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In the supplementary, we first discuss the experimental details and hyperparameters in Section A.
Next, we analyze the impact of different numbers of diffusion steps N on the replanning process in
Section B, and further present the visualization in RLBench in Section C. Finally, we discuss how to
compute the likelihood in Section D.

A Experimental Details

1. Our architecture is built based on Diffuser [2] and Decision Diffuser [1]. In detail, our architecture
comprises a temporal U-Net structure with six repeated residual networks. Each network consists
of two temporal convolutions followed by GroupNorm [6], and a final Mish nonlinearity [4].
Additionally, We incorporate timestep and conditions embeddings, which are both 128-dimensional
vectors produced by MLP, within each block.

2. In RLBench, we exploit the image encoder from the pre-trained CLIP [5], followed by a 2-layered
MLP with 512 hidden units and Mish activations.

3. The model is trained using Adam optimizer [3] with a learning rate of 2e−04 and a batch size of
64 for 1e6 training steps.

4. The planning horizon is set to 128 in Maze2D//Multi2D U-Maze, 256 in Maze2D//Multi2D
Medium, 256 in Maze2D//Multi2D Large, 64 in Stochastic Environments, and 64 in RLBench.

5. We use a threshold of 0.7 for Replan from scratch and a threshold of 0.5 for Replan with future.

6. The probability ϵ of random actions is set to 0.03 in Stochastic Environments.

7. The diffusion steps i for computing likelihood is set to {5, 10, 15} in Maze2D and Stochastic
Environments and {10, 20, 30} in RLBench.

8. The total number of diffusion steps, corresponding to the number of diffusion steps for Replan
from scratch is set to 256 in Maze2D, 200 in Stochastic Environments, and 400 in RLBench. And
the number of diffusion steps for Replan with future is set to 80 in Maze2D, 40 in Stochastic
Environments, and 100 in RLBench.

9. We perform the whole experiment with a total of three Tesla V100 GPUs.

Environment Diffuser RDM (N = 40) RDM (Ours) RDM (N = 256)
Multi2D Large 129.4 160.9 195.4 197.7

Table 1: Replanning with different diffusion steps. RDM with N = 40 performs better than Diffuser. Our
method RDM with N = 80 further improves performance and is much more efficient than RDM with N = 256.
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(a) Problematic Sample (b) N = 40 (c) N = 80 (d) N = 256

Figure 1: Samples of replanning with different diffusion steps. (a) demonstrates the problematic trajectory.
(b) presents the sampled trajectory after replanning with N = 40. The sampled trajectory still leads to the
collision. (c) presents the sampled trajectory after replanning with N = 80. The trajectory becomes feasible
and avoids collision. (d) shows the sampled trajectory after replanning with N = 256. The trajectory improves
quality but needs much more time.

(a) Problematic Sample (b) N = 40 (c) N = 80 (d) N = 256

Figure 2: Samples of replanning with different diffusion steps. (a) demonstrates the problematic trajectory.
(b)(c) presents the sampled trajectory after replanning with N = 40 and 80. The previously sampled trajectory
is so troublesome that it can’t recover from fast replanning. So the sampled trajectories still lead to the collision.
(d) shows the sampled trajectory after replanning with N = 256. After Replan from scratch, the resampled
trajectory becomes feasible.

B Different Diffusion Steps for Replanning

In this section, we visualize the impact of using different numbers of diffusion steps N to replan
an existing trajectory. Figure 1 illustrates a problematic sampled trajectory after execution. When
N = 40 of replanning, the resampled trajectory still leads to the collision with the wall. However,
with N = 80, which aligns with the number of diffusion steps used in Replan with future, we
observe that the sampled trajectory becomes feasible. For N = 256, corresponding to the number of
diffusion steps used in Replan from scratch, the resampled trajectory shows additional improvement,
but such a procedure is substantially more expensive than our replanning procedure.

We illustrate another example plan which based off likelihood would need to be planned from scratch
in Figure 2. After replanning with N = 40 and N = 80, the trajectories still encounter issues
with colliding with the wall. However, With N = 256, RDM successfully regenerates a completely
different and feasible trajectory through replanning from scratch.

We further evaluate the performance with different replanning steps in Table 1. The results clearly
demonstrate that that RDM consistently outperforms Diffuser in all cases. Remarkably, RDM with
N = 80, corresponding to Replan with future, achieves performance close to RDM with N = 256,
which corresponds to Replan from scratch which is substantially more expensive.

C Comparison between trajectories with and without replanning

In this section, we visualize the execution in the task close box in Figure 3. In the second frame of
Figure 3, we observe that the robotic arm fails to close the box due to insufficient contact between
the gripper and the lid. In Figure 3a, RDM successfully detects the failures and retries to establish
proper contact with the lid. As a result, the gripper successfully closes the box this time. In contrast,
Figure 3b demonstrates the scenario where the arm fails to notice the failures, making the arm persist
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Fail to close box Replan and retry

(a) With our replanning approach

Fail to close box Continue the plan

(b) Without our replanning approach

Figure 3: Comparison between trajectories with and without replanning. (a) Our replanning approach allows
the agent to detect when the robotic arm fails to close the box and instructs it to retry. (b) Without our replanning
approach, the failure goes unnoticed, leading the arm to persist in following the previous, unsuccessful plan.
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(a) i = 60
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(b) i = 30
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(c) i = 15

Figure 4: Different diffusion steps i for computing KL divergence. We estimate the likelihood of trajectory
by computing KL divergence between q(τ i−1 | τ i, τ→k) and pθ(τ

i−1 | τ i). Here, we illustrate the curve of
KL divergence at different environmental steps in Maze2D where the number of total diffusion steps is 256. (a)
When large amounts of noise are added at i = 60, the agent fails to detect any infeasibility as the KL divergence
remains low and consistent. (b) When intermediate amounts of noise are added at i = 30, the agent has the
ability to notice infeasibility but the value of KL divergence is similar to that of feasible trajectories. (c) When
small amounts of noise are added at i = 15, the agent can effectively discern infeasibilities, as the KL divergence
exhibits a clear boundary between feasible and infeasible trajectories.

in the unsuccessful plan. These results demonstrate the capability of RDM to detect failures and
replan a successful trajectory in challenging robotic control tasks.

D How to Compute Likelihood

In this section, we analyze the number of noising steps we should use to estimate the likelihood.
The likelihood estimation is performed by computing the KL divergence between q(τ i−1 | τ i, τ→k)
and pθ(τ

i−1 | τ i) with different magnitudes of noise added at diffusion timesteps i. We analyze the
impact of different diffusion steps i and the corresponding magnitude of noise added for computing
KL divergence in Figure 4. We observe that (1) When large amounts of noise are added at i = 60 the
agent fails to detect any infeasibility, as the KL divergence remains low and consistent. (2) When
intermediate amounts of noise are added at i = 30, the agent has the ability to notice infeasibilities,
but the KL divergence value is similar to that of a feasible trajectory. (3) When small amounts of
noise are added at i = 15, the agent can effectively discern infeasibilities, as the KL divergence
exhibits a clear boundary between feasible and infeasible trajectories. Based on these findings, we
choose smaller values of i for computing the likelihood of trajectories and estimating when to replan.
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E Additional Experimental Results

We show the additional experimental results in the following.

1. We show the results of the comparison between our RDM algorithm and the replanning-
based baseline algorithms (SDM and PRDM) across more tasks. We run experiments using
different intervals or thresholds and measure their computational costs by the total number
of diffusion steps. Notably, RDM consistently outperforms all the baseline algorithms under
the same total diffusion steps (that is, with the same computational budget).

2. We investigate different intervals I for replanning for Diffuser and Decision-Diffuser. We
observe that as the interval decreases (that is replanning is done more frequently), the
performance improves as we expect. However, when the interval is smaller than a certain
value, the performance decreases significantly. For example, in the Maze2D Large domain
shown in Figure VI, the return increases when the interval decreases from 250 to 100,
while it drops when the interval decreases from 100 to 1. The ablation results confirm our
statement that replanning with an interval that is too small (for example, replanning at every
time step) may prevent successful task execution.

3. We also analyze the impact of different thresholds l for the baseline algorithms, SDM and
RDM. As we expect, when l decreases (that is, when replanning is done more frequently),
the performance of all the methods has improved. Despite the performance differences of
the baseline algorithms, we want to emphasize again that under the same computational
budget, our RDM algorithm outperforms all the baseline algorithms.
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Figure 5: Performance vs. To-
tal Diffusion Steps on Maze2D
Large.
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Figure 6: Performance vs. To-
tal Diffusion Steps on Multi2D
Large.
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Figure 7: Performance vs. To-
tal Diffusion Steps on Hopper
Medium-Expert.
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Figure 8: Performance vs. To-
tal Diffusion Steps on Walker2d
Medium-Expert.
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Figure 9: Performance vs. Total
Diffusion Steps on Close Box.
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Figure 10: Different intervals for
Diffuser on Maze2D Large.
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Figure 11: Different intervals for
Decision Diffuser on Close Box.

1 2 3 4 5 6
State Distance Threshold

140

150

160

170

180

No
rm

al
ize

d 
Re

tu
rn

s

Maze2D Large

SDM

Figure 12: Different thresholds
for SDM on Maze2D Large.
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Figure 13: Different thresholds
for SDM on Hopper Medium-
Expert.
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Figure 14: Different thresholds
for RDM on Maze2D Large.
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Figure 15: Different thresholds
for RDM on Close Box.
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Figure 16: Different levels of
stochasticity on Hopper Medium.

(a) interval=255 (b) interval=50 (c) interval=1

Figure 17: Visualization for Diffuser with different intervals. Replanning too frequently will cause some
sub-optimal plans.
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