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A Preliminaries

A.1 Notation

We’ll use N to denote the naturals including 0. The indicator function for the condition x =
y is written as 1x=y. Given an integer weak composition α ∈ ND, we will often consider the
multidimensional polynomial zα =

∏D
d=1 z

αd
d . For two vectors x, x′ ∈ CD, we denote their

elementwise product by x ◦ x′.

A.2 Inner Products

We introduce two L2 inner products (defined with respect to probability measures) we’ll use through-
out the work. For symmetric functions f, g : CN → C, define:

〈f, g〉V =
1

(2π)NN !

∫
[0,2π]N

f(eiθ)g(eiθ)|V (eiθ)|2dθ , (24)

where for z ∈ CN , we have the Vandermonde determinant

V (z) =
∏

1≤i<j≤N

(zj − zi) . (25)

This inner product is well-known in the theory of symmetric polynomials, as a finite-variable analogue
of the Hall inner product [14]. Equivalently, if we let V denote the joint density of eigenvalues of a
Haar-distributed unitary matrix in CN×N , it is known [5] that this inner product may be written as

〈f, g〉V = Ey∼V
[
f(y)g(y)

]
. (26)

For arbitrary functions f, g : CD → C, we also consider the L2 inner product given as an expectation
over D random variables

〈f, g〉S1 =
1

(2π)D

∫
[0,2π]D

f(eiθ)g(eiθ)dθ (27)

= Eq∼(S1)D

[
f(q)g(q)

]
, (28)

with the notation q ∼ (S1)D meaning each entry of q is i.i.d. uniform on S1.

For this inner product, we will introduce the following notation. For a multi-index α ∈ ND and a
dummy variable q of dimension D, we let qα denote the polynomial function z 7→ zα. Then it’s clear
that

〈qα, qβ〉S1 = 1α=β . (29)

Note that we will consider this inner product over varying dimensions throughout the paper, but it
will be clear from context the dimension, i.e. how many i.i.d. random variables uniform on S1 we are
sampling over.

A.3 Symmetric Polynomials

We remind the notation from the main body: p0(x) = 1, and for k ∈ N \ {0} and any partition λ:

pk(x) =
1√
k

N∑
n=1

xkn (30)

pλ(x) =
∏
i

pλi(x) . (31)
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We will also sometimes use set notation to index products of powersums. For example, p{2,1} =
p2p1 = p1p2.

Finally, we need the notation that if nt denotes the number of times t appears in λ, then zλ =
∏
t nt!.

Note that this definition of zλ is slightly different that most texts, as we’re considering the normalized
powersums.

Then we can state Theorem 4.3 explicitly:

Theorem A.1. [[14, Chapter VI (9.10)] ] For partitions λ, µ with |λ| ≤ N :

〈pλ, pµ〉V = zλ1λ=µ . (32)

A.4 Multisymmetric Polynomials

When D > 1, in order to approximate our network with polynomials, we introduce the multivariate
analog of symmetric polynomials. For example, suppose D = 2, and we write our set elements the
following way:

X =

{[
y1
z1

]
,

[
y2
z2

]
, . . .

[
yN
zN

]}
Then a basis of symmetric functions is given by the multisymmetric power sum polynomials, some
examples:

p(2,3)(X) =
1√

2 + 3

∑
n

y2nz
3
n (33)

p(4,1)(X) =
1√

4 + 1

∑
n

y4nz
1
n . (34)

For general N and D, our input is X ∈ CD×N where we want functions that are invariant to
permuting the columns xn of this matrix. Note that we write scalar entries of this matrix as xdn.

Definition A.2. For a multi-index α ∈ ND, the normalized multisymmetric powersum polynomial is
defined as:

pα(X) =
1√
|α|

∑
n

xαn (35)

=
1√
|α|

∑
n

∏
d

xαddn (36)

with p0 = 1.

An algebraic basis of symmetric functions in this setting is given by all pα for all |α| ≤ N , where
|α| =

∑
d αd (for a proof see Rydh [19]).

We remind the notation from the introduction, where L∗(N,D) = |{α ∈ ND : |α| ≤ N}| =(
N+D
N

)
− 1 is the size of this algebraic basis (discouting the constant polynomial). Intuitively then

it’s clear why L ≥ L∗ will make SymL a universal approximator, as each of the L symmetric features
{φl}Ll=1 will calculate one of these basis elements.

B One Dimensional Set Elements

We will first consider the setting where D = 1, i.e. each set element is a scalar. In this setting, we
will amend notation slightly so that we consider symmetric functions f acting on x ∈ CN , where
each xn is a scalar set element.
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B.1 Projection Lemma

Let us remind P1 to be the orthogonal projection onto span({pt : 1 ≤ t ≤ N/2}), and P2 to be the
orthogonal projection onto span({ptpt′ : 1 ≤ t, t′ ≤ N/2}).
Lemma B.1. Given any f ∈ SymL, we may choose coefficients vij over i ≤ j ≤ L, and symmetric
polynomials φi over i ≤ L, such that:

P2f =

L∑
i≤j

vij(P1φi)(P2φj) . (37)

Proof. Consider the general parameterization of f given in Equation 1. Because all network activa-
tions are analytic, we can write all maps parameterizing f by power series.

Note that the inner product 〈·, ·〉V integrates over a compact domain, therefore the projection P2f
will be determined by the value of f restricted to that domain. Thus, all power series in the sequel
will converge uniformly and we may freely interchange infinite sums with each other as well as with
inner products.

Explicitly, to parameterize f we write ψl(xn) = cl0 +
∑∞
k=1

clk√
k
xkn so that φl(x) =

∑N
n=1 ψl(xn) =

Ncl0 +
∑∞
k=1 clkpk(x).

Because ρ is also given as a power series, it can be equivalently written as a power series with all
variables having constant offsets. So we can subtract the constant terms from every φl and write:

ρ(y) =
∑
η∈NL

vηy
η , (38)

φl =

∞∑
k=1

clkpk , (39)

where yη =
∏N
n=1 y

ηn
n . Hence

f = ρ(φ1, . . . , φL) =
∑
η

vηφ
η . (40)

We proceed to calculateP2f . To begin, consider 〈ptpt′ , φη〉 for any choice of indices 1 ≤ t, t′ ≤ N/2.
To illustrate, suppose ηi = ηj = ηk = 1 and η is 0 everywhere else. Then we may write

〈ptpt′ , φη〉V = 〈ptpt′ , φiφjφk〉V =

∞∑
i′=1

∞∑
j′=1

∞∑
k′=1

cii′cjj′ckk′〈ptpt′ , pi′pj′pk′〉V = 0 . (41)

In other words, after distributing the product φiφjφk, we are left with a sum of terms of the form
pi′pj′pk′ . So treated as partitions, we clearly have {i′, j′, k′} 6= {t, t′}, where all these indices are
positive. Thus, because t+ t′ ≤ N , we can apply the orthogonality property of the inner product to
conclude 〈ptpt′ , pi′pj′pk′〉V = 0.

By similar logic, 〈ptpt′ , φη〉 = 0 whenever |η| 6= 2, so we may cancel all such terms in the expansion
of f to get

P2f = P2

∑
η∈NL

vηφ
η

 =
∑
|η|=2

vηP2φ
η .

Here we can simplify notation. Let {ei}Li=1 denote the standard basis vectors in dimension L. Every
η ∈ NL with |η| = 2 can be written as η = ei + ej , so let vij := vei+ej . Then we can rewrite:

P2f =

L∑
i≤j

vijP2φiφj .
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Finally, note again by orthogonality we have that P2(pi′pj′) = 0 if it is not the case that 1 ≤ i′, j′ ≤
N/2. So observe that we may pass from P2 to P1:

P2φiφj = P2

( ∞∑
i′=1

cii′pi′

) ∞∑
j′=1

cjj′pj′

 (42)

= P2

∞∑
i′=1

∞∑
j′=1

cii′cjj′pi′pj′ (43)

=

N/2∑
i′=1

N/2∑
j′=1

cii′cjj′pi′pj′ (44)

=

N/2∑
i′=1

cii′pi′

N/2∑
j′=1

cjj′pj′

 (45)

= (P1φi)(P1φj) . (46)

So ultimately we get

P2f =

L∑
i≤j

vij(P1φi)(P1φj) . (47)

B.2 Rank Lemma

The following lemma is a generalization of the the Rank Lemma 4.5, which we will use for both the
one- and high-dimensional cases. Ultimately, for an inner product 〈·, ·〉 with certain orthogonality
properties, it allows us to pass from function error ‖f − g‖2 to Frobenius norm error ‖F −G‖2F for
some induced matrices F,G.

Lemma B.2. Consider a commutative algebra equipped with an inner product, and a set of elements
{pt}Tt=1. Suppose the terms p{t,t′} = ptpt′ , indexed by sets {t, t′}, are pairwise orthogonal, and
normalized such that

‖ptpt′‖2 ≥
{

1 t 6= t′

2 t = t′

Consider the terms:

φl =

T∑
t=1

cltpt ,

f =

L∑
l≤l′

vll′

1 + 1l=l′
φlφl′ ,

g =

T∑
t≤t′

gtt′

1 + 1t=t′
ptpt′ .

Then we have the bound

‖f − g‖2 ≥ 1

2
‖CTV C −G‖2F , (48)

where Clt = clt, Vll′ = vll′ , Gtt′ = gtt′ , where we define V and G to be symmetric.
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Proof. To begin, we calculate inner products for t 6= t′:〈
f,

p{t,t′}

‖p{t,t′}‖

〉
=

1

‖p{t,t′}‖

〈
L∑
l≤l′

T∑
t,t′=1

vll′

1 + 1l=l′
cltcl′t′ptpt′ , ptpt′

〉
(49)

= ‖ptpt′‖
L∑
l≤l′

vll′

1 + 1l=l′
(cltcl′t′ + clt′cl′t) (50)

= ‖ptpt′‖

(
L∑
l=l′

vll
2

(cltclt′ + clt′clt) +

L∑
l<l′

vll′(cltcl′t′ + clt′cl′t)

)
(51)

= ‖ptpt′‖

(
L∑
l=l′

vllcltclt′ +

L∑
l<l′

vll′(cltcl′t′ + clt′cl′t)

)
. (52)

Defining vll′ = vl′l, we may reindex and write the second sum as:
L∑
l<l′

vll′(cltcl′t′ + clt′cl′t) =

L∑
l<l′

vll′cltcl′t′ +

L∑
l<l′

vll′clt′cl′t (53)

=

L∑
l<l′

vll′cltcl′t′ +

L∑
l>l′

vll′cltcl′t′ . (54)

So putting this together we get〈
f,

p{t,t′}

‖p{t,t′}‖

〉
= ‖ptpt′‖

 L∑
l,l′

vll′cltcl′t′

 = ‖ptpt′‖[CTV C]t,t′ .

By a similar calculation we conclude:〈
f,

p{t,t}

‖p{t,t}‖

〉
=
‖ptpt‖

2
[CTV C]t,t .

For g, we can directly calculate: 〈
g,

p{t,t′}

‖p{t,t′}‖

〉
= ‖ptpt′‖[G]t,t′ (55)〈

g,
p{t,t}

‖p{t,t}‖

〉
=
‖ptpt‖

2
[G]t,t . (56)

Finally, by Parseval’s Theorem we calculate:

‖f − g‖2 =
∑
t

(〈
f,

p{t,t}

‖p{t,t}‖

〉
−
〈
g,

p{t,t}

‖p{t,t}‖

〉)2

+
T∑
t<t′

(〈
f,

p{t,t′}

‖p{t,t′}‖

〉
−
〈
g,

p{t,t′}

‖p{t,t′}‖

〉)2

(57)

=
∑
t

(〈
f,

p{t,t}

‖p{t,t}‖

〉
−
〈
g,

p{t,t}

‖p{t,t}‖

〉)2

+
1

2

T∑
t6=t′

(〈
f,

p{t,t′}

‖p{t,t′}‖

〉
−
〈
g,

p{t,t′}

‖p{t,t′}‖

〉)2

(58)

=

T∑
t

‖p{t,t}‖2

4
[CTV C −G]2t,t +

1

2

T∑
t6=t′
‖p{t,t′}‖2 · [CTV C −G]2t,t′ (59)

≥ 1

2

T∑
t

[CTV C −G]2t,t +
1

2

T∑
t 6=t′

[CTV C −G]2t,t′ , (60)

where in the last line we use our assumption on the lower bound of ‖p{t,t′}‖2 and ‖p{t,t}‖2. Hence:

‖f − g‖2 ≥ 1

2
‖CTV C −G‖2F . (61)
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B.3 Proof of one-dimensional Lower Bound

Theorem B.3. Let D = 1. Then using the Vandermonde L2 inner product over symmetric polynomi-
als

max
‖g‖V =1

min
f∈SymL

‖f − g‖2V ≥ 1− 2L

N
. (62)

In particular, for L = N
4 we recover a constant lower bound.

Proof. We first build our counterexample g by choosing its coefficients in the powersum basis, say:

g =
1√
N

N/2∑
t=1

ptpt . (63)

From orthogonality and the fact that ‖ptpt‖2V = 2 it’s clear that ‖g‖V = 1, and note that P2g = g.
Applying Lemma B.1, for any f ∈ SymL we can write P2f in the form

P2f =

L∑
i≤j

vij(P1φi)(P1φj) . (64)

One may also confirm that the Vandermonde inner product satisfies the requirements of Lemma B.2
when restricted to the range of P2, owing to the orthogonality property and the fact that for 1 ≤
t, t′ ≤ N/2:

〈ptpt′ , ptpt′〉V =

{
1 t 6= t′

2 t = t′

So we’ve met all the necessary requirements to apply Lemma B.2 to P2f and P2g, thus we have:

min
f∈SymL

‖f − g‖2V ≥ min
f∈SymL

‖P2f − P2g‖2V (65)

≥ min
C,V

1

2
‖CTV C − 2 ∗ 1√

N
I‖2F (66)

= min
C,V

1

N/2
‖CTV C − I‖2F , (67)

where the factor of 2 appears based on the definition of the matrix G in Lemma B.2

Note that CV CT ∈ CN/2×N/2, but V ∈ CL×L. So if N/2 > L, then CV CT is a rank-deficient
approximation of the identity, and clearly we have

min
f∈SymL

‖f − g‖2V ≥
N/2− L
N/2

= 1− 2L

N
. (68)

C Exact statement of Main Result

C.1 Theorem Statement

We begin by restating the main result, where for convenience we will change from N set elements to
2N .

We introduce the notation D̂ := min
(
D, b

√
N/2c

)
. We also introduce the L2 inner product

〈f, g〉A = Ey∼V ;q,r∼(S1)D

[
f(X(y, q, r))g(X(y, q, r))

]
, (69)
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where the set input X(y, q, r) ∈ CD×2N with matrix entries xdn(y, q, r) is defined by:

xdn(y, q, r) =

{
qdyn 1 ≤ n ≤ N ,

rdyn−N N + 1 ≤ n ≤ 2N .
(70)

And we restate the activation assumption in this new notation:
Assumption C.1. The activation σ : C → C is analytic, and for a fixed D,N there exist two-
layer neural networks f1, f2 using σ, both with O

(
D2 +D log D

ε

)
width and O(D logD) bounded

weights, such that:

sup
|ξ|≤3

|f1(ξ)− ξ2| ≤ ε, sup
|ξ|≤3

∣∣∣∣f2(ξ)−
(

1− (ξ/4)min(D,
√
N/2)

) ξ − 1/4

ξ/4− 1

∣∣∣∣ ≤ ε (71)

Then our main theorem is thusly:

Theorem C.2 (Exponential width-separation). Fix 2N and D such that D̂ > 1, and consider set
elements X ∈ CD×2N . Define

g(X) = −4N2

4D̂
+

2N∑
n,n′=1

D̂∏
d=1

(
1− (xdnxdn′/4)D̂

) xdnxdn′ − 1/4

xdnxdn′/4− 1
(72)

(73)

and g′ = g
‖g‖A . Then the following is true:

• For L ≤ N−2 exp(O(D̂)),

min
f∈SymL

‖f − g′‖2A ≥
1

12
. (74)

• For L = 1, there exists f ∈ Sym2
L, parameterized with an activation σ that satisfies Assump-

tion C.1, with width poly(N,D, 1/ε), depth O(logD), and maximum weight magnitude
O(D logD) such that over the unit torus:

‖f − g′‖∞ ≤ ε . (75)

Remark 3. Let us remark about one aspect that will ease exposition. In the sequel, we will assume
D ≤

√
N/2 so that D̂ = D. This is not a necessary assumption; in the case that D >

√
N/2, we

can simply replace all instances of D with D̂ in the definition of g and the subsequent proof. Because
the data distribution has each row of X ∈ CD×2N is i.i.d., the proof goes through exactly. Indeed, it
would be equivalent to truncating each set vector to the first D̂ elements. This will only impact the
bounds by replacing D with D̂, in which circumstances we will clearly state.

C.2 Proof Roadmap

Let us roadmap the general proof.

In Section D.1, we justify the inner product 〈·, ·〉A and show it can be used to prove a high-dimensional
analogue of the Projection Lemma (see Lemma D.2). In Section D.2 we further introduce a sec-
ond inner product, whose orthogonality properties (see Theorem D.3) allow us to apply the Rank
Lemma B.2. In Section D.3, we combine these results to first prove a lower bound for a simple choice
of hard function (see Theorem D.4). Because this simple choice is not suitable for demonstrating the
upper bound, we then conclude by showing the hard function g′ also evinces a lower bound via a
similar argument (see Theorem D.5).

In Section E, we demonstrate the properties of the hard function g, by constructing the pieces of g
one by one and controlling their behavior, leading to Lemma E.3 which yields all the properties we
need about g for the rest of the proof.
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In Section F we complete the proof of the upper bound. Specifically, in Section F.1 we show how to
write g′ exactly in an analogous form to Sym2

L, but using very specific activations. In Section F.2
we write an approximation of this network in Sym2

L using a given activation, and in Section F.3 we
control the error between these two networks.

D Lower Bound of Main Result

D.1 An L2 inner product

As discussed in Section 5.2, we must first define an appropriate L2 inner product, before we can
prove a lower bound on function approximation. To that end, we will define an input distribution for
the set inputs X .

Let us introduce several random variables: let y ∼ V as in the definition of the inner product 〈·, ·〉V
over N variables. Let q and r be two random vectors of dimension D, with each entry i.i.d. uniform
on S1.

Then we can define an input distribution for X ∈ CD×2N with matrix entries xdn:

xdn =

{
qdyn 1 ≤ n ≤ N
rdyn−N N + 1 ≤ n ≤ 2N .

(76)

The point of this assignment is how it transforms multisymmetric power sums:

pα(X) =
1√
|α|

2N∑
n=1

∏
d

xαddn (77)

=
1√
|α|

N∑
n=1

∏
d

yαdn qαdd +
1√
|α|

N∑
n=1

∏
d

yαdn rαdd (78)

= p|α|(y) · (qα + rα) . (79)

Then as stated before we have the inner product:

〈f, g〉A = Ey∼V,q∼(S1)D,r∼(S1)D

[
f(X)g(X)

]
. (80)

From our choices above we may use separability to write 〈·, ·〉A in terms of previously introduced
inner products. For example:

〈pα,pβ〉A = Ey,q,r
[
p|α|(y)(qα + rα)pβ|(y)(qβ + rβ)

]
(81)

= Ey
[
p|α|(y)pβ|(y)

]
Eq,r

[
(qα + rα)(qβ + rβ)

]
(82)

= 〈p|α|, p|β|〉V · 〈qα + rα, qβ + rβ〉S1 . (83)

We can now observe this inner product grants a “partial" orthogonality:

Lemma D.1. Consider α, β ∈ ND with 1 ≤ |α|, |β| ≤ N/2. Then for γk ∈ ND \ {0}, if K 6= 2〈
pαpβ ,

K∏
k=1

pγk

〉
A

= 0 . (84)

Otherwise, for K = 2, we have:

〈pαpβ ,pγpδ〉A = 2 · (1 + 1|α|=|β|) · 1{|α|,|β|}={|γ|,|δ|} · (1α+β=γ+δ + 1(α,β)=(γ,δ) + 1(α,β)=(δ,γ)) .
(85)
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Proof. By separability, we can confirm that

〈pαpβ ,
K∏
k=1

pγk〉A = 〈p|α|p|β|,
K∏
k=1

p|γk|〉V · C , (86)

where C is the value of the expectation on the random variables q and r. Thus if K 6= 2, because
|α|+ |β| ≤ N , this term is 0 by orthogonality of the Vandermonde inner product.

For the K = 2 case, we begin again by using separability:

〈pαpβ ,pγpδ〉A =
〈
p|α|p|β|, p|γ|p|δ|

〉
V
·
〈
(qα + rα)(qβ + rβ), (qγ + rγ)(qδ + rδ)

〉
S1 . (87)

Let’s consider first the inner product of power sums. Plugging in the definition of the normalizing
constant zλ gives: 〈

p|α|p|β|, p|γ|p|δ|
〉
V

= (1 + 1|α|=|β|) · 1{|α|,|β|}={|γ|,|δ|} .

Consider now the second inner product term. Noting that each element qd, rd is i.i.d. uniform on
the unit circle, orthogonality of the Fourier basis implies we can calculate this inner product by only
including terms with matching exponents. Bearing in mind that α, β, γ, δ 6= 0, we must always have
terms of the form 〈qα+β , qγrδ〉S1 = 0, and therefore we distribute and calculate:〈

qα+β + qαrβ + qβrα + rα+β , qγ+δ + qγrδ + qδrγ + rγ+δ
〉
S1

= 〈qα+β , qγ+δ〉S1 + 〈qαrβ + qβrα, qγrδ + qδrγ〉S1 + 〈rα+β , rγ+δ〉S1

= 2 · 1α+β=γ+δ + 2 · 1(α,β)=(γ,δ) + 2 · 1(α,β)=(δ,γ) .

Collecting the terms of both products and evaluating the indicator functions under all cases gives the
result.

Looking at Equation 85, we can see inner product 〈·, ·〉A does not grant full orthogonality. The inner
product gives orthogonality between powersum products of different lengths, but 〈pαpβ ,pγpδ〉A
can be non-zero if α+ β = γ + δ, even in the cases where {α, β} 6= {γ, δ}.

Nevertheless, this inner product still suffices to prove a similar result about projection for the D > 1
case.

Let P1 be the orthogonal projection onto span({pα : 1 ≤ |α|, |β| ≤ N/2}) and P2 be the orthogonal
projection onto span({pαpβ : 1 ≤ |α|, |β| ≤ N/2}). Here by orthogonal, we mean with respect to
〈·, ·〉A.

Lemma D.2. Given any f ∈ SymL with D > 1, we may choose coefficients vij over i ≤ j ≤ L, and
multisymmetric polynomials φi over i ≤ L, such that:

P2f =

L∑
i≤j

vij(P1φi)(P2φj) . (88)

Proof. As in Lemma B.1, if we approximate ψl(xn) = cl0 +
∑
α 6=0

clα√
|α|
xαn, then symmetrizing

gives φl(X) = Ncl0 +
∑
α6=0 clαpα.

By a similar approximation as in Lemma B.1 that allows us to subtract out constant terms, we write:

f =
∑
η∈NL

vηφ
η , (89)

φl =
∑
α 6=0

clαpα . (90)
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Note that by Lemma D.1, 〈pαpβ , φη〉A = 0 unless |η| = 2. So similarly to before, we may rewrite

P2f =
∑
|η|=2

vηP2φ
η .

Here we can simplify notation. Let {ei}Li=1 denote the standard basis vectors in dimension L. Every
η ∈ NL with |η| = 2 can be written as η = ei + ej , so let vij := vei+ej . Then we can rewrite:

P2f =
∑
i≤j

vijP2φiφj .

Again, by Lemma D.1, we know P2 will annihilate any term of the form pγpδ if it’s not the
case that 1 ≤ |γ|, |δ| ≤ N/2. One can see this by noting that, for 1 ≤ |α|, |β| ≤ N/2, then
{|α|, |β|} 6= {|γ|, |δ|}, and by the Lemma, 〈pαpβ ,pγpδ〉A = 0.

So we may pass from P2 to P1:

P2φiφj = P2

∑
γ∈ND

ciγpγ

(∑
δ∈ND

cjδpδ

)
(91)

= P2

∑
γ∈ND

∑
δ∈ND

ciγcjδpγpδ (92)

=
∑

1≤|γ|≤N/2

∑
1≤|δ|≤N/2

ciγcjδpγpδ (93)

=

 ∑
1≤|γ|≤N/2

ciγpγ

 ∑
1≤|δ|≤N/2

cjδpδ

 (94)

= (P1φi)(P1φj) . (95)

So ultimately we get

P2f =

L∑
i≤j

vij(P1φi)(P1φj) . (96)

D.2 A Diagonal Inner Product

Before we can apply Lemma B.2, which lets us transform function approximation error into ma-
trix approximation error, we need a better inner product, one that is diagonal in the low-degree
multisymmetric powersum basis.

Consider two more inner products, defined for f, g in the range of P2:

〈f, g〉A0
= Ey∼V,q∼(S1)D,r=0

[
f(X)g(X)

]
. (97)

This is nearly the same distribution as before, except we fix r = 0.

Then define

〈f, g〉∗ = 〈f, g〉A − 2〈f, g〉A0
. (98)

Because f and g are restricted to the range of P2, we demonstrate positive-definiteness of this object,
and therefore it is a valid inner product.
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Theorem D.3. The bilinear form 〈·, ·〉∗ is an inner product when restricted to the range of P2.
Furthermore, it is diagonal in the powersum basis p{α,β} for 1 ≤ |α|, |β| ≤ N/2.

Proof. Given pαpβ ,pγpδ ∈ im(P2), we can consider 〈pαpβ ,pγpδ〉A0 which can similarly be
calculated via separability:

〈pαpβ ,pγpδ〉A0
= 〈p|α|p|β|, p|γ|p|δ|〉V · 〈qα+β , qγ+δ〉S1

= (1 + 1|α|=|β|) · 1{|α|,|β|}={|γ|,|δ|} · 1α+β=γ+δ .

It follows from Lemma D.1 that:

〈pαpβ ,pγpδ〉∗ = 〈pαpβ ,pγpδ〉A − 2〈pαpβ ,pγpδ〉A0

= 2 · (1 + 1|α|=|β|) · (1(α,β)=(γ,δ) + 1(α,β)=(δ,γ)) .

To eliminate the ambiguity of pαpβ vs. pβpα, let us define p{α,β} equal to both these terms. Then
we can equivalently write:

〈p{α,β},p{γ,δ}〉∗ = 2 · (1 + 1|α|=|β|) · (1 + 1α=β) · 1{α,β}={γ,δ} .

Evaluating the indicator functions under all cases we can see:

〈pαpβ ,pγpδ〉∗ =


0 {α, β} 6= {γ, δ}
2 {α, β} = {γ, δ}, |α| 6= |β|
4 {α, β} = {γ, δ}, |α| = |β|, α 6= β

8 {α, β} = {γ, δ}, α = β

Then we’ve shown that the bilinear form 〈·, ·〉∗, treated as a matrix in the basis of all p{α,β}, is
positive-definite and diagonal. Since this basis spans the range of P2, it follows that the bilinear form
is an inner product.

D.3 Proof of Lower Bound

We first prove a lower bound using a slightly simpler hard function g, before updating the argument
to the true choice of g further below.

Theorem D.4. Let D > 1. In particular, assume min(N/2, D − 1) ≥ 2. Then we have

max
‖g‖A=1

min
f∈SymL

‖f − g‖2A ≥
1

6
− L

6 · 2min(N/2,D−1) . (99)

So for L ≤ 2min(N/2,D−1)−3 we have a constant lower bound on the approximation error.

Proof. Define T = |{α ∈ ND : |α| = N/2}| and choose the bad function g =
1√
12T

∑
|α|=N/2 p{α,α}.

Observe that although 〈·, ·〉A is not fully orthogonal in the powersum basis, we can nevertheless
calculate by Lemma D.1 that for |α| = |β| = N/2:

〈p{α,α},p{β,β}〉A = 4 · (1α+α=β+β + 1(α,α)=(β,β) + 1(α,α)=(β,β)) (100)

= 12 · 1α=β . (101)
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Therefore we can confirm that g is normalized:

‖g‖2A =
1

12T

∑
|α|=N/2

∑
|β|=N/2

〈p{α,α},p{β,β}〉A (102)

=
1

12T

∑
|α|=N/2

∑
|α|=N/2

12 · 1α=β (103)

=
1

T

∑
|α|=N/2

1 (104)

= 1 . (105)

Again, we have P2g = g. Now by Lemma D.2, we may write:

P2f =

L∑
i≤j

vij(P1φi)(P1φj) .

Finally, note that 〈·, ·〉∗ obeys the inner product conditions of Lemma B.2 on the range of P2,
following from orthogonality and the normalization:

〈pαpβ ,pαpβ〉∗ =


2 |α| 6= |β|
4 |α| = |β|, α 6= β

8 α = β

So we can apply Lemma B.2 to P2f,P2g, and the inner product 〈·, ·〉∗. Hence, we can derive:

min
f∈SymL

‖f − g‖2A
(a)

≥ min
f∈SymL

‖P2f − P2g‖2A (106)

(b)

≥ min
f∈SymL

‖P2f − P2g‖2∗ (107)

(c)

≥ min
C,V

1

2
‖CTV C − 2 ∗ 1√

12T
I‖2F (108)

= min
C,V

1

6T
‖CTV C − I‖2F . (109)

Here, (a) follows from the definition of P2 as an orthogonal projection with respect to 〈·, ·〉A, (b)
follows from the fact that ‖ · ‖2A ≥ ‖ · ‖2∗, and (c) follows from the application of Lemma B.2.

These matrices are elements of CT×T , but the term CTV C is constrained to rank L. Hence, as before
we calculate:

min
f∈SymL

‖f − g‖2A ≥
T − L

6T
=

1

6
− L

6T
. (110)

Letting m = min(N/2, D − 1) and assuming m ≥ 2, it is a simple bound to calculate

T =

(
N/2 +D − 1

N/2

)
≥
(

2m

m

)
≈ 4m√

πm
≥ 2m ,

and the bound follows.

This theorem demonstrates a hard function g that cannot be efficiently approximated by f ∈ SymL
for L = poly(N,D), but it does not yet evince a separation. Indeed, observing that ‖g‖∞ =
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1√
12T

N2T = N2
√
T√

12
, g has very large magnitude, and there’s no obvious way to easily approximate

this function by an efficient network in Sym2
L.

Thus, we consider a more complicated choice for g, that allows for the separation:
Theorem D.5. Let D > 1. Then let g′ = g

‖g‖A for g as defined in Lemma E.3, such that ‖g′‖A = 1.
Then for L ≤ N−2 exp(O(D)):

min
f∈SymL

‖f − g′‖2A ≥
1

12
. (111)

Proof. The lower bound follows almost identically as before. By Lemma E.3.4 we still have that
P2g

′ = g′. So we can write

g =
∑

1≤|α|≤N/2

gαp{α,α} (112)

g′ =
∑

1≤|α|≤N/2

gα
‖g‖A

p{α,α} . (113)

Thus, by the same reasoning as Theorem D.4 we recover the lower bound:

min
f∈SymL

‖f − g′‖2A ≥ min
f∈SymL

‖P2f − P2g
′‖2A (114)

≥ min
f∈SymL

‖P2f − P2g
′‖2∗ (115)

≥ min
C,V

1

2
‖CTV C −G′‖2F , (116)

where G′ is the matrix induced by g′ as given in Lemma B.2, i.e. the diagonal matrix indexed by
G′αα = 2gα

‖g‖A .

Now, by the partial orthogonality of 〈·, ·〉A noted in Lemma D.1, we have:

‖g‖2A =
∑

1≤|α|≤N/2

∑
1≤|β|≤N/2

〈gαp{α,α}, gβp{β,β}〉A (117)

=
∑

1≤|α|≤N/2

∑
1≤|β|≤N/2

gαgβ(12 · 1α=β) (118)

= 12
∑

1≤|α|≤N/2

|gα|2 . (119)

Hence, we can say

‖G′‖2F =
∑

1≤|α|≤N/2

∣∣∣∣ 2gα
‖g‖A

∣∣∣∣2 (120)

=
4
∑

1≤|α|≤N/2 |gα|2

12
∑

1≤|α|≤N/2 |gα|2
(121)

=
1

3
. (122)

Call G′L the best rank-L approximation of G′ in the Frobenius norm. By classical properties of SVD
it follows that G′L is a diagonal matrix with L entries corresponding to the L largest elements of G′.
Then because ‖G′‖2F = 1

3 :

‖G′L −G′‖2F =
1

3
−

L∑
l=1

(
|2gαl |
‖g‖A

)2

, (123)
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where we order |gαl | in non-increasing order.

Combining Lemma E.3.2 and E.3.4 yields the inequality that for all α such that 1 ≤ |α| ≤ N/2:(
|2gα|
‖g‖A

)2

≤ 4N2

(
1−

(
1

4

)2
)2D

, (124)

so we can conclude

min
f∈SymL

‖f − g′‖2A ≥
1

2
‖G′L −G′‖2F (125)

≥ 1

6
− 2LN2

(
1−

(
1

4

)2
)2D

. (126)

Hence, if L ≤ 1
24 ·N

−2 ( 16
15

)2D
, we derive a lower bound:

min
f∈SymL

‖f − g′‖2A ≥
1

12
. (127)

We remark here that in the instance D >
√
N/2, we replace D with D̂ in the above bound, which is

consistent with Theorem C.2.

E Definition of hard function g

In this section we incrementally build the (unnormalized) hard function g, ultimately for the sake of
Lemma E.3. This lemma characterizes all the properties of g that we need to guarantee the lower and
upper bounds.

Remark 4. In the following section, we assume D ≤
√
N/2 for simplicity of exposition. In

the case that D >
√
N/2, we replace all instances of D in our functional definitions with D̂ =

min(D,
√
N/2), which is only necessary for a projection argument in Lemma E.3 and makes no

meaningful change to the proofs.

E.1 Mobius transform

We begin with the following, with ξ ∈ C and |ξ| = 1. And in the sequel, we always fix r = 1/4.
Consider the 1-D Mobius transformation, with its truncated variant with t ≥ 1:

µ(ξ) =
ξ − r
rξ − 1

(128)

µ̂t(ξ) =
(
1− (rξ)t

)
· µ(ξ) (129)

= (r − ξ) ·
(
1 + rξ + (rξ)2 + · · ·+ (rξ)t−1

)
(130)

Lemma E.1. The following properties hold (where infinity norms are defined with respect to S1):

1. ‖µ‖∞ = 1

2. ‖µ‖S1 = 1

3. ‖µ̂t‖∞ ≤ 1 + rt

4. ‖µ̂t‖2S1 = 1 + r2t
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5. 〈µ̂t, 1〉S1 = r, 〈µ̂t, ξ〉S1 = r2 − 1 and |〈µ̂t, ξa〉S1 | < 1− r2 for all a ≥ 2

6. For |ξ| = 1, |ω| ≤ 1 + 1
t ,

|µ̂t(ξ)− µ̂t(ω)| ≤ 6|ξ − ω| (131)

Proof. It is a fact [8] that µ analytically maps the unit disk to itself, and additional the unit circle to
itself, i.e. for any |ξ| = 1 we have |µ(ξ)| = 1. Hence ‖µ‖∞ = ‖µ‖S1 = 1.

We can see that truncation gently perturbs this fact, so for |ξ| = 1:

|µ̂t(ξ)| = |1− (rξ)t| · |µ(ξ)| (132)

≤ 1 + rt (133)

Additionally, we can calculate the coefficient on each monomial in µ̂:

〈µ̂t, ξa〉S1 =


r a = 0

−(ra−1 − ra+1) 1 ≤ a ≤ t− 1

−rt−1 a = t

0 a ≥ t

(134)

It is easy to confirm that the value of |〈µ̂t, ξa〉S1 | is maximized at a = 1. Hence, we can write the L2

norm:

‖µ̂t‖2S1 =

∞∑
a=0

|〈µ̂t, ξa〉S1 |2 (135)

= r2 +

t−1∑
a=1

(
ra−1 − ra+1

)2
+ r2t−2 (136)

= r2 +

t−1∑
a=1

(
r2a−2 − 2r2a + r2a+2

)
+ r2t−2 (137)

= 1 + r2t (138)

Finally, for |ξ| = 1, |ω| ≤ 1 + 1
t ≤ 2:

|µ(ξ)− µ(ω)| =
∣∣∣∣ ξ − rrξ − 1

− ω − r
rω − 1

∣∣∣∣ (139)

=

∣∣∣∣ (r2 − 1)(ξ − ω)

(rξ − 1)(rω − 1)

∣∣∣∣ . (140)

So noting r = 1
4 we get

|µ(ξ)− µ(ω)| ≤ 8

3
|ξ − ω| . (141)

Thus:

|µ̂(ξ)− µ̂(ω)| =
∣∣(1− (rξ)t

)
· µ(ξ)−

(
1− (rω)t

)
· µ(ω)

∣∣ (142)

≤
∣∣(1− (rξ)t

)
· µ(ξ)−

(
1− (rω)t

)
· µ(ξ)

∣∣+
∣∣(1− (rω)t

)
· µ(ξ)−

(
1− (rω)t

)
· µ(ω)

∣∣
(143)

≤ |µ(ξ)| · rt|ξt − ωt|+ |1− (rω)t| · |µ(ξ)− µ(ω)| (144)

≤ rt|ξt − ωt|+ |1− (rω)t| · 8

3
|ξ − ω| . (145)

Note that for |ξ| = 1, |ω| ≤ 1 + 1
t , because |ω|k ≤ e for k ≤ t, we have∣∣ξt − ωt∣∣ =

∣∣(ξ − ω)(ξt−1 + ξt−2ω + · · ·+ ξωt−2 + ωt−1
∣∣ ≤ et|ξ − ω| . (146)
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Further plugging in that r = 1
4 and t ≥ 1:

|µ̂(ξ)− µ̂(ω)| ≤ 4−tet|ξ − ω|+
(
1 + 4−te

)
· 8

3
|ξ − ω| (147)

< 6|ξ − ω| . (148)

E.2 h function

Now, consider z ∈ CD with |zi| = 1 for all i. We now define:

h(z) =

D∏
i=1

µ̂D(zi) . (149)

Lemma E.2. The following are true:

1. ‖h‖∞ ≤ 1 + 2−D

2. 1 ≤ ‖h‖2S1 ≤ 1 + 2−D

3. For z, z′ ∈ (S1)D

|h(z)− h(z′)| ≤ 12‖z − z′‖1 .

Proof. We can immediately bound:

‖h‖∞ =

D∏
i=1

‖µ̂D‖∞ (150)

(a)

≤
(
1 + rD

)D
(151)

(b)

≤ 1 + 2D · rD (152)

≤ 1 + 2−D , (153)

where (a) follows from Lemma E.1.3 and (b) follows from the binomial identity that (1 + x)t ≤
1 + 2tx for x ∈ [0, 1], t ≥ 1. In the last line we simply plug in r = 1/4.

Similarly by Lemma E.1.4,

‖h‖2S1 =

D∏
i=1

‖µ̂D‖2S1 (154)

=
(
1 + r2D

)D
(155)

≤
(
1 + rD

)D
. (156)

And so by the same binomial inequality, we have

1 ≤ ‖h‖2S1 ≤ 1 + 2−D . (157)

29



Finally, observe that:

|h(z)− h(z′)| ≤
D∑
i=1

∣∣∣∣∣∣
i−1∏
j=1

µ̂D(zj)

 (µ̂D(zi)− µ̂D(z′i))

 D∏
j=i+1

µ̂D(z′j)

∣∣∣∣∣∣ (158)

(a)

≤
D∑
i=1

|µ̂D(zi)− µ̂D(z′i)| (1 + rD)D−1 (159)

(b)

≤ 6

D∑
i=1

|zi − z′i|
(
1 + 2−D

)
(160)

≤ 12‖z − z′‖1 , (161)

where in (a) we apply E.1.3, and in (b) we apply E.1.6 and the same binomial identity as above.

E.3 g function

Now, reminding zn,n′ = xn ◦ xn′ , let:

g(X) = −4N2rD +

2N∑
n,n′=1

h(zn,n′) . (162)

Note that we subtract a constant here to ensure g has no constant term, which will be necessary for
the fact P2g = g.

Remark 5. The following lemma is the only place we explicitly require the assumption D ≤
√
N/2,

as this guarantees that P2g = g. In the case that D >
√
N/2, we simply replace all instances

of D in this section with D̂ = min(D,
√
N/2). This ensures g is only supported on p{α,α} with

|α| ≤ D̂2 ≤ N/2. And the subsequent proofs are identical.

Lemma E.3. The following are true:

1. ‖g‖∞ ≤ 12N2.

2. 1 ≤ ‖g‖2A ≤ 3N2(1 + 2−D).

3. P2g = g.

4. We may write g =
∑

1≤|α|≤N/2 gαp{α,α}, where |gα|2 ≤ N2(1− r2)2D.

5. Lip(g) ≤ 48N
√
ND.

Proof. First, it’s easy to see from Lemma E.2.1

‖g‖∞ ≤ | − 4N2rD|+ 4N2‖h‖∞ (163)

≤ 4N2
(
2−2D + 1 + 2−D

)
(164)

≤ 12N2 . (165)

Let us expand h as

h(z) =
∑

‖α‖∞≤D

hαz
α , (166)

noting that by definition of µ̂D and Lemma E.1.5 we have the constant term h0 = rD.
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Now we can expand

g(X) = −4N2rD +

2N∑
n,n′=1

h(zn,n′) (167)

= −4N2rD +

2N∑
n,n′=1

rD +
∑

1≤‖α‖∞≤D

hαz
α
n,n′

 (168)

=

2N∑
n,n′=1

∑
1≤‖α‖∞≤D

hαz
α
n,n′ (169)

=
∑

1≤‖α‖∞≤D

hα

2N∑
n,n′=1

D∏
d=1

(xdnxdn′)αd (170)

=
∑

1≤‖α‖∞≤D

hα|α|

(
1√
|α|

2N∑
n=1

D∏
d=1

xαddn

)(
1√
|α|

2N∑
n′=1

D∏
d′=1

x
αd′
d′n′

)
(171)

=
∑

1≤‖α‖∞≤D

hα|α|p{α,α}(X) . (172)

Note that ‖α‖∞ ≤ D implies |α| ≤ D2 ≤ N/2, so it clearly follows that P2g = g. So by
Lemma D.1, 〈p{α,α},p{β,β}〉A = 12 · 1α=β whenever 1 ≤ |α|, |β| ≤ N/2, so we can handily
calculate:

‖g‖2A =
∑

1≤‖α‖∞≤D

h2α|α|2‖p{α,α}‖2A (173)

≤ 12 · (N/2)2
∑

1≤‖α‖∞≤D

h2α (174)

≤ 3N2‖h‖2S1 (175)

≤ 3N2
(
1 + 2−D

)
, (176)

where the last line uses Lemma E.2.2.

And likewise

‖g‖2A =
∑

1≤‖α‖∞≤D

h2α|α|2‖p{α,α}‖2A (177)

≥ 12

−rD +
∑

‖α‖∞≤D

h2α

 (178)

= 12(−rD + ‖h‖2S1) (179)
≥ 1 , (180)

and the last line again uses Lemma E.2.2. Finally, note that for any α such that |α| ≤ N/2, applying
Lemma E.1.5.

|gα|2 = |hα|α||2 = |α|2
D∏
i=1

|〈µ̂D, ξαi〉S1 |2 (181)

≤ N2(1− r2)2D . (182)
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Finally we consider the Lipschitz norm. For X, X̂ ∈ CD×2N with each entry of unit norm, it’s easy
to confirm by Lemma E.2.3 that:

|g(X)− g(X̂)| ≤
2N∑

n,n′=1

|h(zn,n′)− h(ẑ′n,n′)| (183)

≤ 12

2N∑
n,n′=1

‖zn,n′ − ẑn,n′‖1 (184)

= 12

2N∑
n,n′=1

D∑
d=1

|xdnxdn′ − x̂dnx̂dn′ | (185)

≤ 12

2N∑
n,n′=1

D∑
d=1

|xdn| · |xdn′ − x̂dn′ |+ |x̂dn′ | · |xdn − x̂dn| (186)

= 48N

2N∑
n=1

D∑
d=1

|xdn − x̂dn| (187)

= 48N‖X − X̂‖1 (188)

≤ 48N
√

2ND‖X − X̂‖2 (189)

F Upper Bound of Main Result

In this section we prove the upper bound to representing g with an admissible activation that satisfies
Assumption C.1.

The strategy is as follows. In Section F.1 we exactly encode the hard function g with an efficient
network, but allowing the choice of very particular activation functions. In Section F.2, we leverage
Assumption C.1 to build a network that approximates the exact one, using a given activation. We
complete the proof in Section F.3 by showing the exact and approximate networks stay close together,
inducting through the layers.

F.1 Exact Representation

Let us first describe how to write g exactly with a network in Sym2
L, using particular activations.

We can then demonstrate to approximate those activations, which only introduces a polynomial
dependence in the desired error bound ε.

For exact representation, the activations we will allow are ξ → ξ2, and ξ → µ̂D(ξ). Note that from
the fact that ξ · ω = 1

2

(
(ξ + ω)2 − ξ2 − ω2

)
, we can exactly multiply scalars with these activations.

Then consider the following structure for f ∈ Sym2
L with L = 1. Given x, x′ ∈ CD with |xi| =

|x′i| = 1 for all i, we define ψ∗1(x, x′) via a network as follows. In particular, we will use · to explicitly
indicate all scalar multiplication:

z∗ = (x1 · x′1, . . . , xD · x′D) (190)

Z(1)∗ = (µ̂D(z∗1), . . . , µ̂D(z∗D)) ∈ CD (191)

Z(2)∗ =
(
Z

(1)∗
1 · Z(1)∗

2 , . . . , Z
(1)∗
D−1 · Z

(1)∗
D

)
∈ CD/2 (192)

. . . (193)

Z(log2D)∗ = Z
(log2D−1)∗
1 · Z(log2D−1)∗

2 ∈ C (194)

ψ∗1(x, x′) = Z(log2D)∗ (195)
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In other words, we exactly calculate ψ∗1(x, x′) = h(x ◦ x′) through log2D layers by multiplying the
terms µ̂D(zi) at each layer. Note that |z∗i | = 1 for all i. So by applying Lemma E.1.3, it is the case
that each entry |Z(k)∗

i | = |µ̂D(z∗i )|k ≤ (1 + rD)D ≤ 1 + 2−D for all k ≤ log2D.

Now, for an input ξ ∈ C we define the map

ρ∗(ξ) =
−4N2rD + ξ

‖g‖A
, (196)

and it’s easy to confirm that we exactly represent:

g′(X) = ρ∗

 2N∑
n,n′=1

ψ∗1(xn, x
′
n)

 . (197)

F.2 Approximate Representation

Now, we can imitate the network above using the exp activation, and control the approximation error
in the infinity norm. Let us assume we’ve chosen f1, f2 as in Lemma G.3. Furthermore, let us define
ξ ? ω = 1

2 (f1(ξ + ω)− f1(ξ)− f1(ω)), so that ? approximates scalar multiplication.

Then we mimic the exact network via:

z = (x1 ? x
′
1, . . . , xD ? x′D) (198)

Z(1) = (f2(z1), . . . , f2(zD)) ∈ CD (199)

Z(2) =
(
Z

(1)
1 ? Z

(1)
2 , . . . , Z

(1)
D−1 ? Z

(1)
D

)
∈ CD/2 (200)

. . . (201)

Z(log2D) = Z
(log2D−1)
1 ? Z

(log2D−1)
2 ∈ C (202)

ψ1(x, x′) = Z(log2D) . (203)

In other words, we replace all instances of multiplication · with ?, and all instances of µ̂D with f2.
Finally, we define the map ρ as:

ρ(ξ) =
4N2

‖g‖A
·
(

ξ

4N2
? 1− rD

)
, (204)

where we can clearly represent the constant rD via one additional neuron.

F.3 Proof of Upper Bound

We complete the approximation of g′ by showing the exact and approximate networks are nearly
equivalent in infinity norm, leveraging the assumption on our activation.

Theorem F.1. Consider ε > 0 such that ε ≤ min
(

1
100 ,

1
12D2

)
. For L = 1, there exists f ∈ Sym2

L,
parameterized with an activation σ that satisfies Assumption C.1, with width O(D3 +D2 log DN

ε ,
depth O(logD), and maximum weight magnitude D logD such that over inputs X ∈ CD×2N with
unit norm entries:

‖f − g′‖∞ ≤ ε . (205)

Proof. Let f be given by the Sym2
L network calculated in the previous section, i.e.

f(X) = ρ

 2N∑
n,n′=1

ψ1(xn, x
′
n)

 . (206)
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Clearly L = 1. From Assumption C.1 and what it guarantees about f1 and f2, it’s clear that the
maximum width of f is O(D3 + D2 log D

ε ), the depth is O(logD), and the maximum weight
magnitude is O(D logD).

We can prove the quality of approximation by matching layer by layer. First we note a quick lemma:

Lemma F.2. For |ξ|, |ω| ≤ 3
2 :

|ξ ? ω − ξ · ω| ≤ 3

2
ε . (207)

Proof. Based on Assumption C.1, note that for |ξ|, |ω| ≤ 3
2 , we have that |ξ + ω| ≤ 3 and therefore:

|ξ ? ω − ξ · ω| ≤ 1

2

(
|f1(ξ + ω)− (ξ + ω)2|+ |f1(ξ)− ξ2|+ |f1(ω)− ξ2|

)
(208)

≤ 3

2
ε . (209)

It follows that, because all |xi| = 1:

‖z∗ − z‖∞ = max
i≤D
|xi ? x′i − xi · x′i| ≤

3

2
ε . (210)

Now, because |z∗i | = 1, it follows from our assumption on ε that |zi| ≤ 1 + 3
2ε ≤ 1 + 1

D . Hence, we
can apply Lemma E.1.6 and say

‖Z(1)∗ − Z(1)‖∞ = max
i≤D
|µ̂D(z∗i )− f2(zi)| (211)

≤ max
i≤D
|µ̂D(z∗i )− µ̂D(zi)|+ |µ̂D(zi)− f2(zi)| (212)

(a)

≤ 6

(
3

2
ε

)
+ ε (213)

≤ 10ε . (214)

where (a) follows from Lemma E.1.6 and Assumption C.1 again.

Note, observe the following inequality, for any i:

|Z(1)∗
2i · Z

(1)∗
2i+1 − Z

(1)
2i · Z

(1)
2i+1| ≤ |Z

(1)∗
2i · Z

(1)∗
2i+1 − Z

(1)∗
2i · Z

(1)
2i+1|+ |Z

(1)∗
2i · Z

(1)
2i+1 − Z

(1)
2i · Z

(1)
2i+1|

(215)

= |Z(1)∗
2i | · |Z

(1)∗
2i+1 − Z

(1)
2i+1|+ |Z

(1)
2i+1| · |Z

(1)∗
2i − Z

(1)
2i | (216)

= |µ̂D(z∗2i)| · 10ε+ |f2(z2i+1)| · 10ε (217)
(a)

≤ 10ε(|µ̂D(z∗2i)|+ |µ̂D(z2i+1)|+ ε) (218)
(b)

≤ 10ε

(
|µ̂D(z∗2i)|+ |µ̂D(z∗2i+1)|+ 6

(
3

2
ε

)
+ ε

)
(219)

(c)

≤ 10ε(1 + rD + 1 + rD + 4ε+ ε) (220)
(d)

≤ 10ε(5/2) (221)
≤ 25ε , (222)

where (a) follows from Lemma G.3, (b) follows from Lemma E.1.6, (c) follows from Lemma E.1.3,
and (d) follows from the fact that ε ≤ 1

100 .
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Hence, to draw error bounds one layer higher, we calculate:

‖Z(2)∗ − Z(2)‖∞ = max
i≤D/2

|Z(1)∗
2i · Z

(1)∗
2i+1 − Z

(1)
2i ? Z

(1)
2i+1| (223)

≤ max
i≤D/2

|Z(1)∗
2i · Z

(1)∗
2i+1 − Z

(1)
2i · Z

(1)
2i+1|+ |Z

(1)
2i · Z

(1)
2i+1 − Z

(1)
2i ? Z

(1)
2i+1| (224)

(a)

≤ 25ε+
3

2
ε (225)

≤ 27ε , (226)

where in line (a) we apply Lemma F.2 under the assumption that |Z(1)
i | ≤ 3

2 for all i.

Note that from Lemma E.1.3

|Z(1)
i | ≤ |Z

(1)
i − Z

(1)∗
i |+ |Z(1)∗

i | (227)

≤ 10ε+ 1 + rD <
3

2
(228)

so this assumption is guaranteed.

We induct upwards through layers: assume that ‖Z(k)∗ − Z(k)‖∞ ≤ 3k+1ε for k ≥ 2. Then:

|Z(k)∗
2i · Z(k)∗

2i+1 − Z
(k)
2i · Z

(k)
2i+1| ≤ |Z

(k)∗
2i · Z(k)∗

2i+1 − Z
(k)∗
2i · Z(k)

2i+1|+ |Z
(k)∗
2i · Z(k)

2i+1 − Z
(k)
2i · Z

(k)
2i+1|

(229)

= |Z(k)∗
2i | · |Z

(k)∗
2i+1 − Z

(k)
2i+1|+ |Z

(k)
2i+1| · |Z

(k)∗
2i − Z(k)

2i | (230)
(a)

≤ 3k+1ε(|Z(k)∗
2i |+ |Z

(k)
2i+1|) (231)

(b)

≤ 3k+1ε(|Z(k)∗
2i |+ |Z

(k)∗
2i+1|+ 3k+1ε) (232)

(c)

≤ 3k+1ε((1 + rD)D + (1 + rD)D + 3k+1ε) (233)
(d)

≤ 3k+1ε

(
1 + 2−D + 1 + 2−D +

1

4

)
(234)

≤ 3k+1ε

(
11

4

)
, (235)

where (a) and (b) are both applications of the inductive hypothesis, (c) follows from Lemma E.1.3,
(d) is the binomial inequality and the fact that for any k ≤ log2D:

3k+1ε ≤ 3
(
4log2D

)
ε (236)

=
ε

3D2
(237)

≤ 1

4
. (238)

And as before:

‖Z(k+1)∗ − Z(k+1)‖∞ = max
i
|Z(k)∗

2i · Z(k)∗
2i+1 − Z

(k)
2i ? Z

(k)
2i+1| (239)

≤ max
i
|Z(k)∗

2i · Z(k)∗
2i+1 − Z

(k)
2i · Z

(k)
2i+1|+ |Z

(k)
2i · Z

(k)
2i+1 − Z

(k)
2i ? Z

(k)
2i+1|

(240)
(a)

≤ 3k+1ε

(
11

4

)
+

3

2
ε (241)

≤ 3k+2ε , (242)

where in line (a) we apply Lemma F.2 under the assumption that |Z(k)
i | ≤ 3

2 for all i.
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Note that as before
|Z(k)
i | ≤ |Z

(k)
i − Z(k)∗

i |+ |Z(k)∗
i | (243)

≤ 3k+1ε+ (1 + rD)D (244)

≤ 3k+1ε+ 1 + 2−D ≤ 3

2
, (245)

so the assumption is granted.

Thus, completing the induction and remembering the definition of ψ1, we conclude:

‖ψ∗1(xn, xn′)− ψ1(xn, xn′)‖∞ ≤ 3log2D+1ε < 3D2ε . (246)

Hence, we can finally bound the final networks:

‖g′ − f‖∞ =

∥∥∥∥∥∥ρ∗
 2N∑
n,n′=1

ψ∗1(xn, xn′)

− ρ
 2N∑
n,n′=1

ψ1(xn, xn′)

∥∥∥∥∥∥
∞

(247)

=
1

‖g‖A

∥∥∥∥∥∥
2N∑

n,n′=1

ψ∗1(xn, xn′)− 4N2

 1

4N2

2N∑
n,n′=1

ψ1(xn, xn′)

 ? 1

∥∥∥∥∥∥
∞

(248)

(a)

≤ 4N2

∥∥∥∥∥∥ 1

4N2

2N∑
n,n′=1

ψ∗1(xn, xn′)−

 1

4N2

2N∑
n,n′=1

ψ1(xn, xn′)

 ? 1

∥∥∥∥∥∥
∞

(249)

(b)

≤ 4N2

∥∥∥∥∥∥ 1

4N2

2N∑
n,n′=1

ψ∗1(xn, xn′)− 1

4N2

2N∑
n,n′=1

ψ∗1(xn, xn′)

∥∥∥∥∥∥
∞

+ 4N2 · 3

2
ε (250)

≤ 4N2 ‖ψ∗1(x, x′)− ψ(x, x′)‖∞ + 4N2 · 3

2
ε (251)

≤ 12N2D2ε+ 6N2ε (252)

≤ 18N2D2ε , (253)
where in (a) we apply the lower bound ‖g‖A ≥ 1 from E.3.2 and in (b) we once again apply
Lemma F.2, valid from the fact that for all X with unit norm entries:∣∣∣∣∣∣ 1

4N2

2N∑
n,n′=1

ψ1(xn, xn′)

∣∣∣∣∣∣ ≤ 3D2ε ≤ 3

2
. (254)

So it remains to map ε→ ε
18N2D2 in order to yield that ‖f − g′‖ ≤ ε. Note that this remapping only

changes the maximum width to be O(D3 +D2 log ND
ε .

G Activation Assumption for exp

We prove that the activation exp satisfies Assumption C.1.

We need the following standard fact, whose proof we include for completeness:
Lemma G.1. Fix J and let γ be a primitive J th root of unity. Then

1

J

J−1∑
j=0

γij =

{
1 i ≡ 0 mod J

0 i 6≡ 0 mod J
(255)

Proof. If i ≡ 0 mod J , then γij = 1 for all integer j and clearly

1

J

J−1∑
j=0

γij = 1 . (256)
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Suppose i 6≡ 0 mod J . Note that any J th root of unity x must satisfy xJ = 1, or equivalently

(1− x)

J−1∑
j=0

xj

 = 0 . (257)

Because i 6≡ 0 mod J and γ is a primitive root, it follows γi 6= 1 is another root. Therefore setting
x = γi and factoring out the non-zero term (1− γi) gives

J−1∑
j=0

γij = 0 . (258)

Using this fact, we can approximate simple analytic functions via shallow networks in the exp
activation.

Lemma G.2. For any J ∈ N with J > D, there exists a shallow neural networks f1, f2 using the
exp activation, with O(JD) neurons and O(D logD) weights, such that

sup
|ξ|≤3

∣∣f1(ξ)− ξ2
∣∣ ≤ 4

J !

(
3

4

)J
(259)

sup
|ξ|≤3

|f2(ξ)− µ̂D(ξ)| ≤ 17D

(
3

4

)J
. (260)

Proof. Let γ be a primitive J th root of unity, r = 1/4, and let k ∈ N such that 0 ≤ k ≤ J − 1. By
applying Lemma G.1 we can define a network f (k) and expand as:

f (k)(ξ) :=

J−1∑
j=0

γ−kj

J
exp(γjrξ) (261)

=

J−1∑
j=0

γ−kj

J

∞∑
i=0

(γjrξ)i

i!
(262)

=

∞∑
i=0

(rξ)i

i!

 1

J

J−1∑
j=0

γ(i−k)j

 (263)

=

∞∑
i=0

(rξ)i

i!
1i≡k mod J (264)

=

∞∑
i=0

(rξ)iJ+k

(iJ + k)!
(265)

=
(rξ)k

k!
+

∞∑
i=1

(rξ)iJ+k

(iJ + k)!
. (266)
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It follows that we can bound:

sup
|ξ|≤3

∣∣∣∣f (k)(ξ)− (rξ)k

k!

∣∣∣∣ ≤ ∞∑
i=1

∣∣∣∣ (rξ)iJ+k

(iJ + k)!

∣∣∣∣ (267)

≤ 1

J !

∞∑
i=1

(
3

4

)iJ+k
(268)

≤ 1

J !

(
3

4

)J ∞∑
i=0

(
3

4

)iJ
(269)

≤ 1

J !

(
3

4

)J
1

1− (3/4)J
(270)

≤ 4

J !

(
3

4

)J
, (271)

so we can define

f1(ξ) :=
2

r2
f (2)(ξ) (272)

with only J neurons each of width magnitude at most O(1), and instantly gain the bound

sup
|ξ|≤3

∣∣f1(ξ)− ξ2
∣∣ = sup

|ξ|≤3

2

r2

∣∣∣∣f (k)(ξ)− (rξ)2

2!

∣∣∣∣ (273)

≤ 2

r2
· 4

J !

(
3

4

)J
. (274)

Second, we define

f2(ξ) := r

(
D−1∑
k=0

k!f (k)(ξ)

)
−

D∑
k=1

k!

r
f (k)(ξ) . (275)

First, let us note that, in spite of seeming to have factorial weights, we can write this network with
small weights via properties of the exponential:

f2(ξ) = r

(
D−1∑
k=0

exp(log k!)f (k)(ξ)

)
−

D∑
k=1

exp(log k!)

r
f (k)(ξ) (276)

= r

D−1∑
k=0

J−1∑
j=0

γ−kj

J
exp(log k! + γjrξ)−

D∑
k=1

1

r

J−1∑
j=0

γ−kj

J
exp(log k! + γjrξ) . (277)

The network contains 2DJ neurons, with the norm of each weight bounded by O(D logD).

Then using the decomposition

µ̂D(ξ) = r

D−1∑
k=0

(rξ)k − 1

r

D∑
k=1

(rξ)k

we derive:

sup
|ξ|≤3

|f2(ξ)− µ̂D(ξ)| ≤ sup
|ξ|≤3

∣∣∣∣∣r
(
D−1∑
k=0

k!f (k)(ξ)

)
− r

D−1∑
k=0

(rξ)k

∣∣∣∣∣+

∣∣∣∣∣
(

D∑
k=1

k!

r
f (k)(ξ)

)
− 1

r

D∑
k=1

(rξ)k

∣∣∣∣∣
(278)

≤

(
D−1∑
k=0

rk!

)
4

J !

(
3

4

)J
+

(
D∑
k=1

k!

r

)
4

J !

(
3

4

)J
(279)

≤ 17D

(
3

4

)J
. (280)
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Now, let us restate this result, choosing the error rate ε explicitly:
Lemma G.3. For any ε > 0, there exists a shallow neural networks f1, f2 using the exp activation,
with O

(
D2 +D log D

ε

)
neurons and O(D logD) weights, such that

sup
|ξ|≤3

∣∣f1(ξ)− ξ2
∣∣ ≤ ε , (281)

sup
|ξ|≤3

|f2(ξ)− µ̂D(ξ)| ≤ ε . (282)

We remark again that, in the event D >
√
N/2, we replace D with D̂ in order to approximate the

Blaschke product µ̂D̂ as this is the function we use to build the hard function g in that case. So we
recover the statement of Assumption C.1.
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