLLM; fusion weight
w ∈ [0, 1]; threshold τ ∈ [0, 1]

Ensure: Prediction Ŷ ∈ {HWT,LGT} and evi-
dence E

1: P ← finv(T ) {Inverse-prompt prediction}
2: T ′ ← fLLM(P ) {Regenerate text using P}
3: zPTCV ← fPTCV(P, T )

4: pPTCV ←
σ(zPTCV

yes )

σ(zPTCV
yes )+σ(zPTCV

no )

5: zRC ← fRC(T
′, T )

6: pRC ←
σ(zRC

yes)

σ(zRC
yes)+σ(zRC

no )

7: p̂← w · pPTCV + (1− w) · pRC
8: if p̂ > τ then
9: Ŷ ← LGT

10: else
11: Ŷ ← HWT
12: end if
13: E ← (P, pPTCV, pRC, p̂)
14: return (Ŷ , E) =0

C AUROC formula

Since our model predicts binary labels, we follow
the Wilcoxon-Mann-Whitney statistic (Calders and
Jaroszewicz, 2007) to calculate the Area Under Re-
ceiver Operating Characteristtic curve (AUROC):

AUC(f) =

∑
t0∈D0

∑
t1∈D1 1[f(t0) < f(t1)]

|D0| · |D1|

where 1[f(t0) < f(t1)] denotes an indicator
function which returns 1 if f(t0) < f(t1) and 0
otherwise. D0 is the set of negative examples, and
D1 is the set of positive examples.

D Ablation study data structures

Input-only fine-tuning data instructions. "Is
this text generated by LLM?"

Prompt Only fine-tuning data instructions.
"Prompt Inverter predicts prompt that
could have generated the input texts. Is
this prompt predicted by an input texts
written by LLM?"

Ablation Prompt. "Text A is generated
by an LLM. Determine whether Text B is
also generated by an LLM using a similar
prompt. Meanwhile, determine whether Text
B could have been generated from Prompt
C using an LLM. Answer with YES or NO."

E DPIC (decouple prompt and intrinsic
characteristics) Prompt Extraction
Zero-shot Prompts (Yu et al., 2024)

"I want you to play the role of the
questioner. I will type an answer in
English, and you will ask me a question
based on the answer in the same language.
Don’t write any explanations or other
text, just give me the question. <TEXT>.".

F Comparison with DPIC

Since DPIC has not released its code, data, or mod-
els, we are unable to independently evaluate the
performance of its classifier. Consequently, we
rely on the reported results in the DPIC paper and
construct a comparable dataset following their de-
scribed settings to enable a fair comparison with
IPAD. However, due to these limitations, we are
unable to apply DPIC to additional datasets for
broader evaluation.

To assess the generalization of IPAD, we re-
construct the following datasets, each containing



200 randomly sampled examples: XSum, Writ-
ingPrompts, and PubMedQA. For each dataset,
we generate texts using three large language mod-
els: ChatGPT (gpt-3.5-turbo), GPT-4 (gpt-4),
and Claude 3 (claude-3-opus-20240229). Fur-
thermore, the XSum datasets generated by these
three models are augmented using two attack meth-
ods—DIPPER and Back-Translation—resulting
in a total of 15 evaluation datasets.

Based on the experimental results, IPAD per-
forms well and exhibits notable resistance to adver-
sarial attacks.

IPAD open-sourced all the fine-tuned models,
including the Prompt Inverter, and the two versions
of distinguishers. Therefore, all the experiment
results can be validated and reproduced.

G Different Linguistic Features of HWT
prompts and LGT prompts

This subsection of the evaluation aims to explore
the linguistic features of prompts generated by
HWT and LGT through the Prompt Inverter. We
analyzed 1000 samples generated by HWT and
1000 samples generated by LGT, which are ran-
domy selected from both in-distribution data and
OOD.

The analysis is first conducted using the Lin-
guistic Feature Toolkik (lftk)9, a commonly used
general-purpose tool for linguistic features extrac-
tion, which provides a total of 220 features for text
analysis. Upon applying this toolkit, we identified
20 features with significant differences in average
values between the two groups, out of which 3
features showed statistically significant differences
with p-values less than 0.05. These 3 differences
can be summarized as one main aspects: syn-
tactic complexity. Beyond these, we referred to
the LIWC framework 10, which defines 7 function
words variables and 4 summary variables. By com-
paring the difference, two of these 11 features is
significantly distinguishable: the pronoun usage
and the level of analytical thinking.

One of the primary distinctions between the
HWT prompts and the LGT prompts is sentence
complexity. LGT prompts are typically more com-
plex, characterized by longer sentence lengths
(mean value of 1.514 and 1.794), higher syllable
counts (mean values of total syllabus three are
1.572 and 3.042), and more stop-words (mean

9https://lftk.readthedocs.io/en/latest/
10https://www.liwc.app/

values of 9.88 and 10.045). HWT prompts, on
the other hand, are characterized by shorter, less
complex sentences that are easier to process and
understand.

Beyond the differences in syntactic complexity,
we also explored variables in LIWC. We did the
difference comparison by using HWT and LGT
prompts as inputs for ChatGPT, for example, in-
structing with the prompts ’determine the pronoun
usage of this sentence, answer first person, second
person, or third person’ and ’determine the level
of analytical thinking of these sentences, answer a
number from 1 to 5’. The results show that there are
distinguish difference in pronoun usage and analyt-
ical thinking level. The HWT prompts frequently
use second-person pronouns (e.g., ’you’) - 75 oc-
currences per 1,000 prompts - due to the subjective
tone often employed in HWT. In contrast, LGT
prompts primarily feature first- and third-person
pronouns, with second-person pronouns appearing
only 2 per 1,000 prompts. LGT prompts typically
present instructions and questions in a more objec-
tive manner. LGT prompts show higher analytical
thinking levels than HWT prompts. With level 1
as the lowest and level 5 as the highest, LGT has
68.9% of level 4 and 24.3% of level 5, but HWT
has only 48.0% of level 4, and 0.8% of level 5. It
suggests that LGT prompts encourage more ana-
lytical thinking, while HWT prompts tend to focus
more on concrete examples, with less emphasis on
critical analysis.

H IPAD and DPIC prompt inverter
examples



Table 8: AUROC comparison across tasks (XSum, Writing, PubMed) for ChatGPT, GPT-4, and Claude 3 using
various prompt extraction methods.

Method ChatGPT GPT-4 Claude 3
XSum Writing PubMed Avg. XSum Writing PubMed Avg. XSum Writing PubMed Avg.

DPIC (ChatGPT) 1.0000 0.9821 0.9092 0.9634 0.9996 0.9768 0.9438 0.9734 1.0000 0.9950 0.9686 0.9878
DPIC (Vicuna-7B) 0.9976 0.9708 0.8990 0.9558 0.9986 0.9644 0.9394 0.9674 0.9992 0.9943 0.9690 0.9875
IPAD (Version 1) 0.9850 0.9800 0.9250 0.9633 1.0000 0.9700 0.9700 0.9800 1.0000 0.9800 0.9750 0.9850
IPAD (Version 2) 1.0000 0.9850 0.9800 0.9883 1.0000 0.9800 0.9500 0.9767 1.0000 0.9950 1.0000 1.0000

Table 9: AUROC comparison under generation perturbation settings (DIPPER, Back-translation) for each model.

Method ChatGPT GPT-4 Claude 3
Ori. DIPPER Back-trans. Ori. DIPPER Back-trans. Ori. DIPPER Back-trans.

DPIC (ChatGPT) 1.0000 1.0000 0.9972 0.9996 0.9991 0.9931 1.0000 0.9996 0.9878
DPIC (Vicuna-7B) 0.9976 0.9980 0.9889 0.9986 0.9969 0.9903 0.9992 0.9996 0.9979
IPAD (Version 1) 0.9850 0.8900 0.9850 1.0000 0.8950 0.9900 1.0000 0.9250 0.9950
IPAD (Version 2) 1.0000 0.9750 0.9950 0.9800 0.9750 0.9950 1.0000 1.0000 1.0000



Table 10: IPAD and DPIC prompt inverter examples

Input IPAD DPIC
The IPC opened proceedings against the National Paralympic Committee

of Russia after a report claimed the country had operated a widespread

doping programme.A decision on any ban will come in the week com-

mencing 1 August.The International Olympic Committee (IOC) has

opted against a blanket ban."I can assure you that our board will take the

right decision in the interest of sport and the interest of the Paralympic

movement moving forward," said Craven.On Sunday, the IOC said it

would leave it up to the governing bodies of individual sports to decide

if Russian competitors are clean and should be allowed to take part.But

Craven, himself a member of the IOC, was critical of that decision and

said the IPC would not necessarily follow suit."I am disappointed in their

decision, but that is a personal view," he added."We have to acknowledge

their right to take such a decision. This is ultra-serious. I don’t think

there has been a situation in the past where you have had institutional

doping on such a scale."We believe the Russian NPC is either unwilling

or unable to uphold the IPC anti-doping code, which is in line with the

World Anti-Doping Agency code, so that is what they have to respond

to."Canadian law professor Richard McLaren’s report, published last

week, claimed Russia operated a state-sponsored doping programme

from 2011 to 2015.The IPC said it acted after McLaren provided the

names of the athletes associated with the 35 "disappearing positive sam-

ples" from the Moscow laboratory highlighted in the report.Nineteen

samples potentially doctored as part of the sample-swapping regime

during the 2014 Sochi Paralympic Winter Games have been sent for

further analysis.Russia will have up to 21 days to appeal against any IPC

decision, with the Rio Paralympics due to begin on 7 September.

Explain the actions

taken by the Inter-

national Paralympic

Committee against the

Russian Paralympic

Committee and the

reasons behind these

actions.

What were the key

findings of Richard

McLaren’s report

regarding Russia’s

doping programme?



Input IPAD DPIC
The world came crashing down in minutes. Many of us were asleep when

it happened, and did n’ t find out about it until later. When we awoke,

we saw the carnage spread through the land, and we wept. There were n’

t many of us left, but what few there were managed to find each other

over the Internet. We gathered together in what remained of a major

city on the East Coast of what was once the United States. It took us

time, but we eventually began to rebuild. The brightest among those who

survived thought to ask " Why, " while most of us were content with just

surviving. Years passed, and no link was found between us. Eventually,

those who had the question resigned themselves to the fact that they

would never know. They went to their new homes, and tried to integrate

themselves as best they could into the new society. It was n’ t until 14

years after the event happened that the connection was discovered, quite

by accident. One of the former questioners had taken a job as a mover,

and was helping a fellow survivor move into a newly cleaned house.

Sticking out of one of the boxes was the missing link. " Oh, you used to

shop at Bad Dragon too? " Moments later, the realization struck him.

Write an essay about

a time when you and

your friends were the

only survivors of a

catastrophic event that

wiped out most of the

world’s population. De-

scribe how you and your

friends coped with the

aftermath and the chal-

lenges you faced in re-

building society.

What was the event

that caused the world to

come crashing down?

In an alternate timeline, a second sentient race evolved in parallel with

humans. These beings, known as the Avralians, possessed extraordinary

abilities and resided in the hidden corners of the Earth. For centuries,

unaware of each other’s existence, humans and Avralians progressed in-

dependently. However, fate intervened one fateful day when an Avralian

girl named Elara stumbled upon a group of human explorers deep in

the forest. With wide-eyed wonder, she approached them cautiously.

The humans, initially startled, soon recognized Elara’s unique nature.

They befriended her, and through her, the two races began to unravel the

secrets of their intertwined existence. As time passed, harmony emerged

between the two races, and mutual respect solidified their bond. The

Avralians shared their ancient knowledge and wisdom, while humans

brought innovation and technology. Together, they worked towards a

world where unity triumphed over differences. However, not all were

convinced of this newfound alliance. A faction within the human popu-

lation, fueled by fear and mistrust, sought to exploit Avralian abilities

for personal gain. Conflict brewed, threatening the fragile equilibrium.

Elara, fueled by her pure heart and belief in unity, emerged as a beacon

of hope. With a small band of supporters, she embarked on a journey

to bridge the gap and foster understanding. Battles were fought, sac-

rifices made, but ultimately, Elara’s message prevailed. Humans and

Avralians learned to cherish their diversity and forge a future marked

by collaboration and empathy. The world transformed into a tapestry of

coexistence, where magnificent cities stood as testaments to unity and

cultural exchange. Humans and Avralians moved freely through bustling

markets, sharing knowledge, stories, and laughter. Together, they faced

global challenges, from climate crises to epidemics, with unwavering

determination.

Write an essay describ-

ing an alternate time-

line in which a second

sentient race evolved in

parallel with humans,

exploring the potential

interactions and con-

flicts between the two

species.

How did Elara manage

to convince both races

to embrace unity despite

the conflict?



Input IPAD DPIC
Both times I had the banana pepper appetizer, which is great and goes

really well with the FRESH and delicious bread and cheese they give

you at the start of your meal. nnFor entrees, me and my girlfriend have

had mixed experience. I’ve had the fish sandwich (very good) and the

eggplant parm sandwich (okay). My girlfriend got the salad with bread

and basil on it, but the basil was over powering and the bread was soggy

with the dressing. nnThe service is also a mixed bag. The first time our

server went out of her way to take care of us and even MADE me cocktail

sauce for my fish sandwich. The second time, the server was lackluster,

didn’t know anything about the menu and wasn’t able to take proper

care of us. nnI would return to Papa J’s, but I my terrible experience last

time isn’t enough to say it would be my first pick of places to eat around

Carnegie/Robinson.

This was a great place to

stop for a quick lunch.

The lines were not too

long for the sandwiches

they had and they had a

wide selection of bagels

if you wanted a bagel

sandwich. With a great

front patio for enjoying

your food, it was a relax-

ing place to stop. Write

a review for it.

What made the banana

pepper appetizer stand

out to you compared to

other starters?

Abstract: This article explores the longstanding debate between Ein-

stein’s theory of general relativity and Maxwell’s theory of electro-

magnetism regarding the nature of gravitation. The central question

addressed is whether gravitation is best understood as a curvature of

space, a field in flat space, or perhaps a combination of both concepts.

Drawing upon a comprehensive analysis of the theoretical framework

and empirical evidence, the article presents a nuanced examination of

the arguments put forth by Einstein and Maxwell.The article begins by

discussing Einstein’s general theory of relativity, which proposes that

gravitation arises from the curvature of spacetime caused by mass and

energy. It outlines the mathematical formalism used to describe this

curvature and highlights the key predictions and experimental confirma-

tions of the theory. Conversely, the article delves into Maxwell’s elec-

tromagnetic theory, which suggests that gravitation may be explained

as a fundamental force mediated by a field propagating through flat

space, similar to electromagnetic fields.Further, the article explores the

distinctive features and limitations of each theory. It scrutinizes the

conceptual foundations, mathematical rigor, and empirical support for

both approaches, highlighting their respective strengths and weaknesses.

Moreover, the article examines attempts to reconcile the two theories into

a unified framework, such as the development of theories of quantum

gravity.By critically evaluating the arguments and evidence from both

camps, this article aims to offer a comprehensive assessment of the ques-

tion regarding the nature of gravitation. Based on the analysis presented,

it becomes evident that both Einstein’s theory of general relativity and

Maxwell’s theory of electromagnetism provide valuable insights into the

phenomenon of gravitation.

Write a paper abstract

to explain the debate

between Einstein’s the-

ory of general relativ-

ity and Maxwell’s the-

ory of electromagnetism

regarding the nature of

gravitation, and argue

for which theory is

more likely to be correct

based on the evidence

presented in the essay

statement.

What are the main chal-

lenges in reconciling

Einstein’s theory of

general relativity with

Maxwell’s theory of

electromagnetism in

explaining gravitation?
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