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STOCHASTIC CONTROLLED AVERAGING FOR FEDER-
ATED LEARNING WITH COMMUNICATION COMPRESSION

Xinmeng Huang∗ Ping Li Xiaoyun Li

ABSTRACT

Communication compression has been an important topic in Federated Learning
(FL) for alleviating the communication overhead. However, communication com-
pression brings forth new challenges in FL due to the interplay of compression-
incurred information distortion and inherent characteristics of FL such as partial
participation and data heterogeneity. Despite the recent development, the exist-
ing approaches either cannot accommodate arbitrary data heterogeneity or par-
tial participation, or require stringent conditions on compression. In this paper,
we revisit the seminal stochastic controlled averaging method by proposing an
equivalent but more efficient/simplified formulation with halved uplink commu-
nication costs, building upon which we propose two compressed FL algorithms,
SCALLION and SCAFCOM, to support unbiased and biased compression, re-
spectively. Both the proposed methods outperform the existing compressed FL
methods in terms of communication and computation complexities. Moreover,
SCALLION and SCAFCOM attain fast convergence rates under arbitrary data
heterogeneity without any additional assumptions on compression errors. Exper-
iments show that SCALLION and SCAFCOM outperform recent compressed
FL methods under the same communication budget.

1 INTRODUCTION

Federated learning (FL) is a powerful paradigm for large-scale machine learning (Konečnỳ et al.,
2016; McMahan et al., 2017; Yang et al., 2020) in situations where data and computational resources
are dispersed among diverse clients such as phones, tablets, sensors, banks, hospitals (Kairouz et al.,
2021). FL enjoys the advantage of distributed optimization on the efficiency of computational re-
sources as the local clients conduct computations simultaneously. Moreover, FL provides the first
layer of protection for data privacy as the local data never leaves the local device during training.
Here, we first summarize the significant challenges in algorithmic development and theory of FL:

• Severe data heterogeneity. Unlike in classic distributed training, the local data distribution in
FL can vary significantly (i.e., non-iid clients), reflecting practical scenarios where local data
held by clients is highly personalized (Zhao et al., 2018; Kairouz et al., 2021; Yuan et al., 2023;
Li et al., 2022a). When multiple local training steps are taken, the local models become “bi-
ased” toward minimizing the local losses instead of the global loss, hindering the convergence
quality of the global model (Mohri et al., 2019; Li et al., 2020c;a).

• Partial client participation. Not all clients can always join the training, e.g., due to unstable
connections or active selection (Li et al., 2020a). Consequently, only a fraction of clients are
involved in each FL training round to interact with the central server. This slows down the
convergence of the global model due to less accessible data/information per round (Charles
et al., 2021; Chen et al., 2022; Li & Li, 2023).

• Heavy communication workload. The cost of model transmission can be a major challenge in
FL systems with limited bandwidth (e.g., portable wireless devices), especially for models with
millions or billions of parameters. Therefore, communication compression, a technique that
aims to reduce the volume of information transmitted, has gained growing research interests in
FL (Basu et al., 2019; Reisizadeh et al., 2020; Haddadpour et al., 2021; Li & Li, 2023).

The classic FL approach, FEDAVG (Konečnỳ et al., 2016; McMahan et al., 2017; Stich, 2019),
performs multiple gradient-descent steps within each accessible client before communicating with
the central server. FEDAVG is notably hampered by data heterogeneity and partial client participa-
tion (Karimireddy et al., 2020b; Li et al., 2020c; Yang et al., 2021) due to the “client drift” effect.
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Furthermore, when communication compression is employed, the adverse effect of data heterogene-
ity can be amplified due to the interplay of client drift and inaccurate message aggregation caused by
compression (Basu et al., 2019; Reisizadeh et al., 2020; Haddadpour et al., 2021; Mitra et al., 2021;
Malekijoo et al., 2021; Li & Li, 2023); see Figure 3 in Appendix A for illustration. This naturally
raises the question regarding the theory and utility of compressed FL approaches:

Can we design FL approaches that accommodate arbitrary data heterogeneity, local updates,
and partial participation, as well as support communication compression?

None of the existing algorithms have successfully achieved this goal in non-convex FL, despite a
few studies in the strongly-convex and deterministic scenarios (Grudzień et al., 2023; Youn et al.,
2022; Condat et al., 2023; Sadiev et al., 2022). For instance, FEDPAQ (Reisizadeh et al., 2020),
FEDCOM (Haddadpour et al., 2021), QSPARSE-SGD (Basu et al., 2019), LOCAL-SGD-C (Gao
et al., 2021) consider compressed FL algorithms under iid clients. FEDCOMGATE (Haddadpour
et al., 2021), designed for unbiased compressors, does not support biased compressors, and their
analysis does not consider partial client participation. FED-EF (Li & Li, 2023) focuses on biased
compression with error feedback (EF) (Seide et al., 2014; Karimireddy et al., 2019) and partial client
participation. However, the convergence analysis requires the assumption of bounded gradient dis-
similarity on the data heterogeneity and shows an extra slow-down factor under partial participation,
suggesting a theoretical limitation of EF in FL. Moreover, both Haddadpour et al. (2021) and Li &
Li (2023) require assumptions on compression errors (see Appendix C.4 for more details).

1.1 MAIN RESULTS AND CONTRIBUTIONS

We develop SCALLION and SCAFCOM, two compressed FL algorithms for unbiased and bi-
ased compressors, respectively, that are practical to implement, robust to data heterogeneity and
partial participation, and exhibit superior theoretical convergence. Table 1 presents the comparison
of convergence rates of our results with prior works. Specifically, the main contributions are:

• We revisit SCAFFOLD (Karimireddy et al., 2020b) and propose a simplified formulation. The
new implementation reduces the uplink communication cost by half, requiring each client to
transmit only one increment variable (of the same size as the model), instead of two variables.

• Builing on the new formulation, we propose SCALLION method employs unbiased com-
pressors for the communication of increment variables. We establish its convergence result for
non-convex objectives. SCALLION obtains the state-of-the-art communication and computa-
tion complexities for FL under unbiased compressors and supports partial client participation.

• We further develop SCAFCOM which enables biased compressors for broader applications.
Local momentum is applied to guarantee fast convergence and improve empirical performance.
The communication and computation complexities of SCAFCOM improve prior results by
significant margins, particularly when compression is aggressive.

• We conduct experiments to illustrate the effectiveness of SCALLION and SCAFCOM. Our
empirical results show that the proposed methods achieve comparable performance to full-
precision FL methods with substantially reduced communication costs, and outperform recent
compressed FL methods under the same communication budget.

Notably, our analysis only requires the smoothness of objectives and bounded variance of stochastic
gradients, without additional assumptions on data heterogeneity or compression errors, unlike prior
works (Appendix C.4). To our best knowledge, SCALLION and SCAFCOM are the first stochas-
tic FL methods that exhibit robustness to arbitrary data heterogeneity, partial participation, local up-
dates, and accommodate communication compression relying solely on standard compressibilities.

2 RELATED WORK

Communication compression & error feedback. Two popular approaches are commonly em-
ployed to compress communication in distributed systems: quantization and sparsification, which
are often modeled as unbiased or biased operators. Notable quantization examples include
Sign (Seide et al., 2014; Bernstein et al., 2018), low-bit fixed rounding (Dettmers, 2016), random
dithering (Alistarh et al., 2017), TernGrad (Wen et al., 2017), and natural compression (Horvóth
et al., 2022). Sparsification compressors work by transmitting a small subset of entries from the
input vector (Wangni et al., 2018; Stich et al., 2018). In distributed training, unbiased compressors
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Table 1: The comparison of compressed FL algorithms under full participation. The upper half of the table
is for unbiased compression, and the bottom half is for biased compression. N is the number of clients; ϵ is
a target for the stationarity E[∥∇f(x̂)∥2] ≤ ϵ; ω and q are compression-related parameters (see Definitions 1
& 2). #A. Comm. is the total number of communication rounds when σ → 0 asymptotically while #A.
Comp. denotes the total number of gradient evaluations required per client when ϵ → 0 asymptotically (see
Section 4.3 for details); P.P. denotes allowing partial client participation; D.H. denotes allowing arbitrary data
heterogeneity; S.C. denotes only requiring standard compressibilities (i.e., Definitions 1 & 2). Constants like
objectives’ smoothness L and stochastic gradients’ variance σ2 are omitted for clarity.

Algorithm #A. Comm. #A. Comp. P.P. D.H. S.C.

FEDPAQ (Reisizadeh et al., 2020) 1+ω/N
ϵ

♮ 1+ω
Nϵ2 ✔ ✗ ✔

FEDCOM (Haddadpour et al., 2021) 1+ω/N
ϵ

♮ 1+ω
Nϵ2 ✗ ✗ ✔

FEDCOMGATE (Haddadpour et al., 2021) 1+ω
ϵ

1+ω
Nϵ2 ✗ ✔ ✗

SCALLION (Theorem 1) 1+ω
ϵ

1+ω
Nϵ2

✔ ✔ ✔

SCAFCOM† (Corollary 2) 1+ω
ϵ

1
Nϵ2

✔ ✔ ✔

QSPARSE-SGD (Basu et al., 2019) 1
(1−q)2ϵ

1
Nϵ2 ✗ ✗ ✔

LOCAL-SGD-C (Gao et al., 2021) K
(1−q)2ϵ

1
Nϵ2 ✗ ✗ ✔

FED-EF (Li & Li, 2023) 1
(1−q)2ϵ

1
N(1−q)2ϵ2 ✔ ✗ ✗

SCAFCOM (Theorem 2) 1
(1−q)ϵ

1
Nϵ2

✔ ✔ ✔

♮ The communication complexity requires homogeneous (iid) clients, though slightly better than ours.
† The results are obtained by transforming unbiased compressors into biased compressors through scaling.

usually can be applied in place of the full-precision gradients to get reasonable convergence and em-
pirical performance. However, directly using biased compressors may slow down convergence or
even lead to divergence (Beznosikov et al., 2020; Li & Li, 2023). To mitigate this, the technique of
error feedback (EF) is first proposed in Seide et al. (2014), which has proven effective in addressing
biased compressors (Stich et al., 2018; Karimireddy et al., 2019) and has inspired many subsequent
works (Wu et al., 2018; Alistarh et al., 2018; Li et al., 2022b). Moreover, a variant scheme of EF
called EF21 is introduced recently (Richtárik et al., 2021). EF21 compresses increments of deter-
ministic gradients and offers superior theoretical guarantees compared to vanilla error feedback.

Heterogeneity and compression in FL. Federated learning has gained great prominence since the
introduction of FEDAVG, proposed by McMahan et al. (2017) to improve the communication effi-
ciency of classic distributed training. Subsequent studies reveal its susceptibility to data heterogene-
ity (i.e., non-iid clients) due to the “client-drift” effect, particularly when not all clients participate in
training (Stich, 2019; Yu et al., 2019b; Wang & Joshi, 2021; Lin et al., 2020; Wang et al., 2020b; Li
et al., 2020c; Yang et al., 2021). Substantial efforts have been made to address client heterogeneity in
FL (Liang et al., 2019; Li et al., 2020b;a; Wang et al., 2020a; Zhang et al., 2021; Haddadpour et al.,
2021; Guo et al., 2023; Karimi et al., 2023; Cheng et al., 2024) and develop FL protocols involv-
ing variance reduction techniques or adaptive optimizers (Karimireddy et al., 2020b; Reddi et al.,
2021; Chen et al., 2020). Notably, SCAFFOLD introduced by Karimireddy et al. (2020b) leverages
control variables to mitigate the impact of data heterogeneity and partial client participation.

To further reduce communication costs, communication compression has been integrated into FL,
leading to methods such as FEDPAQ (Reisizadeh et al., 2020), FEDCOMGATE (Haddadpour et al.,
2021), FED-EF (Li & Li, 2023). Due to information distortion incurred by compression, those com-
pressed FL methods either lack the robustness to data heterogeneity and partial participation, or rely
on stringent conditions of compressors, surpassing standard unbiased/contractive compressibility.

Federated learning with momentum. The momentum mechanism in optimization traces back to
Nesterov’s acceleration (Yurri, 2004) and the heavy-ball method (Polyak, 1964), which have been
extended to stochastic optimization (Yan et al., 2018; Yu et al., 2019a; Liu et al., 2020) and other
domains (Yuan et al., 2021; He et al., 2023b;a; Chen et al., 2023; Fatkhullin et al., 2023). In the
context of FL, momentum has been widely incorporated and shown to enhance performance (Wang
et al., 2020b; Karimireddy et al., 2020a; Khanduri et al., 2021; Das et al., 2022; Cheng et al., 2024).

3 PROBLEM SETUP

Formally, in federated learning, we aim to minimize the following objective:

min
x∈Rd

f(x) :=
1

N

N∑
i=1

fi(x) where fi(x) := Eξi∼Di
[F (x; ξi)],
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where ξi represents a local data sample of client i following data distribution Di, F (x; ξi) represents
the loss function evaluated at model x and sample ξi, and fi(x) is the local objective w.r.t. Di. In
practice, the data distributions Di across clients may vary significantly (referred to as data hetero-
geneity), resulting in the inequality fi(x) ̸= fj(x) for different clients i and j. Consequently, a
globally stationary model x⋆ with ∇f(x⋆) = 0 may not be a stationary point of the local objectives.
In contrast, if the clients are homogeneous (i.e. following a common data distribution D), we would
have f1(x) = · · · = fN (x) and a globally stationary model would also be stationary for each client.
Throughout the paper, we use ∥·∥ to denote the ℓ2 vector norm and use [N ] to denote {1, . . . , N} for
N ∈ N+. The notation ≲ denotes inequalities that hold up to numeric numbers; ≳ and ≍ are utilized
similarly. We state the following standard assumptions required for our convergence analysis.

Assumption 1. Each local objective fi has L-Lipschitz gradient, i.e., for any x, y ∈ Rd and 1 ≤
i ≤ N , it holds that ∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥.

Assumption 2. There exists σ ≥ 0 such that for any x ∈ Rd and 1 ≤ i ≤ N , Eξi [∇F (x; ξi)] =
∇fi(x) and Eξi [∥∇F (x; ξi)−∇fi(x)∥2] ≤ σ2, where ξi ∼ Di are iid local samples at client i.

4 SCALLION: UNBIASED COMPRESSED COMMUNICATION

In this section, we first revisit the seminal SCAFFOLD algorithm (Karimireddy et al., 2020b),
which requires communicating two variables (of the same size as the model) from client to server
per communication round. We present a new formulation with only a single variable for uplink com-
munication for each client. We then propose SCALLION, which employs unbiased compressors to
reduce the communication workload of SCAFFOLD and provide the convergence analysis.

4.1 BACKGROUND OF SCAFFOLD

The SCAFFOLD algorithm (Karimireddy et al., 2020b) maintains local control variables {cti}Ni=1
on clients and a global control variable ct on the server. Let St ⊆ [N ] (with |St| = S) be the set
of accessible (active) clients to interact with the server in the t-th round. In each training round,
SCAFFOLD conducts K local updates within each active client i ∈ St by

yt,k+1
i := yt,ki − ηl(∇F (yt,ki ; ξt,ki )− cti + ct), for k = 0, . . . ,K − 1, (1)

where yt,ki is the local model in client i initialized with the server model yt,0i := xt and ηl is the
local learning rate. Here, the subscript i represents the client index, while the superscripts t and k
denote the outer and inner loop indexes corresponding to communication rounds and local-update
steps, respectively. Upon the end of local training steps, clients update local control variables as:

ct+1
i :=

{
cti − ct +

xt−yt,K
i

ηlK
, if i ∈ St,

cti, otherwise.
(2)

The increments of local model yt,Ki − xt and control variable ct+1
i − cti, of each participating client

i ∈ St, are then sent to the central server and aggregated to update the global model parameters:

xt+1 := xt +
ηg
S

∑
i∈St

(yt,Ki − xt), ct+1 := ct +
1

N

∑
i∈St

(ct+1
i − cti),

where ηg is the global learning rate. The detailed description of SCAFFOLD can be found in
Appendix B. Notably, the control variables of SCAFFOLD track local gradients such that cti ≈
∇fi(x

t) and ct ≈ ∇f(xt), thereby mimicking the ideal update through ∇F (yt,ki ; ξt,ki )− cti + ct ≈
∇f(xt) given ∇F (yt,ki ; ξt,ki ) ≈ ∇fi(y

t,k
i ) and yt,ki ≈ xt. Consequently, the local updates are

nearly synchronized in the presence of data heterogeneity without suffering from client drift.
While the introduction of control variables enables SCAFFOLD to converge robustly with arbi-
trarily heterogeneous clients and partial client participation, the original implementation of SCAF-
FOLD described above requires clients to communicate both updates of local models yt,Ki − xt

and control variables ct+1
i − cti (also see Karimireddy et al. (2020b, Alg. 1, line 13)). This results

in a doubled client-to-server communication cost and more obstacles to employing communication
compression, compared to its counterparts without control variables such as FEDAVG.

4.2 DEVELOPMENT OF SCALLION

We present an equivalent implementation of SCAFFOLD which only requires a single variable for
uplink communication and is readily employable for communication compression. Expanding the
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local updates yt,Ki − xt and control variables ct+1
i − cti by exploiting (1) and (2), we have

ct+1
i − cti =

xt − yt,Ki

ηlK
− ct =

1

K

K−1∑
k=0

∇F (yt,ki ; ξt,ki )− cti ≜ ∆t
i, (3)

yt,Ki − xt = −ηl

K−1∑
k=0

(
∇F (yt,ki ; ξt,ki )− cti + ct

)
= −ηlK(∆t

i + ct). (4)

In (3) and (4), the updates of local models and control variables share a common component, the
increment variables ∆t

i. Since the global control variable ct is inherently maintained by the server,
updates ct+1

i − cti and thus yt,Ki − xt can be recovered by the server upon receiving ∆t
i. Hence, the

global model and control variable can be equivalently updated as

xt+1 = xt − ηgηlK

S

∑
i∈St

(
∆t

i + ct
)

and ct+1 = ct +
1

N

∑
i∈St

∆t
i. (5)

We only need to communicate ∆t
i. In the above formulation, by communicating the increment

variables ∆t
i and applying (5) at the server accordingly, SCAFFOLD can be implemented equiva-

lently with a halved uplink communication cost, compared to the original one (Karimireddy et al.,
2020b). Notably, our new implementation only modifies the communication procedure, and main-
tain the same local updates as in Karimireddy et al. (2020b); see Algorithm 4 in Appendix B.
Benefits of compressing ∆t

i. Importantly, the new implementation provides a simpler backbone
for communication compression as only the transmission of ∆t

i is to be compressed. Moreover,
unlike compressing local gradients as adopted in prior literature, compressing ∆t

i asymptotically
eliminates compression errors even in the presence of data heterogeneity. Consider the case of
deterministic gradients for simplicity. Based on the update rules of SCAFFOLD, if hypothetically
the training approached a steady stage where xt is close to a stationary point x⋆, we expect to have
cti ≈ ∇fi(x

⋆) and ct = 1
N

∑N
i=1 c

t
i ≈ ∇f(x⋆) = 0. Thus, the directions in local updates satisfy

∇fi(y
t,k) − cti + ct ≈ 0 so that x⋆ ≈ xt ≈ yt,1 ≈ · · · ≈ yt,K . The definition of ∆t

i in (3) implies
∆t

i =
1
K

∑K−1
k=0 ∇fi(y

t,k
i ) − cti ≈ 0. Namely, the increment variable ∆t

i gradually vanishes as the
algorithm iterates. Therefore, taking an ω-unbiased compressor as an example (see Definition 1),
compressing ∆t

i results in a vanishing compression error E[∥Ci(∆t
i) − ∆t

i∥2] ≤ ω∥∆t
i∥2 → 0,

regardless of data heterogeneity. In contrast, if one considers compressing local gradients directly,
a constantly large compression error is introduced in each communication round E[∥Ci(∇fi(x

t))−
∇fi(x

t)∥2] ≤ ω∥∇fi(x
t)∥2 → ω∥∇fi(x

⋆)∥2 ̸= 0. The constant ∥∇fi(x
⋆)∥2 can be extremely

large under severe data heterogeneity, resulting in algorithmic susceptibility to data heterogeneity.

Algorithm 1 SCALLION: SCAFFOLD with single compressed uplink communication
1: Input: initial model x0 and control variables {c0i }Ni=1, c0; local learning rate ηl; global learning

rate ηg; local steps K; number of sampled clients S; scaling factor α ∈ [0, 1]
2: for t = 0, · · · , T − 1 do
3: Uniformly sample clients St ⊆ [N ] with |St| = S
4: for client i ∈ St in parallel do
5: Receive xt and ct; initialize yt,0i = xt

6: for k = 0, . . . ,K − 1 do
7: Compute a mini-batch gradient gt,ki = ∇F (yt,ki ; ξt,ki )

8: Locally update yt,k+1
i = yt,ki − ηl(g

t,k
i − cti + ct)

9: end for

10: Compute δti = α
(

xt−yt,K
i

ηlK
− ct

)
11: Compress and send δ̃ti = Ci(δti) to the server ▷ α = 1 and Ci = I recovers SCAFFOLD

12: Update ct+1
i = cti + δ̃ti (for i /∈ St, ct+1

i = cti)
13: end for
14: Update xt+1 = xt − ηgηlK

S

∑
i∈St(δ̃ti + ct)

15: Update ct+1 = ct + 1
N

∑
i∈St δ̃ti

16: end for
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Following the above argument regarding compression, we now propose to transmit the compressed
proxy Ci(α∆t

i) of the increment variable ∆t
i, leading to the SCALLION method as presented in

Algorithm 1. Here Ci is the compressor utilized by client i while the scaling factor α ∈ [0, 1] is
introduced to stabilize the updates of control variables {cti}Ni=1 and can be viewed as the learning
rate of control variables. When α = 1 and {Ci}Ni=1 are the identity mappings (i.e., no compression),
SCALLION will reduce to SCAFFOLD with our new implementation, i.e., Algorithm 4. The
algorithmic comparison of SCALLION with other existing approaches is in Appendix C.2.

4.3 CONVERGENCE OF SCALLION

To study the convergence of SCALLION under communication compression, we first consider
compressors satisfying the following standard unbiased compressibility.

Definition 1 (ω-UNBIASED COMPRESSOR). There exists ω ≥ 0 such that for any input x ∈ Rd and
each client-associated compressor Ci : Rd → Rd, E[Ci(x)] = x and E[∥Ci(x) − x∥2] ≤ ω∥x∥2,
where the expectation is taken over the randomness of the compressor Ci.
Examples that satisfy Definition 1 include random sparsification and dithering; see Appendix C.1
for details. When communication compression with ω-unbiased compressors is employed, the con-
vergence of the proposed SCALLION (Algorithm 1) is justified as follows.

Theorem 1 (SCALLION WITH UNBIASED COMPRESSION). Under Assumptions 1, 2, and mutu-
ally independent ω-unbiased compressors, if we initialize c0i = ∇fi(x

0) and c0 = ∇f(x0), and set
ηl, ηg , and α as in (29), then SCALLION converges as

1

T

T−1∑
t=0

E[∥∇f(xt)∥2] ≲
√

(1 + ω)L∆σ2

SKT
+

(
(1 + ω)N2L2∆2σ2

S3KT 2

)1/3

+
(1 + ω)NL∆

ST
, (6)

where ∆ ≜ f(x0)−minx f(x). A detailed version and the proof are in Appendix E.

Asymptotic complexities of SCALLION. When using full-batch gradients (i.e., σ → 0), all terms
involving σ in (6) vanish. Consequently, the bottleneck of FL algorithms boils down to the rounds
of client-to-server communication. On the other hand, when gradients are very noisy (i.e., σ is
extremely large), the σ/

√
T -dependent term dominates others in which σ are with lower orders.

In this case, the performance is mainly hampered by the number of gradient evaluations. Fol-
lowing (Fatkhullin et al., 2023), we refer to the total number of communication rounds in the
regime σ → 0 and gradient evaluations in the regime ϵ → 0 required by per client to attain
E[∥∇f(x̂)∥2] ≤ ϵ as the asymptotic communication complexity and computation complexity1.
Theorem 1 shows N(1+ω)

Sϵ asymptotic communication complexity and 1+ω
Sϵ2 asymptotic computation

complexity of SCALLION. Here, we focus on presenting the impact of stationarity ϵ, compression
ω, client participation S and N , and local steps K in asymptotic complexities.
Comparison with prior compressed FL methods. Table 1 provides a summary of non-convex FL
methods employing unbiased compressors under full client participation. We observe that SCAL-
LION matches the state-of-the-art asymptotic communication and computation complexities un-
der non-iid clients. In particular, while having the same asymptotic complexities as FEDCOM-
GATE (Haddadpour et al., 2021), SCALLION does not depend on a large uniform bound of com-
pression errors (see Appendix C.4) in convergence and thus has a superior convergence rate.

To sum up, based on the above discussion, we demonstrate that SCALLION theoretically improves
existing FL methods with unbiased compression.

5 SCAFCOM: BIASED COMPRESSION WITH MOMENTUM

While SCALLION achieves superior convergence speed under unbiased compression, its analysis
cannot be adapted to biased compressors (also known as contractive compressors) to attain fast
convergence rates. In this section, we propose an algorithm called SCAFCOM as a complement of
SCALLION to accommodate biased communication compression in FL.

1The complexities justify convergence rates in terms of the σ/
√
T -dependent and 1/T -dependent terms.

For instance, for the rate in (6), the asymptotic communication complexity T ≍ N(1+ω)
Sϵ

is derived from
(1+ω)NL∆

ST
≍ ϵ while the asymptotic computation complexity SKT

N
≍ 1+ω

Nϵ2
follows from

√
(1+ω)L∆σ2

SKT
≍ ϵ.
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Algorithm 2 SCAFCOM: SCAFFOLD with momentum-enhanced compression
1: Input: initial model x0 and control variables {c0i }Ni=1, c0; local learning rate ηl; global learning

rate ηg; local steps K; number of sampled clients S; momentum β ∈ [0, 1]
2: for t = 0, · · · , T − 1 do
3: Uniformly sample clients St ⊆ [N ] with |St| = S
4: for client i ∈ St in parallel do
5: Receive xt and ct; initialize yt,0i = xt

6: for k = 0, . . . ,K − 1 do
7: Compute a mini-batch gradient gt,ki = ∇F (yt,ki ; ξt,ki )

8: Locally update yt,k+1
i = yt,ki − ηl(g

t,k
i − cti + ct)

9: end for

10: Update vt+1
i = (1− β)vti + β

(
xt−yt,K

i

ηlK
+ cti − ct

)
(for i /∈ St, vt+1

i = vti )

11: Compute δti = vt+1
i − cti

12: Compress and send δ̃ti = Ci(δti) to the server ▷ β = 1 and Ci = I recovers SCAFFOLD

13: Update ct+1
i = cti + δ̃ti (for i /∈ St, ct+1

i = cti)
14: end for
15: Update xt+1 = xt − ηgηlK

S

∑
i∈St(δ̃ti + ct)

16: Update ct+1 = ct + 1
N

∑
i∈St δ̃ti

17: end for

5.1 DEVELOPMENT OF SCAFCOM

In the literature, biased compressors are commonly modeled by contractive compressibility.

Definition 2 (q2-CONTRACTIVE COMPRESSOR). There exists q ∈ [0, 1) such that for any input
x ∈ Rd and each client-associated compressor Ci : Rd → Rd, E[∥Ci(x) − x∥2] ≤ q2∥x∥2, where
the expectation is taken over the randomness of the compressor Ci.
Notably, compared to unbiased compressors satisfying Definition 1, contractive compressors, though
potentially having smaller squared compression errors, no longer enjoy the unbiasedness; see com-
mon contractive compressors in Appendix C.1. Compared to their counterparts with unbiased com-
pressors, approaches employing biased compressors typically (i) require stringent assumptions, e.g.,
bounded gradients (Seide et al., 2014; Koloskova et al., 2019; Basu et al., 2019) or bounded gradi-
ent dissimilarity (Huang et al., 2022; Li & Li, 2023), (ii) rely on impractical algorithmic structure,
e.g., a large amount of gradient computation (Fatkhullin et al., 2021), (iii) have weak convergence
guarantees, e.g., worse dependence on compression parameter q (Zhao et al., 2022).

Recently, Fatkhullin et al. (2023) shows that tactfully incorporating momentum into communica-
tion compression can effectively mitigate the influence of biased compression and thus presents the
linear speedup in terms of the number of clients. Inspired by their findings, we introduce an extra
momentum variable vti on each client i to overcome the adverse effect of biased compression. This
leads to the SCAFCOM method, as presented in Algorithm 2. When client i participates in the t-th
round, an additional momentum variable vti is updated as

vt+1
i := (1− β)vti + β

(
xt − yt,Ki

ηlK
+ cti − ct

)
= (1− β)vti +

β

K

K−1∑
k=0

∇F (yt,ki ; ξt,ki ),

where {yt,ki } are the intermediate local models and β is the momentum factor. We then set vt+1
i −

cti = (1−β)vti+βK−1
∑K−1

k=0 ∇F (yt,ki ; ξt,ki )−cti to be (compressively) communicated, as opposed
to K−1

∑K−1
k=0 ∇F (yt,ki ; ξt,ki ) − cti in SCAFFOLD and α(K−1

∑K−1
k=0 ∇F (yt,ki ; ξt,ki ) − cti) in

SCALLION. Compared to the gradient K−1
∑K−1

k=0 ∇F (yt,ki ; ξt,ki ) yielded by a single local loop,
the momentum variable vt+1

i has a smaller variance due to its accumulation nature, thereby refining
the convergence behavior under biased compression. Finally, note that similar to SCALLION,
SCAFCOM only transmits one compressed variable in the uplink communication, and recovers
SCAFFOLD when β = 1 and {Ci}Ni=1 are the identity mapping (i.e., no compression).
Connection with SCALLION. Notably, the difference between SCAFCOM and SCALLION
lies in the utilization of momentum; see the colored highlights in Algorithm 1 and Algorithm 2.
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Specifically, if we replace line 10 of SCAFCOM with the following formula:

vt+1
i := (1− α)cti + α

(
xt − yt,Ki

ηlK
+ cti − ct

)
= (1− α)cti +

α

K

K−1∑
k=0

∇F (yt,ki ; ξt,ki ),

then SCAFCOM recovers SCALLION (Algorithm 1) with β = α. Note that in this case, the
memorization of vti is no longer needed to be retained, which is consistent with the design of
SCALLION. We also remark that the roles of the scaling factor α and momentum β vary in SCAL-
LION and SCAFCOM. In SCALLION, α stabilizes the updates of control variables {cti}Ni=1 while
SCAFCOM sets β to mainly address the biasedness issue of contractive compressors.

5.2 CONVERGENCE OF SCAFCOM

The convergence of SCAFCOM under q2-contractive compression is established as follows.
Theorem 2 (SCAFCOM WITH BIASED COMPRESSION). Under Assumption 1, 2, and q2-
contractive compressors {Ci}Ni=1, if we initialize c0i = v0i = ∇fi(x

0) and c0 = ∇f(x0), and
set ηl, ηg , and β as in (55), then SCAFCOM converges as

1

T

T−1∑
t=0

E[∥∇f(xt)∥2] ≲
√

L∆σ2

SKT
+

(
N2L2∆2σ2

(1− q)S2KT 2

)1/3

+

(
N3L3∆3σ2

(1− q)2S3KT 3

)1/4

+
NL∆

(1− q)ST
.

Furthermore, it is known that one can convert any ω-unbiased compressor Ci into a q2-contractive
compressors with q2 = ω

1+ω through scaling 1
1+ωCi : x 7→ 1

1+ωCi(x) (Safaryan et al., 2022, Lemma
1). Thus, SCAFCOM can also employ unbiased compressors through this scaling::
Corollary 1 (SCAFCOM WITH UNBIASED COMPRESSION). When employing unbiased compres-
sors (after scaling) in communication, the convergence of SCAFCOM is upper bounded by√

L∆σ2

SKT
+

(
(1 + ω)N2L2∆2σ2

S2KT 2

)1/3

+

(
(1 + ω)2N3L3∆3σ2

S3KT 3

)1/4

+
(1 + ω)NL∆

ST
. (7)

Remark 1. Corollary 1 is obtained by directly plugging in the relation q2 = ω
1+ω into Theorem 2

without exploiting the unbiasedness of compressors. However, it is feasible to refine the 1/T 2/3 and
1/T 3/4 terms in (7) by taking advantage of unbiasedness. We omit the proof here for conciseness.

Asymptotic complexities of SCAFCOM. Following the result of Theorem 2, SCAFCOM with
biased compression has an asymptotic communication complexity of N

S(1−q)ϵ and an asymptotic
computation complexity of 1

Sϵ2 to attain E[∥∇f(x̂)∥2] ≤ ϵ. On the other hand, when adopting
unbiased compressors with scaling, Corollary 1 reveals that SCAFCOM has an asymptotic com-
munication complexity of N(1+ω)

Sϵ and an asymptotic computation complexity of 1
Sϵ2 .

Comparison with prior compressed FL methods. In Table 1, we compare SCAFCOM with exist-
ing FL algorithms with biased compression under full client participation. We see that SCAFCOM
outperforms prior results with biased compression in the asymptotic communication complexity by
at least a factor 1/(1 − q). Moreover, inferior to SCAFCOM, the existing FL methods with bi-
ased compression cannot tolerate unbounded data heterogeneity or even require homogeneous data.
Moreover, QSPARSE-SGD (Basu et al., 2019) and LOCAL-SGD-C (Gao et al., 2021) only con-
verge under full client participation. Notably, when employing unbiased compression, SCAFCOM
enhances the asymptotic computation complexity by a factor of 1 + ω compared to SCALLION,
surpassing all prior FL methods with unbiased compression. Furthermore, under partial client par-
ticipation, our rate is better than that of FED-EF (Li & Li, 2023) by a factor of

√
N/S, overcoming

the drawback of the standard error feedback under partial participation in federated learning.

Based on discussions in Section 5, we demonstrate that SCAFCOM, as a unified approach, outper-
forms existing compressed FL methods under both unbiased and biased compression.

6 EXPERIMENTS

We present experiments to demonstrate the efficacy of our proposed methods. Since the saving in
communication costs of various compressors has been well justified in the literature (see, e.g., Had-
dadpour et al. (2021); Li & Li (2023)), we focus on (i) validating that SCALLION and SCAF-
COM can empirically match SCAFFOLD (full-precision) with substantially reduced communica-
tion costs, and (ii) showing that SCALLION and SCAFCOM outperform prior methods with the
same communication budget. We defer more experimental details and results to Appendix G.
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Figure 1: Train loss and test accuracy of SCAFCOM (Algorithm 2) and FED-EF (Li & Li, 2023) with biased
TOP-r compressors on MNIST (left half) and FMNIST (right half).
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Figure 2: Train loss and test accuracy of SCALLION (Algorithm 1) and FEDCOMGATE (Haddadpour et al.,
2021) with unbiased random dithering on MNIST (left half) and FMNIST (right half).

We compared the proposed algorithms with baselines including FED-EF (Li & Li, 2023), FED-
COMGATE (Haddadpour et al., 2021), FED-SGD (also known as FEDAVG (Yang et al., 2021)),
and SCAFFOLD (Karimireddy et al., 2020b) on two standard FL datasets: MNIST (LeCun, 1998),
FMNIST (Xiao et al., 2017)). Note that FED-SGD and SCAFFOLD employ full-precision (i.e.,
uncompressed) communication and we implement SCAFFOLD with our new formulation (Algo-
rithm 4) for a fair comparison. We simulate biased compression with TOP-r operators (see Example
3). Specifically, we adopt TOP-0.01 and TOP-0.05, where only the largest 1% and 5% entries in
absolute values are transmitted in communication. For unbiased compression, we utilize random
dithering (see Example 2), with 2 bits and 4 bits per entry, respectively.
Since all the compressed FL methods in our experiments transmit one variable in the uplink commu-
nication, their communication costs are essentially the same when the same compressor is applied.
Therefore, for clarity of comparisons, we will plot the metrics versus the number of training rounds.

SCAFCOM with biased compression. In Figure 1, we present the train loss and test accuracy
of our proposed SCAFCOM (β = 0.2) and FED-EF (Li & Li, 2023), both using biased TOP-r
compressors. We observe on both datasets: (i) under the same degree of compression (i.e., the
value of r here), SCAFCOM outperforms FED-EF in terms of both training loss and test accuracy,
thanks to controlled variables and the local momentum in SCAFCOM; (ii) SCAFCOM with TOP-
0.01 can achieve very close test accuracy as SCAFFOLD (full-precision), and SCAFCOM with
TOP-0.05 match those of SCAFFOLD, leading to the same performance while saving 20 - 100x
uplink communication costs; (iii) the performance of SCAFCOM and FED-EF approaches that of
the full-precision counterparts (i.e., SCAFFOLD and FED-SGD) as compression assuages.

SCALLION with unbiased compression. In Figure 2, we plot the same set of experimental results
and compare SCALLION (α = 0.1) with FedCOMGATE (Haddadpour et al., 2021), both applying
unbiased random dithering (Alistarh et al., 2017) with 2 and 4 bits per entry. Similarly, we see that
SCALLION outperforms FedCOMGATE under the same compressors. The SCALLION curves
of both 2-bit and 4-bit compression basically overlap those of SCAFFOLD, and 4-bit compression
slightly performs better than 2-bit compression in later training rounds. Since random dithering
also introduces sparsity in compressed output, the 4-bit compressor already provides around 100x
communication compression, and the 2-bit compressor saves even more communication costs.

7 CONCLUSION

This paper proposes two compressed federated learning (FL) algorithms, SCALLION and SCAF-
COM, to support unbiased and biased compression in FL. The proposed methods are built upon our
new implementation of stochastic controlled averaging, along with local momentum, and commu-
nication compression. Theoretically, under minimal assumptions, SCALLION and SCAFCOM
match or improve the state-of-the-art convergence of compressed FL methods. Moreover, SCAL-
LION and SCAFCOM are the first stochastic FL methods, to the best of our knowledge, that exhibit
robustness to arbitrary data heterogeneity, partial participation, local updates, and also accommodate
communication compression relying solely on standard compressibilities. Empirically, experiments
show that SCALLION and SCAFCOM outperform prior compressed FL methods and perform
comparably to full-precision FL approaches at a substantially reduced communication cost.
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A INTERPLAY OF CLIENT-DRIFT AND COMMUNICATION COMPRESSION

We depict the evolution of local and global models in a client-server communication round of com-
pressed FEDAVG with 2 clients with 3 local steps as Figure 3.

𝑥
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Figure 3: Interplay of client-drift and inaccurate message aggregation incurred by communication compression
in FEDAVG is illustrated for 2 clients with 3 local steps (i.e., S = N = 2, K = 3). The client updates yi
(blue circle) move towards the individual client optima x⋆

i (blue square). The server updates (black circle)
move towards a distorted proxy, depending on the degree of compression, of the full-precision averaged model
1
N

∑N
i=1 x

⋆
i (grey circle), instead of the true optimum x⋆ (white square).

B DETAILED IMPLEMENTATIONS OF SCAFFOLD

Algorithm 3 SCAFFOLD: Stochastic controlled averaging for FL (Karimireddy et al., 2020b)
1: Input: initial model x0 and control variables {c0i }Ni=1, c0; local learning rate ηl; global learning

rate ηg; local steps K; number of sampled clients S
2: for t = 0, · · · , T − 1 do
3: Uniformly sample clients St ⊆ [N ] with |St| = S
4: for client i ∈ St in parallel do
5: Receive xt and ct; initialize yt,0i = xt

6: for k = 0, . . . ,K − 1 do
7: Compute a mini-batch gradient gt,ki = ∇F (yt,ki ; ξt,ki )

8: Locally update yt,k+1
i = yt,ki − ηl(g

t,k
i − cti + ct)

9: end for
10: Update ct+1

i = cti − ct +
xt−yt,K

i

ηlK
(for i /∈ St, ct+1

i = cti)

11: Send yt,Ki − xt and ct+1
i − cti to the server

12: end for
13: Update xt+1 = xt +

ηg

S

∑
i∈St(y

t,K
i − xt)

14: Update ct+1 = ct + 1
N

∑
i∈St(c

t+1
i − cti)

15: end for

The original implementation of SCAFFOLD (Karimireddy et al., 2020b) is stated in Algorithm 3
where no compression is employed in communication. In this implementation, each participating
client needs to transmit the increments of both local model yt,K −yt,0 and control variable ct+1

i −cti
to the server at the end of local updates, resulting to two rounds of uplink communication for per
training iteration.

By communicating the increment variable ∆t
i, we can implement SCAFFOLD equivalently with

only a single round of uplink communication for each participating client, as described in Algo-
rithm 4.
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Algorithm 4 A simplified formulation of SCAFFOLD with single-variable uplink communication
1: Input: initial model x0 and control variables {c0i }Ni=1, c0; local learning rate ηl; global learning

rate ηg; local steps K; number of sampled clients S
2: for t = 0, · · · , T − 1 do
3: Uniformly sample clients St ⊆ [N ] with |St| = S
4: for client i ∈ St in parallel do
5: Receive xt and ct; initialize yt,0i = xt

6: for k = 0, . . . ,K − 1 do
7: Compute a mini-batch gradient gt,ki = ∇F (yt,ki ; ξt,ki )

8: Locally update yt,k+1
i = yt,ki − ηl(g

t,k
i − cti + ct)

9: end for
10: Compute ∆t

i =
xt−yt,K

i

ηlK
− ct and send ∆t

i to the server
11: Update ct+1

i = cti +∆t
i (for i /∈ St, ct+1

i = cti)
12: end for
13: Update xt+1 = xt − ηgηlK

S

∑
i∈St(∆t

i + ct)

14: Update ct+1 = ct + 1
N

∑
i∈St ∆t

i
15: end for

C MORE DETAILS, DISCUSSIONS, AND COMPARISONS

C.1 UNBIASED AND BIASED COMPRESSORS

Examples of popular unbiased compressors include:

Example 1 (RANDOM SPARSIFICATION (WANGNI ET AL., 2018)). For any s ∈ [d], the random-s
sparsification is defined as C : x 7→ d

s (ξ ⊙ x) where ⊙ denotes the entry-wise product and ξ ∈
{0, 1}d is a uniformly random binary vector with s non-zero entries. This random-s sparsification
is an ω-unbiased compressor with ω = d/s− 1.

Example 2 (RANDOM DITHERING (ALISTARH ET AL., 2017)). For any b ∈ N+, the random
dithering with b-bits per entry is defined as C : x 7→ ∥x∥ × sign(x) ⊙ ζ(x) where {ζk}dk=1 are
independent random variables such that

ζk(x) :=

{⌊
2b|xk|/∥x∥

⌋
/2b, with probability ⌈2b|xk|/∥x∥⌉ − 2b|xk|/∥x∥,⌈

2b|xk|/∥x∥
⌉
/2b, otherwise,

where ⌊·⌋ and ⌈·⌉ are the floor and ceiling functions, respectively. This random dithering with b-bits
per entry is an ω-unbiased compressor with ω = min{d/4b,

√
d/2b}.

Common biased compressors include (Li & Li, 2023):

Example 3 (TOP-r OPERATOR). For any r ∈ [0, 1], the Top-r operator is defined as C : x 7→
(1{k ∈ Sr(x)}xk)

d
k=1 where Sr(x) is the set of the largest r × d entries of x in absolute values.

Top-r operator is a q2-contractive compressor with q2 = 1− r.

Example 4 (GROUPED SIGN). Given a partition of [d] with M groups (e.g., layers of neu-
ral networks) {Im}Mm=1, the grouped sign with partition {Im}Mm=1 is defined as C : x 7→∑M

m=1 ∥xIm
∥1 ⊙ sign(x)Im

/|Im|. This grouped sign operator is a q2-contractive compressor with
q2 = 1− 1/max1≤m≤M |Im|.

C.2 COMPARISON OF SCALLION WITH PRIOR METHODS

Comparison with FEDPAQ (Reisizadeh et al., 2020), FEDCOM (Haddadpour et al., 2021), FED-
EF (Li & Li, 2023). All of them boil down to the FEDAVG algorithm (McMahan et al., 2017)
when no compression is conducted. As such, their convergence is significantly hampered by data
heterogeneity across clients due to client drift. The former two works do not consider partial partic-
ipation, and FED-EF suffers from an extra slow-down factor in the convergence rate under partial
participation. In opposition, SCALLION roots from SCAFFOLD, and is robust to arbitrary data
heterogeneity and partial participation.

16



Published as a conference paper at ICLR 2024

Comparison with FEDCOMGATE (Haddadpour et al., 2021). FEDCOMGATE applies com-
pression over the uplink communication of the VRL-SGD algorithm (Liang et al., 2019), a
gradient-tracking-based FL method which is different from SCAFFOLD. FEDCOMGATE sug-
gests conducting K = O(1/(Nϵ)) local steps, demanding solving local problems to an extremely
accurate resolution. Moreover, it additionally requires uniformly bounded compression errors
E[∥ 1

N

∑
i∈[N ] Ci(xi)∥2−∥ 1

N

∑
i∈[N ] xi∥2] ≤ G2

A, which are invalid for practical compressors such
as random sparsification (Wangni et al., 2018) and random dithering (Alistarh et al., 2017). In addi-
tion, both the convergence for FEDCOMGATE and VRL-SGD is only established when all clients
participate in training. It is unclear if their convergence can be adapted to partial client participation.
In contrast, SCALLION converges at a state-of-the-art rate that admits a flexible number of local
steps and client sampling and employs standard unbiased compressors (i.e., Definition 1).

C.3 CONNECTION BETWEEN SCAFCOM AND ERROR FEEDBACK

SCAFCOM does not directly pertain to the vanilla error feedback (Seide et al., 2014; Stich,
2019), a technique widely used to tackle biased compression, but relates to the newly proposed
EF21 mechanism (Richtárik et al., 2021). If one sets β = 1 in SCAFCOM, then the message
K−1

∑K−1
k=0 ∇F (yt,ki ; ξt,ki ) − cti would be compressed and the control variable would be updated

as ct+1
i = cti + Ci(K−1

∑K−1
k=0 ∇F (yt,ki ; ξt,ki ) − cti). Under the simplification where σ = 0 (i.e.,

full-batch gradients), K = 1 (i.e., no local updates), S = N (i.e., full-client participation), it be-
comes ct+1

i = cti + Ci(∇fi(x
t)− cti) and the global model is updated as xt+1 = xt− ηgηlc

t+1 with
ct+1 = 1

N

∑N
i=1 c

t+1
i , recovering the recursion of EF21.

C.4 WEAK ASSUMPTIONS OF SCALLION AND SCAFCOM

Due to comprehensive challenges in compressed FL, to facilitate convergence analysis, most existing
approaches require additional stringent conditions or assumptions that are not necessarily valid in
practice, including but not restricted to:

max
1≤i≤N

∥∇fi(x)∥ ≤ G, (Bounded Gradient Norm (Basu et al., 2019))

1

N

N∑
i=1

∥∇fi(x)−∇f(x)∥2 ≤ ζ2,

(Bounded Gradient Dissimilarity (Jiang & Agrawal, 2018; Li & Li, 2023; Gao et al., 2021))

E

∥∥∥∥∥ 1

N

N∑
i=1

Ci(xi)

∥∥∥∥∥
2

−

∥∥∥∥∥ 1

N

N∑
i=1

xi

∥∥∥∥∥
2
 ≤ G2

A.

(Bounded Compression Error (Haddadpour et al., 2021))

E

∥∥∥∥∥ 1

N

N∑
i=1

Ci(xi)−
1

N

N∑
i=1

xi

∥∥∥∥∥
2
 ≤ q2A

∥∥∥∥∥ 1

N

N∑
i=1

xi

∥∥∥∥∥
2

.

(Averaged Contraction (Alistarh et al., 2018; Li & Li, 2023))

As a result, their convergence rates inevitably depend on the large constants G, ζ, GA, (1− qA)
−1.

In contrast, the convergence results of SCALLION and SCAFCOM presented do not rely on any
such condition.
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D PRELIMINARIES OF PROOFS

Letting γ ≜ ηgηlK, the recursion of SCALLION and SCAFCOM can be formulated as xt+1 =

xt − γd̃t+1 where d̃t+1 = 1
S

∑
i∈St δ̃ti + ct and δ̃ti = Ci(δti). For clarity, we let gti ≜

1
K

∑K−1
k=0 gt,ki ,

gt ≜ 1
N

∑N
i=1 g

t
i , d

t+1 ≜ 1
S

∑
i∈St δti +ct. We will abbreviate

∑N
i=1,

∑K−1
k=0 ,

∑N
i=1

∑K−1
k=0 as

∑
i,∑

k,
∑

i,k, respectively, when there is no confusion. We also define the auxiliary variable U t :=
1

NK

∑N
i=1

∑K−1
k=1 E[∥yt,ki − xt∥]2 to facilitate the analyses. It is worth noting that ct ≡ 1

N

∑N
i=1 c

t
i

for all t ≥ 0 in both SCALLION and SCAFCOM. Besides, the exclusive recursions are as follows.

For SCALLION. Due to client sampling, it holds that

ct+1
i =

{
cti + Ci(α(gti − cti)) if i ∈ St

cti otherwise
(8)

and dt+1 = 1
S

∑
i∈St α(gti − cti) + ct

For SCAFCOM. We additionally let ut+1
i ≜ vti +β(gti − vti). Then, due to client sampling, it holds

that

(vt+1
i , ct+1

i ) =

{
(ut+1

i , cti + Ci(ut+1
i − cti)) if i ∈ St

(vti , c
t
i) otherwise

(9)

and dt+1 = 1
S

∑
i∈St(u

t+1
i − cti) + ct. Similarly, we let vt ≜ 1

N

∑N
i=1 v

t
i and ut+1 ≜

1
N

∑N
i=1 u

t+1
i = (1− β)vt + βgt.

Let F−1 = ∅ and F t,k
i := σ(∪{ξt,ji }0≤j<k ∪ F t−1) and F t := σ((∪i∈[N ]F t,K

i ) ∪ {St}) for all
t ≥ 0 where σ(·) means the σ-algebra. We use E[·] to indicate the expectation taking all sources of
randomness into account. We will frequently use the following fundamental lemmas.
Lemma 1 ((Cheng et al., 2024)). Given any a1, · · · , aN , b ∈ Rd and a = 1

N

∑
i∈[N ] ai and uniform

sampling S ⊂ [N ] without replacement such that |S| = S, it holds that

ES

∥∥∥∥∥ 1S ∑
i∈S

ai

∥∥∥∥∥
2
 ≤∥a∥2 + 1

SN

∑
i

∥ai − a∥2 ≤ ∥a∥2 + 1

SN

∑
i

∥ai − b∥2.

Lemma 2 ((Karimireddy et al., 2020b)). Suppose {X1, · · · , Xτ} ⊆ Rd be random variables that
are potentially dependent. If their marginal means and variances satisfy E[Xi] = µi and E[∥Xi −
µi∥2] ≤ σ2, then it holds that

E

∥∥∥∥∥
τ∑

i=1

Xi

∥∥∥∥∥
2
 ≤

∥∥∥∥∥
τ∑

i=1

µi

∥∥∥∥∥
2

+ τ2σ2.

If they are correlated in the Markov sense with conditional means and variances satisfying
E[Xi|Xi−1, · · ·X1] = µi and E[∥Xi − µi∥2] ≤ σ2 [XH: check here E[∥Xi − µi∥2 | µi] ≤ σ2].
Then a tighter bound holds

E

∥∥∥∥∥
τ∑

i=1

Xi

∥∥∥∥∥
2
 ≤ 2E

∥∥∥∥∥
τ∑

i=1

µi

∥∥∥∥∥
2
+ 2τσ2.

Lemma 3. Under Assumption 1, for any θ ∈ [0, 1] and v, v1, . . . , vN ∈ F t−1, it holds that

E[∥(1− θ)v + θ(gt −∇f(xt))∥2]

≤min
{
2E[∥(1− θ)v∥2] + 3θ2L2U t, (1− θ)E[∥v∥2] + 2θL2U t

}
+

2θ2σ2

NK
(10)

and
1

N

∑
i

E[∥(1− θ)vi + θ(gti −∇fi(x
t))∥2]

≤min

{
2

N

∑
i

E[∥(1− θ)vi∥2] + 3θ2L2U t,
1− θ

N

∑
i

E[∥vi∥2] + 2θL2U t

}
+

2θ2σ2

K
. (11)
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Proof. We mainly focus on proving (10) as (11) can be established similarly. Using Lemma 2, we
have

E[∥(1− θ)v + θ(gt −∇f(xt))∥2]

=E[∥(1− θ)v∥2] + E

〈(1− θ)v,
θ

NK

∑
i,k

∇F (yt,ki ; ξt,ki )−∇fi(x
t)

〉
+ θ2E


∥∥∥∥∥∥ 1

NK

∑
i,k

∇F (yt,ki ; ξt,ki )−∇fi(x
t)

∥∥∥∥∥∥
2


≤E[∥(1− θ)v∥2] + E

〈(1− θ)v,
θ

NK

∑
i,k

∇fi(y
t,k
i )−∇fi(x

t)

〉
+ 2θ2E


∥∥∥∥∥∥ 1

NK

∑
i,k

∇fi(y
t,k
i )−∇fi(x

t)

∥∥∥∥∥∥
2
+

2θ2σ2

NK

≤E


∥∥∥∥∥∥(1− θ)v +

θ

NK

∑
i,k

∇fi(y
t,k
i )−∇fi(x

t)

∥∥∥∥∥∥
2


+ θ2E


∥∥∥∥∥∥ 1

NK

∑
i,k

∇fi(y
t,k
i )−∇fi(x

t)

∥∥∥∥∥∥
2
+

2θ2σ2

NK
.

By further applying Sedrakyan’s inequality ∥(1 − θ)v + θv′∥2 ≤ (1 − θ)∥v∥2 + θ∥v′∥2 and As-
sumption 1, we have

E[∥(1− θ)v + θ(gt −∇f(xt))∥2]

≤(1− θ)E[∥v∥2] + θ(1 + θ)E


∥∥∥∥∥∥ 1

NK

∑
i,k

∇fi(y
t,k
i )−∇fi(x

t)

∥∥∥∥∥∥
2
+

2θ2σ2

NK

≤(1− θ)E[∥v∥2] + 2θL2U t +
2θ2σ2

NK
.

The other upper bound of (10) follows from ∥(1− θ)v + θv′∥2 ≤ 2∥(1− θ)v∥2 + 2θ2∥v′∥2.
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E PROOF OF SCALLION

In this section, we prove the convergence result of SCALLION with unbiased compression, where
we additionally define x−1 := x0. We thus have E[∥xt − xt−1∥2] = 0 for t = 0. Note that x−1 is
defined for the purpose of notation and is not utilized in our algorithms.

Lemma 4 (DESCENT LEMMA). Under Assumptions 1 and 2, it holds for all t ≥ 0 and γ > 0 that
E[f(xt+1)]

≤E[f(xt)]− γ

2
E[∥∇f(xt)∥2]

−
(

1

2γ
− L

2

)
E[∥xt+1 − xt∥2] + 4γ

(
1 +

(1 + ω)α2

S

)
L2E[∥xt − xt−1∥2]

+
8γ(1 + ω)α2σ2

SK
+ 4γ

(
1 +

(1 + ω)α2

S

)
L2U t

+ γ

(
4E[∥ct −∇f(xt−1)∥2] + 4(1 + ω)α2

S

1

N

∑
i

E[∥cti −∇fi(x
t−1)∥2]

)
. (12)

Proof. By Lemma 2 of Li et al. (2021), we have

f(xt+1) ≤ f(xt)− γ

2
∥∇f(xt)∥2 −

(
1

2γ
− L

2

)
∥xt+1 − xt∥2 + γ

2
∥d̃t+1 −∇f(xt)∥2

where d̃t+1 = 1
S

∑
i∈St δ̃ti + ct. Letting dt+1 ≜ 1

S

∑
i∈St δti + ct, we further have

f(xt+1) ≤f(xt)− γ

2
∥∇f(xt)∥2 −

(
1

2γ
− L

2

)
∥xt+1 − xt∥2

+ γ∥d̃t+1 − dt+1∥2 + γ∥dt+1 −∇f(xt)∥2. (13)

For ∥dt+1−∇f(xt)∥2, using Lemma 2 and the fact that ct ≡ 1
N

∑
i c

t
i and dt+1 = 1

S

∑
i∈St α(gti−

cti) + ct, we have

E[∥dt+1 −∇f(xt)∥2]

=E

∥∥∥∥∥ct + 1

S

∑
i∈St

α(gti − cti)−∇f(xt)

∥∥∥∥∥
2


≤E[∥(1− α)(ct −∇f(xt)) + α(gt −∇f(xt))∥2] + α2

SN

∑
i

E[∥gti − cti∥2]. (14)

Using (10) and Assumption 1, we further have
E[∥(1− α)(ct −∇f(xt)) + α(gt −∇f(xt)∥2]

≤2E[∥ct −∇f(xt)∥2] + 3α2U t +
2α2σ2

NK

≤4E[∥ct −∇f(xt−1)∥2] + 4L2E[∥xt − xt−1∥2] + 3α2L2U t +
2α2σ2

NK
. (15)

Similarly, using (11) and Assumption 1, we have
α2

SN

∑
i

E[∥gti − cti∥2] ≤
2α2

SN

∑
i

E[∥cti −∇fi(x
t)∥2] + 2α2

SN

∑
i

E[∥gti −∇fi(x
t)∥2]

≤2α2

SN

∑
i

E[∥cti −∇fi(x
t)∥2] + 4α2

S
L2U t +

4α2σ2

SK

≤4α2

SN

∑
i

E[∥cti −∇fi(x
t−1)∥2] + 4α2L2

S
E[∥xt − xt−1∥2]

+
4α2

S
L2U t +

4α2σ2

SK
. (16)
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Plugging (15) and (16) into (14), we obtain
E[∥dt+1 −∇f(xt)∥2]

≤4E[∥ct −∇f(xt−1)∥2] + 4α2

S

1

N

∑
i

E[∥cti −∇fi(x
t−1)∥2]

+ 4(1 + S−1)α2L2U t + 4

(
1 +

α2

S

)
L2E[∥xt − xt−1∥2] + (N−1 + S−1)

4α2σ2

K
. (17)

For ∥d̃t+1 − dt+1∥2, using mutual independence and Definition 2, we have

E[∥d̃t+1 − dt+1∥2] =E

∥∥∥∥∥ 1S ∑
i∈St

Ci(α(gti − cti))− α(gti − cti)

∥∥∥∥∥
2


≤ωα2

S2
E

[∑
i∈St

∥gti − cti∥2
]
=

ωα2

S

1

N

∑
i

E[∥gti − cti∥2].

Then applying the same relaxation in (16), we obtain

E[∥d̃t+1 − dt+1∥2] ≤4ωα2

SN

∑
i

E[∥cti −∇fi(x
t−1)∥2] + 4ωα2L2

S
E[∥xt − xt−1∥2]

+
4ωα2

S
U t +

4ωα2σ2

SK
. (18)

Plugging (17) and (18) into (13) and noting N−1 ≤ S−1, we complete the proof.

Given Lemma 4, the rest is to bound ∥ct −∇f(xt−1)∥2, ∥cti −∇fi(x
t−1)∥2.

Lemma 5. Under Assumptions 1 and 2, it holds for all t ≥ 0 that
E[∥ct+1 −∇f(xt)∥2]

≤
(
1− Sα

2N

)
E[∥ct −∇f(xt)∥2] + 4(1 + ω)α2S

N2

1

N

∑
i

E[∥cti −∇fi(x
t−1)∥2]

+

(
2N

Sα
+

4(1 + ω)α2S

N2

)
L2E[∥xt − xt−1∥2]

+

(
2S

N
+

4(1 + ω)αS

N2

)
αL2U t +

6(1 + ω)α2Sσ2

N2K
. (19)

Proof. Using (8) and Lemma 1, we have
E[∥ct+1 −∇f(xt)∥2]

=E

∥∥∥∥∥ 1S ∑
i∈St

S

N
Ci(α(gti − cti)) + ct −∇f(xt)

∥∥∥∥∥
2


≤E

∥∥∥∥∥ 1S ∑
i∈St

Sα

N
(gti − cti) + ct −∇f(xt)

∥∥∥∥∥
2
+

ωα2

N2

∑
i∈St

E[∥gti − cti∥2]

≤E

[∥∥∥∥SαN (gt − ct) + ct −∇f(xt)

∥∥∥∥2
]
+

(1 + ω)α2S

N2

1

N

∑
i

E[∥gti − cti∥2] (20)

21
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Using (10), Young’s inequality, and Assumption 1, we further have

E

[∥∥∥∥SαN (gt − ct) + ct −∇f(xt)

∥∥∥∥2
]

≤
(
1− Sα

N

)
E[∥ct −∇f(xt)∥2] + 2αSL2

N
U t +

2α2S2σ2

N3K

≤
(
1− Sα

2N

)
E[∥ct −∇f(xt−1)∥2] + 2NL2

Sα
E[∥xt − xt−1∥2] + 2αSL2

N
U t +

2α2S2σ2

N3K
.(21)

Using Young’s inequality and Assumption 1, we can obtain
(1 + ω)α2S

N2

1

N

∑
i

E[
∥∥gti − cti

∥∥2]
≤ (1 + ω)α2S

N2

1

N

∑
i

(
2E[∥cti −∇fi(x

t)∥2] + 2E[∥gti −∇fi(x
t)∥2]

)
≤ (1 + ω)α2S

N2

1

N

∑
i

(
4E[∥cti −∇fi(x

t−1)∥2] + 4L2E[∥xt − xt−1∥2] + 2E[∥gti −∇fi(x
t)∥2]

)
.

(22)
Using (11), we have

1

N

∑
i

E[∥gti −∇fi(x
t)∥2] ≤ 2L2U t +

2σ2

K
. (23)

Plugging (23) into (22), we reach
(1 + ω)α2S

N2

1

N

∑
i

E[
∥∥gti − cti

∥∥2]
≤ (1 + ω)α2S

N2

1

N

∑
i

(
4E[∥cti −∇fi(x

t−1)∥2] + 4L2E[∥xt − xt−1∥2] + 4L2U t +
4σ2

K

)
.(24)

Combining (20), (21), (24) together and using α2S2σ2

N3K ≤ (1+ω)α2Sσ2

N2K completes the proof.

Lemma 6. Under Assumptions 1 and 2, suppose 0 ≤ α ≤ 1
4(ω+1) , then it holds for all t ≥ 0 that

1

N

∑
i

E[∥ct+1
i −∇fi(x

t)∥2]

≤
(
1− Sα

4N

)
1

N

∑
i

E[∥cti −∇fi(x
t−1)∥2] + 4NL2

Sα
E[∥xt − xt−1∥2]

+
3αL2S

N
U t +

2(1 + ω)α2Sσ2

NK
. (25)

Proof. Using (8), we have
1

N

∑
i

E[∥ct+1
i −∇fi(x

t)∥2]

=
1

N

∑
i

((
1− S

N

)
E[∥cti −∇fi(x

t)∥2] + S

N
E[∥Ci(α(gti − cti)) + cti −∇fi(x

t)∥2]
)

≤ 1

N

∑
i

((
1− S

N

)
E[∥cti −∇fi(x

t)∥2] + S

N
E[∥α(gti − cti) + cti −∇fi(x

t)∥2]

+
Sωα2

N
E[∥gti − cti∥2]

)
(26)

22
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Note that
S

N

1

N

∑
i

E[∥α(gti − cti) + cti −∇fi(x
t)∥2]

=
S

N

1

N

∑
i

E[∥α(gti −∇fi(x
t)) + (1− α)(cti −∇fi(x

t))∥2]

≤ S

N

(
1− α

N

∑
i

E[∥cti −∇fi(x
t)∥2] + 2αL2U t +

2α2σ2

K

)
(27)

and by applying (11),

ωα2S

N

1

N

∑
i

E[∥gti − cti∥2] =
4ωα2S

N

1

N

∑
i

E

[∥∥∥∥12(gti −∇fi(x
t))− 1

2
(∇fi(x

t)− cti)

∥∥∥∥2
]

≤4ωα2S

N

(
1

2N

∑
i

E[∥∇fi(x
t)− cti∥2] + L2U t +

σ2

2K

)
. (28)

Plugging (27) and (28) into (26), we obtain
1

N

∑
i

E[∥ct+1
i −∇fi(x

t)∥2]

≤
(
1− Sα(1− 2ωα)

N

)
1

N

∑
i

E[∥cti −∇fi(x
t)∥2] + (2 + 4ωα)αSL2

N
U t +

2(1 + ω)α2Sσ2

NK

≤
(
1− Sα

2N

)
1

N

∑
i

E[∥cti −∇fi(x
t)∥2] + 3αSL2

N
U t +

2(1 + ω)α2Sσ2

NK

where we use α ≤ 1
4(ω+1) in the last inequality. By further using Young’s inequality and Assump-

tion 1, we obtain
1

N

∑
i

E[∥ct+1
i −∇fi(x

t)∥2]

≤
(
1− Sα

4N

)
1

N

∑
i

E[∥cti −∇fi(x
t−1)∥2] + 4NL2

Sα
E[∥xt − xt−1∥2]

+
3αL2S

N
U t +

2(1 + ω)α2Sσ2

NK
.

Lemma 7. Under Assumptions 1 and 2, it holds for any t ≥ 0 and ηlKL ≤ 1
2 that

U t ≤ 9e2K2η2l
N

∑
i

(
E[∥cti −∇fi(x

t−1)∥2] + L2E[∥xt − xt−1∥2] + E[∥∇f(xt)∥2]
)
+ e2Kη2l σ

2.

Proof. The proof is similar to that of Lemma 12.

Theorem 3. Under Assumptions 1 and 2, suppose clients are associated with mutually indepen-
dent ω-unbiased compressors, if we initialize c0i = 1

B

∑B
b=1 ∇F (x0; ξbi ), c

0 = 1
N

∑N
i=1 c

0
i with

{ξbi }Bb=1
iid∼ Di and B ≳ σ2

NL∆ (c0i → ∇fi(x
0) as B → ∞), set

ηlKL ≤
√

α(1 + ω)

1400e2N
, ηgηlKL =

27αS

N
,

α =

(
4(1 + ω) +

(
(1 + ω)TSσ2

N2KL∆

)1/2

+

(
(1 + ω)Tσ2

NKL∆

)1/3
)−1

,

(29)
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then SCALLION converges as

1

T

T−1∑
t=0

E[∥∇f(xt)∥2] ≲
√

(1 + ω)L∆σ2

SKT
+

(
(1 + ω)N2L2∆2σ2

S3KT 2

)1/3

+
(1 + ω)NL∆

ST

where ∆ ≜ f(x0)−minx f(x).

Proof. Adding (19) × 10γN
αS to (12), we have

E[f(xt+1)] +
10γN

αS
E[∥ct+1 −∇f(xt)∥2]

≤E[f(xt)] + γ

(
10N

αS
− 1

)
E[∥ct −∇f(xt−1)∥2]− γ

2
E[∥∇f(xt)∥2]

−
(

1

2γ
− L

2

)
E[∥xt+1 − xt∥2] + γL2

(
44(1 + ω)α

S
+

24N2

α2S2

)
E[∥xt − xt−1∥2]

+ γ(1 + ω)

(
8α2

S
+

60α

N

)
σ2

K
+ γL2

(
24 +

4(1 + ω)α2

S
+

40(1 + ω)α

N

)
U t

+
40γ(1 + ω)α

N

1

N

∑
i

E[∥cti −∇fi(x
t−1)∥2]. (30)

Adding (25) × 164γ(1+ω)
S to (30), we have

E[f(xt+1)] +
10γN

αS
E[∥ct+1 −∇f(xt)∥2] + 164γ(1 + ω)

S

1

N

∑
i

E[∥ct+1
i −∇fi(x

t)∥2]

≤E[f(xt)] + γ

(
10N

αS
− 1

)
E[∥ct −∇f(xt−1)∥2]

+

(
164γ(1 + ω)

S
− γ(1 + ω)

N

)
1

N

∑
i

E[∥cti −∇fi(x
t−1)∥2]

− γ

2
E[∥∇f(xt)∥2]−

(
1

2γ
− L

2

)
E[∥xt+1 − xt∥2]

+ γL2

(
44(1 + ω)α

S
+

24N2

α2S2
+

656(1 + ω)N

αS2

)
E[∥xt − xt−1∥2]

+ γ(1 + ω)

(
8α2

S
+

60α

N
+

328(1 + ω)α2

N

)
σ2

K

+ γL2

(
24 +

4(1 + ω)α2

S
+

522(1 + ω)α

N

)
U t. (31)

Defining the Lyapunov function (x−1 := x0)

Φt := E[f(xt)] +
10γN

αS
E[∥ct −∇f(xt−1)∥2] + 164γ(1 + ω)

S

1

N

∑
i

E[∥cti −∇fi(x
t−1)∥2],

24
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following (31), we obtain
Φt+1 − Φt

≤− γ

2
E[∥∇f(xt)∥2]− γE[∥ct −∇f(xt−1)∥2]− γ(1 + ω)

N

1

N

∑
i

E[∥cti −∇fi(x
t−1)∥2]

−
(

1

2γ
− L

2

)
E[∥xt+1 − xt∥2]

+ γL2

(
44(1 + ω)α

S
+

24N2

α2S2
+

656(1 + ω)N

αS2

)
E[∥xt − xt−1∥2]

+ γ(1 + ω)

(
8α2

S
+

60α

N
+

328(1 + ω)α2

N

)
σ2

K

+ γL2

(
24 +

4(1 + ω)α2

S
+

522(1 + ω)α

N

)
U t. (32)

Since N ≥ S ≥ 1 and α ≤ 1/(4(1 + ω)), we have

9e2K2η2l L
2

(
24 +

4(1 + ω)α2

S
+

522(1 + ω)α

N

)
≤9e2K2η2l L

2

(
24 +

1

4
+

261

2

)
≤ 1400e2K2η2l L

2 ≤ α(1 + ω)

N
≤ 1

4
. (33)

Combining (33) with Lemma 7, we have

γL2

(
24 +

4(1 + ω)α2

S
+

522(1 + ω)α

N

)
U t

≤γE[∥ct −∇f(xt−1)∥2] + γ(1 + ω)

N

1

N

∑
i

E[∥cti −∇fi(x
t−1)∥2]

+
γ

4
E[∥∇f(xt)∥2] + γL2

4
E[∥xt − xt−1∥2] + γα(1 + ω)σ2

NK
. (34)

Plugging (34) into (32), we reach
Φt+1 − Φt

≤− γ

4
E[∥∇f(xt)∥2] + γ(1 + ω)

(
8α2

S
+

60α

N
+

328(1 + ω)α2

N

)
σ2

K

−
(

1

2γ
− L

2

)
E[∥xt+1 − xt∥2]

+ γL2

(
44(1 + ω)α

S
+

25N2

α2S2
+

656(1 + ω)N

αS2

)
E[∥xt − xt−1∥2]. (35)

Due to the choice of γ = ηgηlK and α ≤ 1
4(ω+1) , it holds that

1

2γ
≥ L

2
+ γL2

(
44(1 + ω)α

S
+

25N2

α2S2
+

656(1 + ω)N

αS2

)
.

Averaging (35) over k and noting ∥x0 − x−1∥2 = 0, α = O((1 + ω)−1), we obtain

1

T

T−1∑
t=0

E[∥∇f(xt)∥2] ≲Φ0 − ΦT

γT
+ (1 + ω)

(
α2

S
+

α

N
+

(1 + ω)α2

N

)
σ2

K

≲
Φ0 − ΦT

γT
+ (1 + ω)

(
α2

S
+

α

N

)
σ2

K
.
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By the definition of Φt, it holds that

Φ0 − ΦT

γT
≲
L∆

γT
+

N

αS

E[∥c0 −∇f(x0)∥2]
T

+
(1 + ω)

S

1
N

∑
i E[∥c0i −∇fi(x

0)∥2]
T

≲
L∆

T

N

αS
+

σ2

αSBT
where we use the choice of γ, α, and the initialization of {c0i }i∈[N ] and c0 in the second inequality.
Due to the choice of B, we have σ2

αSBT ≲ L∆
T

N
αS and thus

1

T

T−1∑
t=0

E[∥∇f(xt)∥2] ≲L∆

T

N

αS
+ (1 + ω)

(
α2

S
+

α

N

)
σ2

K
. (36)

Plugging the choice of α into (36) completes the proof.
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F PROOF OF SCAFCOM

In this section, we prove the convergence result of SCAFCOM with biased compression, where we
additionally define x−1 := x0. We thus have E[∥xt − xt−1∥2] = 0 for t = 0. Note that x−1 is
defined for the purpose of notation and is not utilized in our algorithms.

Lemma 8 (DESCENT LEMMA). Under Assumptions 1 and 2, it holds for all t ≥ 0 and γ > 0 that
E[f(xt+1)]

≤E[f(xt)]− γ

2
E[∥∇f(xt)∥2]−

(
1

2γ
− L

2

)
E[∥xt+1 − xt∥2] + 16γL2E[∥xt − xt−1∥2]

+ γ

(
4E[∥vt −∇f(xt−1)∥2] + 12β2

N

∑
i

E[∥vti −∇fi(x
t−1)∥2] + 12

N

∑
i

E[∥vti − cti∥2]

)

+
8γβ2σ2

K
+ 9γβ2L2U t. (37)

Proof. By Lemma 2 of Li et al. (2021), we have

f(xt+1) ≤ f(xt)− γ

2
∥∇f(xt)∥2 −

(
1

2γ
− L

2

)
∥xt+1 − xt∥2 + γ

2
∥d̃t+1 −∇f(xt)∥2

where d̃t+1 = 1
S

∑
i∈St δ̃ti + ct. Letting dt+1 ≜ 1

S

∑
i∈St δti + ct, we further have

f(xt+1) ≤f(xt)− γ

2
∥∇f(xt)∥2 −

(
1

2γ
− L

2

)
∥xt+1 − xt∥2

+ γ∥d̃t+1 − dt+1∥2 + γ∥dt+1 −∇f(xt)∥2. (38)

For ∥dt+1−∇f(xt)∥2, using Lemma 2 and the fact that ct ≡ 1
N

∑
i c

t
i and dt+1 = 1

S

∑
i∈St(u

t+1
i −

cti) + ct, we have

E[∥dt+1 −∇f(xt)∥2]

=E

∥∥∥∥∥ct + 1

S

∑
i∈St

(ut+1
i − cti)−∇f(xt)

∥∥∥∥∥
2


≤E[∥ut+1 −∇f(xt)∥2] + 1

SN

∑
i

E[∥ut+1
i − cti∥2]

=E[∥(1− β)(vt −∇f(xt)) + β(gt −∇f(xt))∥2] + 1

SN

∑
i

E[∥vti + β(gti − vti)− cti∥2].(39)

Using (10) and Assumption 1, we have
E[∥(1− β)(vt −∇f(xt)) + β(gt −∇f(xt)∥2]

≤2E[∥vt −∇f(xt)∥2] + 3β2L2U t +
2β2σ2

NK

≤4E[∥vt −∇f(xt−1)∥2] + 4L2E[∥xt − xt−1∥2] + 3β2L2U t +
2β2σ2

NK
. (40)
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Similarly, using (11) and Assumption 1, we have
1

SN

∑
i

E[∥vti + β(gti − vti)− cti∥2]

=
1

SN

∑
i

E[∥vti + β(∇fi(x
t)−∇fi(x

t−1)) + β(∇fi(x
t−1)− vti) + β(gti −∇fi(x

t))− cti∥2]

≤ 2

SN

∑
i

E[∥vti + β(∇fi(x
t)−∇fi(x

t−1)) + β(∇fi(x
t−1)− vti)− cti∥2] +

3β2L2U t

S
+

2β2σ2

SK

≤ 6

SN

∑
i

(
E[∥vti − cti∥2] + β2E[∥vti −∇fi(x

t−1)∥2] + β2L2E[∥xt − xt−1∥2]
)
+

3β2L2U t

S
+

2β2σ2

SK
.

(41)
Plugging (40) and (41) into (39), we obtain

E[∥dt+1 −∇f(xt)∥2]

≤4E[∥vt −∇f(xt−1)∥2] + 6β2

S

1

N

∑
i

E[∥vti −∇fi(x
t−1)∥2] + 6

SN

∑
i

E[∥vti − cti∥2]

+ 3(1 + S−1)β2L2U t +

(
4 +

6β2

S

)
L2E[∥xt − xt−1∥2] + (N−1 + S−1)

2β2σ2

K
. (42)

For ∥d̃t+1 − dt+1∥2, using Young’s inequality and Definition 2, we have

E[∥d̃t+1 − dt+1∥2] =E

∥∥∥∥∥ 1S ∑
i∈St

Ci(ut+1
i − cti)− (ut+1

i − cti)

∥∥∥∥∥
2


≤q2

S
E

[∑
i∈St

∥ut+1
i − cti∥2

]
=

q2

N

∑
i

E[∥ut+1
i − cti∥2]

=
q2

N

∑
i

E[∥vti + β(gti − vti)− cti∥2].

Then applying the same relaxation in (41), we obtain

E[∥d̃t+1 − dt+1∥2]

≤6q2

N

∑
i

(
E[∥vti − cti∥2] + β2E[∥vti −∇fi(x

t−1)∥2] + β2L2E[∥xt − xt−1∥2]
)

+ 3β2q2L2U t +
2β2q2σ2

K
. (43)

Plugging (42) and (43) into (38) and noting N−1 ≤ S−1 ≤ 1, q2 ≤ 1, we complete the proof.

Given Lemma 8, the rest is to bound ∥vt −∇f(xt−1)∥2, ∥vti −∇fi(x
t−1)∥2, and ∥vti − cti∥2.

Lemma 9. Under Assumptions 1 and 2, it holds for all t ≥ 0 that
E[∥vt+1 −∇f(xt)∥2]

≤
(
1− Sβ

2N

)
E[∥vt −∇f(xt−1)∥2] + 4β2S

N2

1

N

∑
i

E[∥vti −∇fi(x
t−1)∥2]

+
6NL2

Sβ
E[∥xt − xt−1∥2] + 6βSL2

N
U t +

6β2Sσ2

N2K
. (44)
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Proof. Using (9) and Lemma 1, we have
E[∥vt+1 −∇f(xt)∥2]

=E

∥∥∥∥∥ 1S ∑
i∈St

Sβ

N
(gti − vti) + vt −∇f(xt)

∥∥∥∥∥
2


≤E

[∥∥∥∥SβN (gt − vt) + vt −∇f(xt)

∥∥∥∥2
]
+

β2S

N2

1

N

∑
i

E[
∥∥gti − vti

∥∥2]
=E

[∥∥∥∥(1− Sβ

N

)
(vt −∇f(xt)) +

Sβ

N
(gt −∇f(xt))

∥∥∥∥2
]
+

β2S

N2

1

N

∑
i

E[
∥∥gti − vti

∥∥2]. (45)

Using (10), Young’s inequality, and Assumption 1, we further have

E

[∥∥∥∥(1− Sβ

N

)
(vt −∇f(xt)) +

Sβ

N
(gt −∇f(xt))

∥∥∥∥2
]

≤
(
1− Sβ

N

)
E[∥vt −∇f(xt)∥2] + 2βSL2

N
U t +

2β2S2σ2

N3K

≤
(
1− Sβ

2N

)
E[∥vt −∇f(xt−1)∥2] + 2NL2

Sβ
E[∥xt − xt−1∥2] + 2βSL2

N
U t +

2β2S2σ2

N3K
.(46)

Using Young’s inequality and Assumption 1, we can obtain
β2S

N2

1

N

∑
i

E[
∥∥gti − vti

∥∥2]
≤β2S

N2

1

N

∑
i

(
2E[∥∇fi(x

t)− vti∥2] + 2E[∥gti −∇fi(x
t)∥2]

)
≤β2S

N2

1

N

∑
i

(
4E[∥vti −∇fi(x

t−1)∥2] + 4L2E[∥xt − xt−1∥2] + 2E[∥gti −∇fi(x
t)∥2]

)
. (47)

Using Lemma 2 and Assumption 1, we have
1

N

∑
i

E[∥gti −∇fi(x
t)∥2]

≤ 2

N

∑
i

E

∥∥∥∥∥ 1

K

∑
k

∇fi(y
t,k
i )−∇fi(x

t)

∥∥∥∥∥
2
+

2σ2

K
≤ 2L2U t +

2σ2

K
. (48)

Plugging (48) into (47), we reach
β2S

N2

1

N

∑
i

E[
∥∥gti − vti

∥∥2]
≤β2S

N2

1

N

∑
i

(
4E[∥vti −∇fi(x

t−1)∥2] + 4L2E[∥xt − xt−1∥2] + 4L2U t +
4σ2

K

)
. (49)

Combining (45), (46), (49) together and using β2S2σ2

N3K ≤ β2Sσ2

N2K , β2SL2

N2 ≤ NL2

Sβ , β2SL2

N2 ≤ βSL2

N

completes the proof.

Lemma 10. Under Assumptions 1 and 2, it holds for all t ≥ 0 that
1

N

∑
i

E[∥vt+1
i −∇fi(x

t)∥2]

≤
(
1− Sβ

2N

)
1

N

∑
i

E[∥vti −∇fi(x
t−1)∥2] + 2NL2

Sβ
E[∥xt − xt−1∥2]

+
2βL2S

N
U t +

2β2Sσ2

NK
. (50)
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Proof. Using (9), we have
1

N

∑
i

E[∥vt+1
i −∇fi(x

t)∥2]

=
1

N

∑
i

((
1− S

N

)
E[∥vti −∇fi(x

t)∥2] + S

N
E
[∥∥β(gti − vti) + vti −∇fi(x

t)
∥∥2])

≤
(
1− Sβ

N

)
1

N

∑
i

E[∥vti −∇fi(x
t)∥2] + 2βL2S

N
U t +

2β2Sσ2

NK

where the inequality due to
1

N

∑
i

E
[∥∥β(gti − vti) + vti −∇fi(x

t)
∥∥2]

=
1

N

∑
i

E
[∥∥β(gti −∇fi(x

t)) + (1− β)(vti −∇fi(x
t))
∥∥2]

≤1− β

N

∑
i

E[∥vti −∇fi(x
t)∥2] + 2βL2U t +

2β2σ2

K

by applying (11). By further using Young’s inequality and Assumption 1, we obtain
1

N

∑
i

E[∥vt+1
i −∇fi(x

t)∥2]

≤
(
1− Sβ

2N

)
1

N

∑
i

E[∥vti −∇fi(x
t−1)∥2] + 2NL2

Sβ
E[∥xt − xt−1∥2]

+
2βL2S

N
U t +

2β2Sσ2

NK
.

Lemma 11. Under Assumptions 1 and 2, it holds for all t ≥ 0 that
1

N

∑
i

E[∥vt+1
i − ct+1

i ∥2]

≤
(
1− S(1− q)

N

)
1

N

∑
i

E[∥vti − cti∥2] +
4β2q2S

(1− q)N

1

N

∑
i

E[∥vti −∇fi(x
t−1)∥2]

+
4β2L2q2S

(1− q)N
E[∥xt − xt−1∥2] + 3β2q2SL2

(1− q)N
U t +

2β2q2Sσ2

NK
. (51)

Proof. Using (9) and Definition 2, we have

E[∥vt+1
i − ct+1

i ∥2] =
(
1− S

N

)
E[∥vti − cti∥2] +

S

N
E[∥ut+1

i − Ci(ut+1
i − cti)− cti)∥2]

≤
(
1− S

N

)
E[∥vti − cti∥2] +

S

N

q2

N

∑
i

E[∥ut+1
i − cti∥2]

=

(
1− S

N

)
E[∥vti − cti∥2] +

S

N

q2

N

∑
i

E[∥vti + β(gti − vti)− cti∥2] (52)
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where ut+1
i ≜ vti + β(gti − vti). Using Lemma 2 and Assumption 1, we have

q2

N

∑
i

E[∥vti + β(gti − vti)− cti∥2] =
q2

N

∑
i

E[∥vti + β(∇fi(x
t)− vti) + β(gti −∇fi(x

t))− cti∥2]

=
q2

N

∑
i

(
E[∥vti − cti + β(∇fi(x

t)− vti)∥2]

+ 2βE

[〈
vti − cti + β(∇fi(x

t)− vti),
1

K

∑
k

∇fi(y
t,k
i )−∇fi(x

t)

〉]

+β2E

∥∥∥∥∥ 1

K

∑
k

∇F (yt,ki ; ξt,ki )−∇fi(x
t)

∥∥∥∥∥
2


≤q2

N

∑
i

(
E[∥vti − cti + β(∇fi(x

t)− vti)∥2]

+ 2βE

[〈
vti − cti + β(∇fi(x

t)− vti),
1

K

∑
k

∇fi(y
t,k
i )−∇fi(x

t)

〉]

+2β2E

∥∥∥∥∥ 1

K

∑
k

∇fi(y
t,k
i )−∇fi(x

t)

∥∥∥∥∥
2
+

2β2σ2

K


≤q2

N

∑
i

E

∥∥∥∥∥vti − cti + β(∇fi(x
t)− vti) +

β

K

∑
k

(∇fi(y
t,k
i )−∇fi(x

t))

∥∥∥∥∥
2


+ β2q2L2U t +
2β2q2σ2

K
.

By further using Sedrakyan’s inequality and Assumption 1, we obtain
q2

N

∑
i

E[∥vti + β(gti − vti)− cti∥2]

≤q2

N

∑
i

(
1

q
E[∥vti − cti∥2] +

2β2

1− q
E[∥∇fi(x

t)− vti∥2]

+
2β2

1− q
E

∥∥∥∥∥ 1

K

∑
k

∇fi(y
t,k
i )−∇fi(x

t)

∥∥∥∥∥
2
+ β2q2L2U t +

2β2q2σ2

K

≤q2

N

∑
i

(
1

q
E[∥vti − cti∥2] +

4β2

1− q
E[∥vti −∇fi(x

t−1)∥2] + 4β2L2

1− q
E[∥xt − xt−1∥2]

+
2β2L2

1− q

1

K

∑
i

E[∥yt,ki − xt∥2]

)
+ β2q2L2U t +

2β2q2σ2

K

≤ q

N

∑
i

E[∥vti − cti∥2] +
4β2q2

1− q

1

N

∑
i

E[∥∇fi(x
t−1)− vti∥2] +

4β2L2q2

1− q
E[∥xt − xt−1∥2]

+

(
1 +

2

1− q

)
β2q2L2U t +

2β2q2σ2

K
. (53)

By combining (53) with (52) and using 1 ≤ 1/(1− q), we finish the proof.
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Lemma 12. Under Assumptions 1 and 2, it holds for any t ≥ 0 and ηlKL ≤ 1
2 that

U t

≤9e2K2η2l
N

∑
i

(
E[∥cti − vti∥2] + E[∥vti −∇fi(x

t−1)∥2] + L2E[∥xt − xt−1∥2] + E[∥∇f(xt)∥2]
)

+ e2Kη2l σ
2.

Proof. When K = 1, U t = 0 trivially for all t ≥ 0 so we consider K ≥ 2 below. Using Young’s
inequality, we have

E[∥yt,k+1
i − xt∥2] =E[∥yt,ki − ηl(g

t,k
i − cti + ct)− xt∥2]

≤E[∥yt,ki − ηl(∇f(yt,ki )− cti + ct)− xt∥2] + η2l σ
2

≤
(
1 +

1

K − 1

)
E[∥yt,ki − xt∥2] +Kη2l E[∥∇f(yt,ki )− cti + ct∥2] + η2l σ

2.

By further using Young’s inequality and Assumption 1, we obtain

Kη2l E[∥∇f(yt,ki )− cti + ct∥2]
=Kη2l E[∥∇f(yt,ki )−∇fi(x

t)− (cti −∇fi(x
t)) + ct −∇f(xt) +∇f(xt)∥2]

≤3Kη2l L
2E[∥yt,ki − xt∥2] + 3Kη2l E[∥cti −∇fi(x

t)− ct +∇f(xt)∥2] + 3Kη2l E[∥∇f(xt)∥2].
Using Young’s inequality, we have

3Kη2l
N

∑
i

E[∥cti −∇fi(x
t)− ct +∇f(xt)∥2]

≤3Kη2l
N

∑
i

E[∥cti −∇fi(x
t)∥2]

≤9Kη2l
N

∑
i

(
E[∥cti − vti∥2] + E[∥vti −∇fi(x

t−1)∥2] + L2E[∥xt − xt−1∥2]
)

By combining the above inequalities together, we have
1

N

∑
i

E[∥yt,k+1
i − xt∥2]

≤
(
1 +

1

K − 1
+ 3Kη2l L

2

)
1

N

∑
i

E[∥yt,ki − xt∥2] + η2l σ
2

+
9Kη2l
N

∑
i

(
E[∥cti − vti∥2] + E[∥vti −∇fi(x

t−1)∥2] + L2E[∥xt − xt−1∥2] + E[∥∇f(xt)∥2]
)

≤ · · · ≤
k∑

ℓ=0

(
1 +

1

K − 1
+ 3Kη2l L

2

)ℓ
(
9Kη2l
N

∑
i

(
E[∥cti − vti∥2] + E[∥vti −∇fi(x

t−1)∥2]

+ L2E[∥xt − xt−1∥2] + E[∥∇f(xt)∥2]
)
+ η2l σ

2

)

≤
k∑

ℓ=0

(
1 +

2

K − 1

)ℓ
(
9Kη2l
N

∑
i

(
E[∥cti − vti∥2] + E[∥vti −∇fi(x

t−1)∥2]

+ L2E[∥xt − xt−1∥2] + E[∥∇f(xt)∥2]
)
+ η2l σ

2

)
, (54)
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where we use ηlKL ≤ 1
2 so that 3Kη2l L

2 ≤ 1
K−1 in the last inequality. Iterating and averaging (54)

over k = 0, . . . ,K − 1, we obtain

U t ≤ 1

K

∑
k

k−1∑
ℓ=0

(
1 +

2

K − 1

)ℓ
(
9Kη2l
N

∑
i

(
E[∥cti − vti∥2] + E[∥vti −∇fi(x

t−1)∥2]

+L2E[∥xt − xt−1∥2] + E[∥∇f(xt)∥2]
)
+ η2l σ

2

)

≤
K−2∑
ℓ=0

(
1 +

2

K − 1

)K−1
(
9Kη2l
N

∑
i

(
E[∥cti − vti∥2] + E[∥vti −∇fi(x

t−1)∥2]

+L2E[∥xt − xt−1∥2] + E[∥∇f(xt)∥2]
)
+ η2l σ

2

)

≤e2Kη2l σ
2 +

9e2K2η2l
N

∑
i

(
E[∥cti − vti∥2] + E[∥vti −∇fi(x

t−1)∥2]

+L2E[∥xt − xt−1∥2] + E[∥∇f(xt)∥2]
)

where we use the fact
(
1 + 2

K−1

)2
≤ e2 in the last inequality.

Theorem 4. Under Assumptions 1 and 2, supposing clients are associated with q2-contractive com-
pressors, if we initialize c0i = v0i = 1

B

∑B
b=1 ∇F (x0; ξbi ), c

0 = 1
N

∑N
i=1 c

0
i with {ξbi }Bb=1

iid∼ Di and
B ≳ σ2

(1−q)L∆ (c0i → ∇fi(x
0) as B → ∞), set

ηlKL ≤

√
β(1− q)2

36e2N(189(1− q)2 + 306β2)
, ηgηlKL =

(
20N

βS
+

28N

(1− q)S

)−1

,

β =

(
1 +

(
TSσ2

N2KL∆

)1/2

+

(
TSσ2

NK(1− q)L∆

)1/3

+

(
TSσ2

NK(1− q)2L∆

)1/4
)−1

,

(55)

then SCAFCOM converges as

1

T

T−1∑
t=0

E[∥∇f(xt)∥2] ≲
√

L∆σ2

SKT
+

(
N2L2∆2σ2

(1− q)S2KT 2

)1/3

+

(
N3L3∆3σ2

(1− q)2S3KT 3

)1/4

+
NL∆

(1− q)ST

where ∆ ≜ f(x0)−minx f(x).

Proof. Adding (44) × 8γN
βS + (51) × 13γN

(1−q)S to (37), we have

E[f(xt+1)] +
8γN

βS
E[∥vt+1 −∇f(xt)∥2] + 14γN

(1− q)S

1

N

∑
i

E[∥vt+1
i − ct+1

i ∥2]

≤E[f(xt)] +
8γN

βS
E[∥vt −∇f(xt−1)∥2] + γ

(
13N

(1− q)S
− 1

)
1

N

∑
i

E[∥vti − cti∥2]

− γ

2
E[∥∇f(xt)∥2]−

(
1

2γ
− L

2

)
E[∥xt+1 − xt∥2]

+ γL2

(
16 +

48N2

β2S2
+

52β2q2

(1− q)2

)
E[∥xt − xt−1∥2]

+ γ

(
8β2 +

48β

N
+

26β2q2

1− q

)
σ2

K
+ γL2

(
9β2 + 48 +

39β2q2

(1− q)2

)
U t

+ γ

(
12β2 +

32β

N
+

52β2q2

(1− q)2

)
1

N

∑
i

E[∥vti −∇fi(x
t−1)∥2].
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Using q, β ∈ [0, 1] and 1 ≤ S ≤ N to simplify coefficients, we obtain

E[f(xt+1)] +
8γN

βS
E[∥vt+1 −∇f(xt)∥2] + 13γN

(1− q)S

1

N

∑
i

E[∥vt+1
i − ct+1

i ∥2]

≤E[f(xt)] +
8γN

βS
E[∥vt −∇f(xt−1)∥2] + γ

(
13N

(1− q)S
− 1

)
1

N

∑
i

E[∥vti − cti∥2]

− γ

2
E[∥∇f(xt)∥2]−

(
1

2γ
− L

2

)
E[∥xt+1 − xt∥2]

+ γL2

(
64N2

β2S2
+

52β2

(1− q)2

)
E[∥xt − xt−1∥2]

+ γ

(
48β

N
+

26β2

1− q

)
σ2

K
+ γL2

(
48 +

39β2

(1− q)2

)
U t

+ γ

(
32β

N
+

64β2

(1− q)2

)
1

N

∑
i

E[∥vti −∇fi(x
t−1)∥2]. (56)

Now adding (50) × 66γ( 1
S + 2βN

(1−q)2S ) to (56) and defining the Lyapunov function (x−1 := x0)

Ψt :=E[f(xt)] +
8γN

βS
E[∥vt −∇f(xt−1)∥2]

+
13γN

(1− q)S

1

N

∑
i

E[∥vti − cti∥2] + 66γ

(
1

S
+

2βN

(1− q)2S

)
1

N

∑
i

E[∥vti −∇fi(x
t−1)∥2],

we obtain
Ψt+1 −Ψt

≤− γ

(
1

N

∑
i

E[∥vti − cti∥2] +
(

β

N
+

2β2

(1− q)2

)
1

N

∑
i

E[∥vti −∇fi(x
t−1)∥2]

)

− γ

2
E[∥∇f(xt)∥2]−

(
1

2γ
− L

2

)
E[∥xt+1 − xt∥2]

+ γL2

(
64N2

β2S2
+

52β2

(1− q)2
+ 132

(
N

βS2
+

2N2

(1− q)2S2

))
E[∥xt − xt−1∥2]

+ γ

(
32β

N
+

64β2

1− q
+ 132

(
β2

N
+

2β3

(1− q)2

))
σ2

K

+ γL2

(
48 +

39β2

(1− q)2
+ 132

(
β

N
+

2β2

(1− q)2

))
U t.

Using q, β ∈ [0, 1] and 1 ≤ S ≤ N to simplify coefficients, we obtain

Ψt+1 −Ψt

≤− γ

(
1

N

∑
i

E[∥vti − cti∥2] +
(

β

N
+

2β2

(1− q)2

)
1

N

∑
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E[∥vti −∇fi(x
t−1)∥2]

)

− γ

2
E[∥∇f(xt)∥2]−

(
1

2γ
− L

2

)
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(
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β2S2
+
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(1− q)2
+
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)
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+ γ

(
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N
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64β2
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+
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)
σ2

K
+ γL2

(
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(1− q)2

)
U t. (57)
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Using 9e2K2η2l L
2
(
180 + 303β2

(1−q)2

)
≤ β

4N and Lemma 12, we have

γL2

(
180 +

303β2

(1− q)2

)
U t

≤γ

(
1

N

∑
i

E[∥cti − vti∥2] +
(

β

N
+

2β2

(1− q)2

)
1

N

∑
i

E[∥vti −∇fi(x
t−1)∥2]

)

+
γ

4
E[∥∇f(xt)∥2] + γL2

4
E[∥xt − xt−1∥2] + γβσ2

NK
. (58)

Plugging (58) into (57), we reach
Ψt+1 −Ψt

≤− γ

4
E[∥∇f(xt)∥2]

−
(

1

2γ
− L

2

)
E[∥xt+1 − xt∥2] + γL2

(
197N2

β2S2
+

316N2

(1− q)2S2

)
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+ γ

(
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N
+
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1− q
+

264β3

(1− q)2

)
σ2

K
. (59)

Due to the choice of γ = ηgηlK, it holds that
1

2γ
≥ L

2
+ γL2

(
197N2

β2S2
+

264β3

(1− q)2

)
,

Averaging (59) over k and noting ∥x0 − x−1∥2 = 0, we obtain

1

T

T−1∑
t=0

E[∥∇f(xt)∥2] ≲Ψ0 −ΨT

γT
+

(
β

N
+

β2

1− q
+

β3

(1− q)2

)
σ2

K
.

Note that, by the definition of Ψt, it holds that
Ψ0 −ΨT

γT

≲
L∆

γT
+

N

βS
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T
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) 1
N

∑
i E[∥v0i −∇fi(x
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N

βS
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(1− q)S

)
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σ2

BT

(
1

βS
+

N

(1− q)S
+

βN

(1− q)2S

)
where we use the choice of γ and the initialization of {v0i }i∈[N ], {c0i }i∈[N ], and c0 in the second
inequality. Due to the choice of B, we have

σ2

B

(
1

βS
+

N

(1− q)S
+

βN

(1− q)2S

)
≲ L∆

(
N

βS
+

N

(1− q)S

)
and consequently

1

T

T−1∑
t=0

E[∥∇f(xt)∥2] ≲L∆

T

(
N

βS
+

N

(1− q)S

)
+

(
β

N
+

β2

1− q
+

β3

(1− q)2

)
σ2

K
. (60)

Plugging the choice of β into (60) completes the proof.
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G IMPLEMENTATION DETAILS & MORE EXPERIMENTS

G.1 DATASETS, ALGORITHMS AND TRAINING SETUP

Datasets and model. We test our algorithms on two standard FL datasets: MNIST dataset (LeCun,
1998) and Fashion MNIST dataset (Xiao et al., 2017). The MNIST dataset contains 60,000 training
images and 10,000 test images. Each image is a gray-scale handwritten digit from 0 to 9 (10 classes
in total) with 784 pixels. The FMNIST dataset has the same dataset sizes and the number of pixels
per image whereas each image falls into 10 categories of fashion products (e.g., bag, dress), making
the learning task more challenging. Following (Karimireddy et al., 2020b), we train a (non-convex)
fully-connected neural network with 2 hidden layers with 256 and 128 neurons, respectively. We
use ReLU as the activation function and the cross-entropy loss as the training objective.

Algorithms. We implement our two proposed methods and two recent compressed FL algorithms,
with biased and unbiased compression, respectively:

• (Biased) FED-EF (Li & Li, 2023): Federated learning with biased compression and stan-
dard error feedback. Since our proposed algorithms conduct SGD-type updates in the
server, we compare them with its FED-EF-SGD variant.

• (Biased) SCAFCOM (our Algorithm 2): Biased compression for FL with stochastic con-
trolled averaging and local momentum. The momentum β in Algorithm 2 is tuned over a
fine grid on [0.05, 1].

• (Unbiased) FEDCOMGATE (Haddadpour et al., 2021): Federated learning with unbiased
compression. It uses the gradient-tracking technique to alleviate data heterogeneity.

• (Unbiased) SCALLION (our Algorithm 1): Unbiased compression for FL with stochastic
controlled averaging. The local scaling factor α is tuned over a fine grid on [0.05, 1].

Besides the compressed FL algorithms, we also test the corresponding full-precision baselines: FED-
SGD (also known as FEDAVG (Yang et al., 2021)) and SCAFFOLD (Karimireddy et al., 2020b),
both with two-sided (global and local) learning rates. For a fair comparison, we execute SCAF-
FOLD with our new implementation in experiments, corresponding to the special cases of SCAF-
COM (Ci = I , β = 1) and of SCALLION (Ci = I , α = 1). Notably, under a fixed random seed,
our implementation yields the same training trajectory as Karimireddy et al. (2020b) at a halved
uplink communication cost (by only sending one variable per participating client).

In the experiments, biased compression is simulated with TOP-r operators (our Example 3). Specif-
ically, we experiment with TOP-0.01 and TOP-0.05, where only the largest 1% and 5% en-
tries in absolute values are transmitted in communication. For unbiased compression, we uti-
lize random dithering (our Example 2), with 2 bits and 4 bits per entry, respectively. We tune
the combination of the global learning rate ηg and the local learning rate ηl over the 2D grid
{0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10}2. The combination of learning rates with the highest
test accuracy is reported for each algorithm and hyper-parameter choice (e.g., β, α, and degree of
compression).

Federated learning setting. In our experiments, the training data are distributed across N = 200
clients, in a highly heterogeneous setting following (Li & Li, 2023). The training data samples are
split into 400 shards each containing samples from only one class. Then, each client is randomly
assigned two shards of data. Therefore, every client only possesses training samples from at most
two classes. All the clients share the same initial model at T = 0. In each round of client-server
interaction, we uniformly randomly pick S = 20 clients to participate in FL training, i.e., the partial
participation rate is 10%. Each participating client performs K = 10 local training steps using the
local data, with a mini-batch size 32. All the presented results are averaged over 5 independent runs
with the same model initialization for all the algorithms.
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Figure 4: Train loss and test accuracy of SCAFCOM (Algorithm 2) and FED-EF (Li & Li, 2023)
with biased TOP-r compressors on MNIST (top row) and FMNIST (bottom row).

G.2 RESULTS

SCAFCOM with biased compression. In Figure 4, we first present the train loss and test accuracy
of our proposed SCAFCOM (Algorithm 2) with momentum β = 0.2 and FED-EF (Li & Li, 2023),
both using biased TOP-r compressors. We observe:

• In general, under the same degree of compression (i.e., the value of r in the case), SCAF-
COM outperforms FED-EF in terms of both training loss and test accuracy, thanks to
controlled variables and the local momentum in SCAFCOM.

• On both datasets, SCAFCOM with TOP-0.01 can achieve very close test accuracy as the
full-precision SCAFFOLD, and SCAFCOM with TOP-0.05 essentially match those of
full-precision SCAFFOLD. Hence, we can reach the same performance while saving 20 -
100x uplink communication costs.

• For both SCAFCOM and FED-EF, as the degree of compression decreases (i.e., r in-
creases), their performance approaches that of the corresponding FL methods under full-
precision communication (i.e., SCAFFOLD and FED-SGD).
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Figure 5: Train loss and test accuracy of SCALLION (Algorithm 1) and FEDCOMGATE (Had-
dadpour et al., 2021) with unbiased random dithering on MNIST (top row) and FMNIST (bottom
row).

SCALLION with unbiased compression. In Figure 5, we plot the same set of experimental re-
sults and compare SCALLION (α = 0.1) with FedCOMGATE (Haddadpour et al., 2021), both
applying unbiased random dithering (Alistarh et al., 2017) with 2 and 4 bits per entry. Similarly, we
see that SCALLION outperforms FedCOMGATE under the same degree of compression (number
of bits per entry). The SCALLION curves of both 2-bit and 4-bit compression basically overlap
that of SCAFFOLD, and 4-bit compression slightly performs better than 2-bit compression in later
training rounds. Since random dithering also introduces sparsity in compressed variables, the 4-bit
compressor already provides around 100x communication compression, and the 2-bit compressor
saves more communication costs.
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Figure 6: Test accuracy on MNIST and FMNIST of SCAFCOM (biased TOP-0.01) and SCALLION (unbi-
ased 2-bit random dithering), with different β and α values.

Impact of β and α. The momentum factor β in SCAFCOM and the scaling factor α in SCAL-
LION are two important tuning parameters of our proposed methods. As an example, in Figure 6,
we report the test accuracy of SCAFCOM with TOP-0.01 (left column) and SCALLION (right
column) 2-bit random dithering, for various β and α values, respectively. From the results, we see
that SCAFCOM can converge with a wide range of β ∈ [0.05, 1], and β = 0.2 performs the best
on both datasets (so we presented the results with β = 0.2 in Figure 1). For SCALLION, we report
three α-values, α = 0.05, 0.1, 0.2. When α > 0.5, the training of SCALLION becomes unstable
for 2-bit quantization. As we use more bits, larger α could be allowed. This is because, random
dithering may hugely scale up the transmitted (compressed) entries, especially for low-bit quanti-
zation. When the scaling factor α is too large in this case, the updates of local control variables
become unstable, which further incapacitates the proper dynamic of the local/global training. Thus,
for SCALLION with low-bit random dithering, we typically need a relatively small α. As presented
in Figure 2, α = 0.1 yields the best overall performance. In general, we should tune parameters β
and α in SCAFCOM and SCALLION practically to reach the best performance.
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