Learning a manifold from a teacher's demonstrations

By Pei Wang, Arash Givchi and Patrick Shafto

1. Goal: establish a manifold learning approach based on structured data

A main task in learning a manifold is to infer its correct topology. Inspired by human learners, we:

- \checkmark propose two methods to teach the topology of a manifold: isolated data points (individual examples) and sequential data points (demonstrations).
- provide theoretical **bound on the minimal number of** points required for learning a manifold for each method.
- demonstrate that the approach based on **structured** data requires a significantly smaller minimum number of data points.

2. Formalism of teaching-learning algorithms

- Learning algorithm: a class of algorithm *A* that identify the homotopy type of a manifold \mathcal{M} from a set of data sampled from \mathcal{M} .
- **Teaching set**: a collection of data $\mathcal{D}_{\mathcal{A}} \subset \mathcal{M}$ that can be used to recover the homotopy type of \mathcal{M} from at least a learning algorithm $A \subset \mathcal{A}$.
- Minimal teaching number: a teaching set $\mathscr{D}^*_{\mathscr{A}}$ is said to be minimal w.r.t. *M* (or homotopy type of \mathcal{M}) if it contains the least number of data points among all teaching sets. The size of $\mathscr{D}^*_{\mathscr{A}}$ is called the *minimal teaching number*.

Example 1: a unit circle can be taught by three equidistant sampled points as shown below:

Example 2: 9 points showed above is not enough to teach a regular torus. Detail calculation shows that at least 51 points are needed.

• **Question 1:** What does the teacher need to know in order to choose a sequence for demonstration?

Intuition: sufficient data is required to estimate the correct topology in the first place \implies topological reach.

3. Manifold teaching from sample points

Rephrasing pioneering work by *Niyogi et al.*[2008], we have:

• **Teacher:** pass randomly sampled isolated data points $\mathscr{D}_{\mathscr{A}(\epsilon)}$;

• Learner: pick an $\epsilon \in \mathbb{R}^+$, then for each $x \in \mathcal{D}_{\mathscr{A}(\epsilon)}$, makes an ndim ball $B_{\epsilon}(x)$ centered at x of radius ϵ . The union of these balls constitutes the learned space.

Proposition 3.3: Let $\mathcal{M}_g \in \mathbb{R}^3$ be a closed orientable surface with genus g. Then the minimal teaching number for the homotopy type of \mathcal{M}_g with respect to $\mathscr{A}(\epsilon)$ is bounded by 49g + 2.

5. Discussion and Further work

• Question 2: Would learning the topology of a manifold accelerate the learning of geometry afterwards?

• Question 3: What makes a class of algorithms good? and how to quantify such goodness?

4. Manifold teaching from demonstrations

- **Problem:** the locally Euclidean nature of manifolds forces large amount of data for any local to global teaching procedure.
- **Solution:** we propose a method that teaches the topology directly from demonstrations where each demonstration is a sequence of data describing a loop.
- **Teacher:** pass a set of sequential data $\mathscr{D}_{\mathscr{A}(\mathbf{I})}$;
- Learner: pick local structure with proper dimension to connect consecutive sequential data. The obtained space $U_{\mathscr{D}_{\mathscr{A}}}$ is the learned space.
- **Example 3:** the black loop shown in the figure on the left can be taught by $\mathscr{D}_{\mathscr{A}(\mathbf{l})} = \{[a, b, c, d]\}.$ The sequential data informs the learner to connect consecutive points by simple curves. The red and blue curves are two examples of $U_{\mathcal{D}_{\mathscr{A}(\mathbb{D})}}$.
- ✓ Any (oriented) non-contractible 1-dim manifold can be effectively described by a sequence consisting three randomly sampled points.
- ***** Example 4: * A torus can be taught by $\mathscr{D}_{\mathsf{torus}} = [[a_1, a_2, a_3, a_1][b_1, b_2, b_3, b_1][c_1, c_2, c_3, c_1][a_1, a_2, a_3, a_1]]$ * A cylinder can be taught by : $\mathscr{D}_{\text{cylinder}} = \{ [[a_1, a_2, a_3, a_4], [b_1, b_2, b_3, b_1]] \}.$ *A pair of pants can be taught by

 $\mathcal{D}_{\mathsf{pants}} = \{ [[a_1, a_2, a_3, a_6][b_1, b_2, b_3, b_6]], [[a_1, a_4, a_5, a_6][b_1, b_4, b_5, b_6]] \}$

Proposition 3.7: Let $\mathcal{M}_g \in \mathbb{R}^3$ be a closed orientable surface with genus $g \ge 2$. Then the minimal teaching number for of \mathcal{M}_g with respect to $\mathscr{A}(\mathbf{I})$ is bounded by 3g - 3 sequences where each sequence consists of at most 4 data points.