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A Preliminaries

Definition A.1 (Coupling). Let p, q ∈ M1
+(X ). A distribution γ on X × X is a coupling (Villani,

2009) of p and q if for every measurable set B ⊂ X , γ(B × X ) = p(B) and γ(X × B) = q(B).
In other words, a coupling of p and q is a distribution on X × X whose marginals are p and q
respectively.

For example, the product measure p⊗ q is a coupling of p and q.
Definition A.2 (Wasserstein distances). Let (X , d) be a Polish metric space and p, q ∈ M1

+(X )
Given a real number k ≥ 1, the Wasserstein-k distance Wk is defined as

Wk(p, q) =

(
inf

π∈Γ(p,q)

∫
d(x,y)k dπ(x,y)

)1/k

,

where Γ(p, q) denotes the set of couplings of p and q (see Definition A.1 above). As stated in the
main paper, W1 is referred to as the Wasserstein distance.

Given two Gaussian distributions p = N (µ1,Σ1) and q = N (µ2,Σ2) on Rd∗
, the Wasserstein-2

distance has the following closed form (Givens and Shortt, 1984):

W2(p, q)
2 = ∥µ1 − µ2∥2 + Tr

(
Σ1 +Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2)
. (A.1)

This expression can be greatly simplified when the distributions have diagonal covariance matrices.
Indeed, if Σ1 = diag(σ2

1) and Σ2 = diag(σ2
2) where σ1, σ2 ∈ Rd∗

, then the product of the covariance
matrices commutes Σ1Σ2 = Σ2Σ1 and we get(

Σ
1/2
1 Σ2Σ

1/2
1

)1/2
= Σ

1/2
1 Σ

1/2
2 ,

which, combined with the symmetry of covariance matrices and the definition of the Frobenius norm
∥·∥Fr (Petersen and Pedersen, 2008), implies

Tr
(
Σ1 +Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2)
=
∥∥∥Σ1/2

1 − Σ
1/2
2

∥∥∥2
Fr
= ∥σ1 − σ2∥2 .

Hence, if p = N (µ1, diag(σ2
1)) and q = N (µ2, diag(σ2

2)), then the Wasserstein-2 distance between
p and q is

W2(p, q) = ∥µ1 − µ2∥2 + ∥σ1 − σ2∥2 . (A.2)
We will use this equality to prove some of the results of Section 5.
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The following change of measure theorem dates back to Donsker and Varadhan (1976) and has been
used in the proof of many PAC-Bayesian theorems. A proof can be found in Boucheron et al. (2013,
Corollary 4.15).

Proposition A.1 (Donsker-Varadhan change of measure). Let p, q be probability measures on a
space H such that q ≪ p, and let g : H → R be a function such that Eh∼p e

g(h) < ∞. Then,

E
h∼p

eg(h) ≥ eEh∼q [g(h)]−KL(q || p).

There are many different formulations of this proposition, we chose a formulation that facilitates
readability of the proof of the following lemma.

B Proofs of the results in Section 3

We state and prove our first result. Note that the following lemma does not use Assumption 1.
Moreover, the main difference between the inequality of this lemma and the one of Theorem 3.1 is the
left-hand side. In Lemma B.1, the expected loss for samples x ∼ µ is computed w.r.t. distributions
q(h|xi) associated to the training samples. In contrast, in Theorem 3.1, the expected loss for each
x ∼ µ is computed w.r.t. the distribution q(h|x) associated to x itself.

Lemma B.1. Let X be the instance space, µ ∈ M1
+(X ) the data-generating distribution, H the

hypothesis class, ℓ : H × X → R the loss function, p(h) ∈ M1
+(H) the prior distribution and

δ ∈ (0, 1), λ > 0 real numbers. Then with probability at least 1 − δ over the random draw
of the training set S = {x1, . . . ,xn} ∼ µ⊗n, the following holds for any conditional posterior
q(h|x) ∈ M1

+(H):

1

n

n∑
i=1

{
E

h∼q(h|xi)
E

x∼µ
ℓ(h,x)

}
≤ 1

n

n∑
i=1

{
E

h∼q(h|xi)
ℓ(h,xi)

}
+

1

λ

[
n∑

i=1

KL(q(h|xi) || p(h))+

log
1

δ
+ n log E

x∼µ
E

h∼p(h)
exp

[
λ

n

(
E

x′∼µ
[ℓ(h,x′)]− ℓ(h,x)

)]]
.

(B.1)

Proof. First, we consider a set H = {h1, . . . , hn} ∼ p(h)⊗n iid sampled from p(h). By applying
Markov’s inequality to the positive random variable Y , defined as

Y
def
= E

H∼p(h)⊗n
exp

[
λ

n

n∑
i=1

{
E

x∼µ
[ℓ(hi,x)]− ℓ(hi,xi)

}]
,

we obtain that with probability at least 1− δ over the draw of S ∼ µ⊗n, Y ≤ 1
δ E [Y ], meaning

E
H∼p(h)⊗n

exp

[
λ

n

n∑
i=1

{
E

x∼µ
[ℓ(hi,x)]− ℓ(hi,xi)

}]
≤

1

δ
E

S∼µ⊗n
E

H∼p(h)⊗n
exp

[
λ

n

n∑
i=1

{
E

x∼µ
[ℓ(hi,x)]− ℓ(hi,xi)

}]
.

(B.2)
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Let us focus on the left-hand side of (B.2). We have

E
H∼p(h)⊗n

exp

[
λ

n

n∑
i=1

{
E

x∼µ
[ℓ(hi,x)]− ℓ(hi,xi)

}]

= E
H∼p(h)⊗n

n∏
i=1

exp
[
λ

n

(
E

x∼µ
[ℓ(hi,x)]− ℓ(hi,xi)

)]

=

n∏
i=1

E
hi∼p(h)

exp
[
λ

n

(
E

x∼µ
[ℓ(hi,x)]− ℓ(hi,xi)

)]

=

n∏
i=1

E
h∼p(h)

exp
[
λ

n

(
E

x∼µ
[ℓ(h,x)]− ℓ(h,xi)

)]

≥
n∏

i=1

exp
[

E
h∼q(h|xi)

[
λ

n

(
E

x∼µ
[ℓ(h,x)]− ℓ(h,xi)

)]
−KL(q(h|xi) || p(h))

]
,

where the inequality uses the Donsker-Varadhan change of measure theorem (Proposition A.1).
Applying the logarithm, we obtain

log E
H∼p(h)⊗n

exp

[
λ

n

n∑
i=1

{
E

x∼µ
[ℓ(hi,x)]− ℓ(hi,xi)

}]

≥ log

n∏
i=1

exp
[

E
h∼q(h|xi)

[
λ

n

(
E

x∼µ
[ℓ(h,x)]− ℓ(h,xi)

)]
−KL(q(h|xi) || p(h))

]

=

n∑
i=1

(
E

h∼q(h|xi)

[
λ

n

(
E

x∼µ
[ℓ(h,x)]− ℓ(h,xi)

)]
−KL(q(h|xi) || p(h))

)

=
λ

n

n∑
i=1

E
h∼q(h|xi)

[
E

x∼µ
[ℓ(h,x)]− ℓ(h,xi)

]
−

n∑
i=1

KL(q(h|xi) || p(h)).

This, combined with (B.2) yields

λ

n

n∑
i=1

E
h∼q(h|xi)

[
E

x∼µ
[ℓ(h,x)]− ℓ(h,xi)

]
−

n∑
i=1

KL(q(h|xi) || p(h)) ≤

log
1

δ
E

S∼µ⊗n
E

H∼p(h)⊗n
exp

[
λ

n

n∑
i=1

{
E

x∼µ
[ℓ(hi,x)]− ℓ(hi,xi)

}]
.

(B.3)

It remains to show that the exponential moment on the right-hand side of Equation (B.3) can be
modified by replacing the expectation w.r.t. p(h)⊗n with an expectation w.r.t. p(h). Similar to what
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we did in the first part of the first derivation, we can use Fubini’s theorem to obtain

E
S∼µ⊗n

E
H∼p(h)⊗n

exp

[
λ

n

n∑
i=1

{
E

x∼µ
[ℓ(hi,x)]− ℓ(hi,xi)

}]

= E
S∼µ⊗n

n∏
i=1

E
h∼p(h)

exp
[
λ

n

(
E

x∼µ
[ℓ(h,x)]− ℓ(h,xi)

)]

=

n∏
i=1

E
xi∼µ

E
h∼p(h)

exp
[
λ

n

(
E

x∼µ
[ℓ(h,x)]− ℓ(h,xi)

)]

=

n∏
i=1

E
x∼µ

E
h∼p(h)

exp
[
λ

n

(
E

x′∼µ
[ℓ(h,x′)]− ℓ(h,x)

)]

=

(
E

x∼µ
E

h∼p(h)
exp

[
λ

n

(
E

x′∼µ
[ℓ(h,x′)]− ℓ(h,x)

)])n

.

Hence,

log E
S∼µ⊗n

E
H∼p(h)⊗n

exp

[
λ

n

n∑
i=1

{
E

x∼µ
[ℓ(hi,x)]− ℓ(hi,xi)

}]
=

n log E
x∼µ

E
h∼p(h)

exp
[
λ

n

(
E

x′∼µ
[ℓ(h,x′)]− ℓ(h,x)

)]
.

Combining this equation with Equation (B.3) yields the theorem.

The reader familiar with PAC-Bayes bounds may notice that the proof of Lemma B.1 is similar to
the usual derivation of PAC-Bayesian bounds, with a key difference. We start with an iid set of n
hypotheses sampled from the prior, which allows us to apply the change of measure theorem to
n posteriors q(h|x1), . . . , q(h|xn). Then, we show that the exponential moment obtained with n
hypotheses instead of one is equal to the exponential moment obtained with one hypothesis.

B.1 Proof of Theorem 3.1

The first summand on the left-hand side of Lemma B.1 is the risk on samples x ∼ µ, when the
hypotheses are uniformly sampled from q(h|xi), 1 ≤ i ≤ n. In order to replace q(h|xi) by q(h|x) in
that term and derive Theorem 3.1, we utilize Assumption 1.

First, recall that Theorem 3.1 states that under the assumptions of Lemma B.1, if Assumption 1 holds
with a constant K > 0, then the following inequality holds with probability at least 1− δ:

E
x∼µ

E
h∼q(h|x)

ℓ(h,x)− 1

n

n∑
i=1

E
h∼q(h|xi)

ℓ(h,xi) ≤
1

λ

[
n∑

i=1

KL(q(h|xi) || p(h)) +
λK

n

n∑
i=1

E
x∼µ

[d(x,xi)]+

log
1

δ
+ n log E

x∼µ
E

h∼p(h)
e

λ
n (Ex′∼µ[ℓ(h,x′)]−ℓ(h,x))

]
.

(B.4)

Proof of Theorem 3.1. Using the definition of an IPM and Assumption 1, for any xi ∈ S,x ∈ X , we
have

E
h∼q(h|x)

ℓ(h,x)− E
h∼q(h|xi)

ℓ(h,x) ≤ dE(q(h|x), q(h|xi)) ≤ Kd(x,xi).

Combined with Fubini’s theorem, we obtain
n∑

i=1

E
h∼q(h|xi)

E
x∼µ

ℓ(h,x) =

n∑
i=1

E
x∼µ

[
E

h∼q(h|xi)
ℓ(h,x)

]
≥

n∑
i=1

E
x∼µ

[
E

h∼q(h|x)
ℓ(h,x)−Kd(x,xi)

]
.

Combining this with Lemma B.1, yields Theorem 3.1.
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C Proofs of the results in Section 4

C.1 Proof of Proposition 4.1

First, we recall the statement of Proposition 4.1.

Proposition C.1 (Restatement of Proposition 4.1). If there exists positive real numbers Kϕ and Kθ

such that the encoder and decoder are respectively Kϕ-Lipschitz and Kθ-Lipschitz continuous, then

dE (qϕ(z|x1), qϕ(z|x2)) ≤ KϕKθ ∥x1 − x2∥ , (C.1)

and

ℓ(·,x) ∈ E , for any x ∈ X . (C.2)

where E = LipKθ
(Z,R) is the set of real-valued Kθ-Lipschitz continuous functions defined on Z .

Proof.

1. Let us prove (C.1). First, since qϕ(z|xi) = N (µϕ (xi) , diag(σ2
ϕ (xi))), by (A.2), the

Wasserstein-2 distance W2(qϕ(z|x1), qϕ(z|x2)) has the following closed form:

W2(qϕ(z|x1), qϕ(z|x2))
2 = ∥µϕ (x1)− µϕ (x2)∥2 + ∥σϕ (x1)− σϕ (x2)∥2 ,

which, combined with the definition Qϕ (x) =

[
µϕ (x)
σϕ (x)

]
, yields

∥Qϕ (x1)−Qϕ (x2)∥2 = W2(qϕ(z|x1), qϕ(z|x2))
2.

Since Qϕ is Kϕ-Lipschitz continuous, we have ∥Qϕ (x1)−Qϕ (x2)∥ ≤ Kϕ ∥x1 − x2∥,
and

W2(qϕ(z|x1), qϕ(z|x2)) ≤ Kϕ ∥x1 − x2∥ . (C.3)

On the other hand, the definition E = LipKθ
(Z,R) and the Kantorovich duality imply

dE(qϕ(z|x1), qϕ(z|x2)) = KθW1(qϕ(z|x1), qϕ(z|x2)).

Since W1 ≤ W2, this equation, combined with (C.3) yields

dE(qϕ(z|x1), qϕ(z|x2)) ≤ KθKϕ ∥x1 − x2∥ .

2. Now, we shall prove (C.2), meaning, we show that ℓ(·,x) ∈ LipKθ
(Z,R) . Let x ∈ X and

z1, z2 ∈ Z . We have

ℓ(z1,x)− ℓ(z2,x) = ∥x− gθ(z1)∥ − ∥x− gθ(z2)∥

= ∥x− gθ(z1) + gθ(z2)− gθ(z2)∥ − ∥x− gθ(z2)∥

≤ ∥x− gθ(z2)∥+ ∥gθ(z2)− gθ(z1)∥ − ∥x− gθ(z2)∥

= ∥gθ(z2)− gθ(z1)∥

≤ Kθ ∥z1 − z2∥ ,

where the first inequality uses the triangle inequality and the second uses the Lipschitz
assumption on gθ.
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C.2 Proof of Theorem 4.3

Proof of Theorem 4.3. In order to prove Theorem 4.3, we need to upper bound the average distance
and the exponential moment of Theorem 4.2, under the finite diameter assumption:

sup
x,x′∈X

d(x,x′) = ∆ < ∞. (C.4)

More precisely, we need to prove the two following inequalities.
n∑

i=1

E
x∼µ

d(x,xi) ≤ n∆ (C.5)

and

n log E
z∼p(z)

E
x∼µ

exp
[
λ

n

(
E

x′∼µ
ℓθrec(z,x

′)− ℓθrec(z,x)

)]
≤ λ2∆2

8n
. (C.6)

First, (C.5) is a direct consequence of the definition of the diameter ∆.

Now, let us prove (C.6). Let z ∈ Z . Since ℓθrec(z,x) = ∥x− gθ(z)∥ = d(x, gθ(z)) is the distance
between x and gθ(z), the definition of ∆ implies ℓθrec(z,x) ∈ [0,∆], for any x ∈ X . Hence, applying
Hoeffding’s lemma on the random variables ℓi = ℓθrec(z,xi) ∈ [0,∆], we obtain

E
x∼µ

exp
[
λ

n

(
E

x′∼µ

[
ℓθrec(z,x

′)
]
− ℓθrec(z,x)

)]
≤ exp

[
λ2∆2

8n2

]
.

Which leads to

n log E
z∼p(z)

E
x∼µ

exp
[
λ

n

(
E

x′∼µ
ℓθrec(z,x

′)− ℓθrec(z,x)

)]
≤ n log E

z∼p(z)
exp

[
λ2∆2

8n2

]
=

λ2∆2

8n
.

C.3 Proof of Theorem 4.4

We need to bound the average distance and the exponential moment of Theorem 4.2, under the
assumption µ = g∗♯p∗, with p∗ = N (0, I) is the standard Gaussian distribution on Rd∗

, and
g∗ ∈ LipK∗

(Rd∗
,X ).

Lemma C.2. Under the hypotheses of Theorem 4.4, the following inequality holds:

n log E
z∼p(z)

E
x∼µ

exp
[
λ

n

(
E

x′∼µ
ℓθrec(z,x

′)− ℓθrec(z,x)

)]
≤ λ2K2

∗
2n

. (C.7)

Proof. Let us show that

n log E
z∼p(z)

E
x∼µ

exp
[
λ

n

(
E

x′∼µ
ℓθrec(z,x

′)− ℓθrec(z,x)

)]
≤ λ2K2

∗
2n

.

Since µ = g∗♯p∗, where p∗ is the standard Gaussian distribution on Rd∗
and g∗ is K∗-Lipschitz

continuous, the definition of the loss function ℓθrec implies

E
x∼µ

exp
[
λ

n

(
E

x′∼µ
ℓθrec(z,x

′)− ℓθrec(z,x)

)]

= E
x∼µ

exp
[
λ

n

(
E

x′∼µ
∥x′ − gθ(z)∥ − ∥x− gθ(z)∥

)]
.

= E
w∼p∗

exp
[
λ

n

(
E

w′∼p∗
∥g∗(w′)− gθ(z)∥ − ∥g∗(w)− gθ(z)∥

)]
(∗)
≤ exp

[
λ2K2

∗
2n2

]
.
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This derivation implies

n log E
z∼p(z)

E
x∼µ

exp
[
λ

n

(
E

x′∼µ
ℓθrec(z,x

′)− ℓθrec(z,x)

)]
≤ λ2K2

∗
2n

.

We still need to justify
(∗)
≤ . Define for any arbitrary α ∈ X the function f : Rd∗ → R as:

f(w) = ∥g∗(w)− α∥ .

Since g∗ ∈ LipK∗
(Rd∗

,X ), the function f is K∗-Lipschitz. Indeed, for any w1,w2 ∈ Rd∗
,

f(w1)− f(w2) = ∥g∗(w1)− α∥ − ∥g∗(w2)− α∥

= ∥g∗(w1)− α+ g∗(w2)− g∗(w2)∥ − ∥g∗(w2)− α∥

≤ ∥g∗(w1)− g∗(w2)∥+ ∥g∗(w2)− α∥ − ∥g∗(w2)− α∥

= ∥g∗(w1)− g∗(w2)∥

≤ K∗ ∥w1 −w2∥

Moreover, it is known (see Theorem 5.5 of Boucheron et al. (2013)) that if f is a K∗-Lipschitz
function of a standard normal random variable z, then

E eλ(E[f(z)]−f(z)) ≤ e
λ2K2

∗
2 .

Hence,

E
wi∼p∗

[
exp

[
λ

n

(
E

w′∼p∗
[∥g∗(w′)− gθ(z)∥]− ∥g∗(wi)− gθ(z)∥

)]]
≤ exp

[
λ2K2

∗
2n2

]
,

which proves
(∗)
≤ and concludes this proof.

Lemma C.3. Under the hypotheses of Theorem 4.4, with probability at least 1− nd∗

2 e
−a2

2 over the
random draw of S,

n∑
i=1

E
x∼µ

d(x,xi) ≤ nK∗
√

(1 + a2)d∗ (C.8)

Proof. First, since the training set S = {x1, . . . ,xn}
iid∼ µ, for each 1 ≤ i ≤ n, there exists wi ∼ p∗

such that xi = g∗(wi). Let a > 0 be a positive real number. By definition of p∗, we have

P
[
∀i,wi ∈ [−a, a]d

∗
]
=

(
erf
(

a√
2

))nd∗

,

where erf (·) denotes the error function. Since the error function verifies (see Chu (1955))

erf
(

a√
2

)
≥
√
1− e

−a2

2 ,

we can use Bernoulli’s inequality (see Section 2.4 of Mitrinovic and Vasic (1970)) to obtain

P
[
∀i,wi ∈ [−a, a]d

∗
]
≥
(
1− e

−a2

2

)nd∗/2

≥ 1− nd∗

2
e

−a2

2 . (C.9)

Now we assume wi ∈ [−a, a]d
∗

for all 1 ≤ i ≤ n and we shall prove the desired inequality:
n∑

i=1

E
x∼µ

d(x,xi) ≤ nK∗
√

(1 + a2)d∗ (C.10)
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Let us prove (C.10). We have
E

x∼µ
d(x,xi) = E

x∼µ
∥x− xi∥ = E

w∼p∗
∥g∗(w)− g∗(wi)∥ ≤ K∗ E

w∼p∗
∥w −wi∥ , (C.11)

where the inequality follows from the assumption g∗ ∈ LipK∗
(Rd∗

,X ). Using Holder’s inequality,
the fact that ∥w −wi∥2 is a non-central χ2 random variable with d∗ degrees of freedom and non-
centrality coefficient ∥wi∥2, and the assumption wi ∈ [−a, a]d

∗
, we obtain

E
w∼p∗

∥w −wi∥ ≤
(

E
w∼p∗

∥w −wi∥2
)1/2

=
(
d∗ + ∥wi∥2

)1/2
≤
(
d∗ + a2d∗

)1/2
.

Hence,
E

x∼µ
∥x− xi∥ ≤ K∗

√
(1 + a2)d∗

which proves (C.10).

Proof of Theorem 4.4. Lemmas C.2 and C.3 applied to the result from Theorem 4.2 provide us with

the inequality of Theorem 4.4. Finally, the confidence of 1 − δ − nd∗

2 e
−a2

2 is obtained by using
the union bound: the inequality in Theorem 4.2 holds with probability at least 1 − δ, whereas the

inequality appearing in Lemma C.3 holds with probability at least 1− nd∗

2 e
−a2

2 .

In the following proposition, we provide an alternate version of Theorem 4.4, where the distribution
p∗ is the uniform distribution3 on [0, 1]d

∗
, instead of the standard Gaussian distribution on Rd∗

.
Proposition C.4. Let X be the instance space, Z the latent space, p(z) ∈ M1

+(Z) the prior
distribution, θ the parameters of the decoder, δ ∈ (0, 1), λ > 0, a > 0 be real numbers. Assume
the data-generating distribution µ = g∗♯p∗, where p∗ = U([0, 1]d∗

) is the uniform distribution on
[0, 1]d

∗
and g∗ ∈ LipK∗

(Rd∗
,X ) is K∗-Lipschitz continuous. With probability at least 1 − δ over

the random draw of S, the following holds for any posterior qϕ(z|x):

E
x∼µ

E
qϕ(z|x)

ℓθrec(z,x)−
1

n

n∑
i=1

{
E

qϕ(z|xi)
ℓθrec(z,xi)

}
≤ 1

λ

(
n∑

i=1

KL(qϕ(z|xi) || p(z))+

λKϕKθK∗
√
d∗ + log

1

δ
+

λ2K2
∗

2n

)
.

Proof. Let {w1, . . . ,wn} ⊆ [0, 1]d
∗

be such that for all 1 ≤ i ≤ n, xi = g∗(wi). Since the diameter
of [0, 1]d

∗
is
√
d∗, using the assumptions on µ and g∗, we obtain

n∑
i=1

E
x∼µ

d(x,xi) =

n∑
i=1

E
w∼p∗

d(g∗(w), g∗(wi)) ≤ K∗

n∑
i=1

E
w∼p∗

∥w −wi∥ ≤ nK∗
√
d∗.

Applying the inequality above to Theorem 4.2 yields the desired result.

Note that unlike Theorem 4.4, the confidence 1− δ of Theorem 4.2 is not lowered in Proposition C.4.

D Proofs of the results in Section 5

To simplify the proofs of the theorems of Section 5, we start by proving Lemmas D.1 and D.2 below.

First, recall the definition of µ̂ϕ,θ:

µ̂ϕ,θ =
1

n

n∑
i=1

gθ♯qϕ(z|xi).

The triangle inequality implies
W1(µ, gθ♯p(z)) ≤ W1(µ, µ̂ϕ,θ) +W1(µ̂ϕ,θ, gθ♯p(z)). (D.1)

Let us state and prove the first lemma of this section.
3Note that the result holds for any distribution on [0, 1]d

∗
, not just the uniform distribution.
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Lemma D.1. The following inequality holds with probability at least 1− δ over the random draw of
S ∼ µ⊗n:

λW1(µ, µ̂ϕ,θ) ≤
λ

n

n∑
i=1

(
E

z∼q(z|xi)
ℓθrec(z,xi)

)
+

n∑
i=1

KL(q(z|xi) || p(z))+

log
1

δ
+ log E

S∼µ⊗n
E

z∼p(z)
eλ(Ex∼µ[ℓθrec(z,x)]− 1

n

∑n
i=1 ℓθrec(z,xi)).

Proof. Recall the expression for the Wasserstein distance based on couplings:

W1(µ, µ̂ϕ,θ) = inf
π∈Γ(µ,µ̂ϕ,θ)

∫
X×X

∥x− y∥ dπ(x,y)

In particular, W1(µ, µ̂ϕ,θ) is less than the right-hand side obtained by the product coupling which
can be rewritten, using Fubini’s theorem, as:

W1(µ, µ̂ϕ,θ) ≤
∫
X×X

∥x− y∥ dµ(x)dµ̂ϕ,θ(y)

= E
y∼µ̂ϕ,θ

E
x∼µ

∥x− y∥ .

Using the derivation above and the definition of µ̂ϕ,θ, we obtain

W1(µ, µ̂ϕ,θ) ≤ E
y∼µ̂ϕ,θ

E
x∼µ

∥x− y∥ =
1

n

n∑
i=1

(
E

z∼qϕ(z|xi)
E

x∼µ
∥x− gθ(z)∥

)

=
1

n

n∑
i=1

(
E

z∼qϕ(z|xi)
E

x∼µ
ℓθrec(z,x)

)
.

We can upper bound this expression using Lemma B.1 with H = Z and ℓ = ℓθrec. We get that with
probability at least 1− δ over the random draw of S ∼ µ⊗n:

λ

n

n∑
i=1

(
E

z∼q(z|xi)
E

x∼µ
ℓθrec(z,x)

)
≤ λ

n

n∑
i=1

(
E

z∼q(z|xi)
ℓθrec(z,xi)

)
+

n∑
i=1

KL(q(z|xi) || p(z))+

log
1

δ
+ log E

S∼µ⊗n
E

z∼p(z)
eλ(Ex∼µ[ℓθrec(z,x)]− 1

n

∑n
i=1 ℓθrec(z,xi)).

Therefore, using the upper bounds on the exponential moment from Section 4, we can prove Theorems
5.1 and 5.3 in the following sections.

Next, we prove the following lemma.
Lemma D.2. The following inequality holds.

W1(µ̂ϕ,θ, gθ♯p(z)) ≤
Kθ

n

n∑
i=1

√
∥µϕ (xi)∥2 +

∥∥∥σϕ (xi)− 1⃗
∥∥∥2,

where 1⃗ ∈ RdZ denotes the vector whose entries are all 1.

Proof. Defining the mixture of measures

q̂ϕ(z) =
1

n

n∑
i=1

qϕ(z|xi),

the definition of µ̂ϕ,θ and the definition of a pushforward measures yield

µ̂ϕ,θ =
1

n

n∑
i=1

gθ♯qϕ(z|xi) = gθ♯q̂ϕ(z).
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Using the dual formulation of the Wasserstein distance, we have

W1(µ̂ϕ,θ, gθ♯p(z)) = W1 (gθ♯q̂ϕ(z), gθ♯p(z))

= sup
f∈Lip1(X ,R)

[∫
Z
f ◦ gθ(z) dq̂ϕ(z)−

∫
Z
f ◦ gθ(z) dp(z)

]

= sup
g∈Gθ

[∫
Z
g(z) dq̂ϕ(z)−

∫
Z
g(z) dp(z)

]

≤ sup
g∈LipKθ

(Z,R)

[∫
Z
g(z) dq̂ϕ(z)−

∫
Z
g(z) dp(z)

]
= KθW1(q̂ϕ(z), p(z)),

where Gθ = {g : Z → R s.t. g = f ◦ gθ and f ∈ Lip1(X ,R)} and the inequality holds because
Gθ ⊆ LipKθ

(Z,R), since gθ : Z → X is Kθ-Lipschitz. Now, since (p, q) 7→ W1(p, q) is convex,
the definition of q̂ϕ(z) implies

W1(q̂ϕ(z), p(z)) ≤
1

n

n∑
i=1

W1(qϕ(z|xi), p(z)) ≤
1

n

n∑
i=1

W2(qϕ(z|xi), p(z)). (D.2)

Since, by Equation (A.2),

W2(qϕ(z|xi), p(z))
2 = ∥µϕ (xi)∥2 +

∥∥∥σϕ (xi)− 1⃗
∥∥∥2 ,

we obtain

W1(µ̂ϕ,θ, gθ♯p(z)) ≤
Kθ

n

n∑
i=1

√
∥µϕ (xi)∥2 +

∥∥∥σϕ (xi)− 1⃗
∥∥∥2.

D.1 Proof of Theorem 5.1

Proof of Theorem 5.1. Recall from Lemma D.1 that with probability at least 1− δ over the random
draw of S ∼ µ⊗n,

λW1(µ, µ̂ϕ,θ) ≤
λ

n

n∑
i=1

(
E

z∼q(z|xi)
ℓθrec(z,xi)

)
+

n∑
i=1

KL(q(z|xi) || p(z))+

log
1

δ
+ log E

S∼µ⊗n
E

z∼p(z)
eλ(Ex∼µ[ℓθrec(z,x)]− 1

n

∑n
i=1 ℓθrec(z,xi)).

(D.3)

In order to prove Theorem 4.3 in section C.2, we proved that

E
S∼µ⊗n

exp

[
λ

(
E

x∼µ

[
ℓθrec(z,x)

]
− 1

n

n∑
i=1

ℓθrec(z,xi)

)]
≤ exp

[
λ2∆2

8n

]
.

Now, we can reuse this inequality to upper-bound the last term on the right-hand side of Equation (D.3).
We obtain the desired theorem: under the assumptions of Theorem 4.3, with probability at least 1− δ
over the random draw of S ∼ µ⊗n, the following holds for any posterior qϕ(z|x):

W1(µ, µ̂ϕ,θ) ≤
1

n

n∑
i=1

{
E

qϕ(z|xi)
ℓθrec(z,xi)

}
+

1

λ

(
n∑

i=1

KL(qϕ(z|xi) || p(z)) + log
1

δ
+

λ2∆2

8n

)
.

D.2 Proof of Theorem 5.2

Proof of Theorem 5.2. Theorem 5.2 is a direct consequence of Theorem 5.1 and Lemma D.2 applied
to Equation (D.1).
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Figure 1: Samples from the real datasets

D.3 Proof of Theorem 5.3

Proof of Theorem 5.3. Recall from Lemma D.1 that with probability at least 1− δ over the random
draw of S ∼ µ⊗n,

λW1(µ, µ̂ϕ,θ) ≤
λ

n

n∑
i=1

(
E

z∼q(z|xi)
ℓθrec(z,xi)

)
+

n∑
i=1

KL(q(z|xi) || p(z))+

log
1

δ
+ log E

S∼µ⊗n
E

z∼p(z)
eλ(Ex∼µ[ℓθrec(z,x)]− 1

n

∑n
i=1 ℓθrec(z,xi)).

We can then use Lemma C.2 which stated that

log E
z∼p(z)

E
S∼µ⊗n

exp

[
λ

(
E

x∼µ

[
ℓθrec(z,x)

]
− 1

n

n∑
i=1

ℓθrec(z,xi)

)]
≤ λ2K2

∗
2n

. (D.4)

The expectations over z and S can be swapped using Fubini’s Theorem. Hence, combining
Lemma C.2 and Lemma D.1, we obtain Theorem 5.3: with probability at least 1 − δ over the
random draw of S ∼ µ⊗n, the following holds for any posterior qϕ(z|x).

W1(µ, µ̂ϕ,θ) ≤
1

n

n∑
i=1

{
E

qϕ(z|xi)
ℓθrec(z,xi)

}
+

1

λ

(
n∑

i=1

KL(qϕ(z|xi) || p(z)) + log
1

δ
+

λ2K2
∗

2n

)
.

D.4 Proof of Theorem 5.4

Proof of Theorem 5.4. Theorem 5.4 is a direct consequence of Theorem 5.3 and Lemma D.2 applied
to Equation (D.1).

E Numerical Experiments

We computed the numerical value of the bound of Theorem 4.3. We performed the experiments on
two 2-dimensional synthetic datasets. The first one is a mixture of two isotropic Gaussian distributions
on R2 centered at (−1, 0) and (1, 0) respectively, and with standard deviation σ = 0.1 and null
covariances. The second dataset consists of noisy samples arranged in a circle centered at the origin,
with radius 1.5 and standard deviation σ = 0.1. Both datasets are truncated so that no sample is over
4 standard deviations away from its corresponding mean. This is to formally ensure that the diameter
of the instance spaces is finite, as required by Theorem 4.3. The sizes of the training, validation and
test sets are respectively 50,000, 20,000 and 20,000. Samples from the two datasets are shown in
Figure 1.

We used the same architecture and hyperparameters for both datasets. The encoder and decoder
are fully connected networks with 3 hidden layers and 100 hidden units per layer. We also set the
Lipschitz constants of the encoder and decoder networks to Kϕ = Kθ = 2. In order to enforce
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Figure 2: Samples from the models trained on the 2-Gaussian dataset (top) and the Circle dataset
(bottom).

λ Test Rec. loss Emp. Rec. loss Emp. KL loss Exp. moment Bound
n/0.01 0.1107 0.1110 0.0192 89.00 99.80
n/0.025 0.1228 0.1237 0.0505 35.60 46.45
n/0.05 0.1299 0.1299 0.1010 17.80 28.70
n/0.075 0.1388 0.1403 0.1511 11.867 22.83
n/0.1 0.1425 0.1436 0.2003 8.900 19.92
n/0.25 0.1707 0.1732 0.4883 3.560 14.89
n/0.5 0.2120 0.2162 0.9602 1.780 13.63
n/0.75 0.2718 0.2725 1.4122 1.1868 13.54
n/1 0.3586 0.3596 1.8593 0.8901 13.78

Table 1: Table showing the values of the different quantities of Equation E.1 for the “2-Gaussian”
dataset. The upper bound on the average distance term is 10.67.

Lipschitz continuity, we used Björk orthonormalization (Björck and Bowie, 1971) with GroupSort
activations (Anil et al., 2019), and we utilized the implementation of Lipschitz layers by Anil et al.
(2019). Note that Barrett et al. (2022) performed experiments with VAEs with fixed Lipschitz
constants, but we did not directly use their implementation because of a difference in the definition of
the Lipschitz norm of the encoder, which affects the implementation. Note also that unlike the usual
computations of PAC-Bayesian bounds (Pérez-Ortiz et al., 2021), our implementation does not use
probabilistic neural networks. It uses deterministic networks, as it is usual for VAEs, because our
analysis did not include additional stochasticity. We used the MSE as the reconstruction loss during
training, and computed the bounds on validation datasets. The samples from the different models are
displayed in Figure 2.

Recall the inequality of Theorem 4.3:

E
x∼µ

E
qϕ(z|x)

ℓθrec(z,x)︸ ︷︷ ︸
Test Rec. Loss

≤ 1

n

n∑
i=1

{
E

qϕ(z|xi)
ℓθrec(z,xi)

}
︸ ︷︷ ︸

Emp. Rec. Loss

+
1

λ

n∑
i=1

KL(qϕ(z|xi) || p(z))︸ ︷︷ ︸
Emp. KL loss

+

KϕKθ∆︸ ︷︷ ︸
Avg distance

+
λ∆2

8n︸ ︷︷ ︸
Exp. moment

+
1

λ
log

1

δ
.

(E.1)

Tables 1 and 2 show the numerical values of the bound of Theorem 4.3 for different values of λ.
The first column is approximated using the test set, and the last one refers to all the right-hand side
of (E.1). The empirical reconstruction and KL losses are computed using the validation set, since,
as mentioned in the main paper, the bounds need to be computed using a set independent from the
training set.
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λ Test Rec. loss Emp. Rec. loss Emp. KL loss Exp. moment Bound
n/0.01 0.095 0.0959 0.0197 180.50 195.81
n/0.025 0.1354 0.1362 0.0525 72.20 87.59
n/0.05 0.1785 0.1783 0.1058 36.10 51.58
n/0.075 0.2005 0.2020 0.1587 24.07 39.63
n/0.1 0.2245 0.2247 0.2117 18.05 33.69
n/0.25 0.3498 0.3486 0.5160 7.220 23.28
n/0.5 0.5026 0.4940 0.9997 3.610 20.30
n/0.75 0.6171 0.6154 1.4691 2.406 19.691
n/1 0.7513 0.7499 1.9314 1.805 19.686

Table 2: Table showing the values of the different quantities of Equation E.1 for the “Circle” dataset.
The upper bound on the average distance term is 15.2.

From Tables 1 and 2, once can see that the bounds are dominated by two terms: the average distance
and the exponential moment. Although as λ approaches n, the exponential moment gets smaller and
the main influence comes from the upper bound on the average distance. Hence, in order to tighten
the bound, one may need to derive tighter upper bounds on the average distance, or derive versions of
Theorem 4.3 where this term is replaced by a numerically smaller one.

F Additional Results and Remarks

This section contains additional remarks and discussions. We start with possible extensions of our
results.

F.1 The variance of the likelihood

Our definition of the decoder network’s output (the function gθ : Z → X ) only considers the
deterministic part of the decoder. In other words, our results only apply to VAEs whose likelihood
has constant variance. However, they can be extended to cases when the variance of the likelihood
is optimized, but at a cost. We discuss separately the two cases where the variance depends on
individual datapoints or not.

Instance-independent variance. If the standard deviation σ of the decoder is fixed, then we have
σ ∝ n

λ , (recall the hyperparameter λ from Theorem 3.1 and subsequent theorems). Hence, optimizing
σ corresponds to optimizing λ, which is non-trivial in PAC-Bayes. Indeed, most PAC-Bayes bounds
(including ours) do not directly allow one to optimize λ (see Section 2.1.4 of Alquier (2021)).
Although there are some ways around this restriction, we are not aware of any results that allow
one to optimize in the general case (meaning continuous values of λ and unbounded loss). For
[0, 1]-bounded loss functions, Thiemann et al. (2017) developed a PAC-Bayes bound uniformly valid
for a trade-off parameter λ′, and show that one can optimize w.r.t. both the posterior and λ′, under
certain assumptions. For unbounded losses, if one assumes λ ∈ Λ, where |Λ| is finite, a union bound
argument allows one to make the bound uniform with respect to λ, at the cost of log |Λ| (see Alquier
(2021)). One can still optimize with respect to a continuous set Λ, by considering a grid. For instance,
if one considers Λ∩ {1, . . . , n}, then the penalty is log n and if one considers Λ∩ {ek : 1 ≤ k ≤ n},
the penalty is log log n.

Instance-dependent variance. Now, assume the standard deviation is dependent on individual
instances. Say we define the reconstruction loss as ℓθ(z,x) = 1

σθ(z)
∥x− gθ(z)∥, where σθ : Z →

R>0. Because of the division by σθ(z), let us assume that there is a fixed upper bound σ1 > 0 such
that σθ(z) > σ1, for any z ∈ Z . There are two main tasks: making sure Assumption 1 is satisfied,
and bounding the exponential moment of Theorem 4.2, with this new loss function.
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Verifying Assumption 1 is equivalent to showing that Proposition 4.1 is verified for this new loss
function ℓθ. The second part of the proof of Proposition 4.1 tells us that we need to show that ℓθ
is Lipschitz-continuous. Note that in general, the product of real-valued Lipschitz functions is not
Lipschitz. Hence, we assume, in addition, that ∥x− gθ(z)∥ ≤ M < ∞. The following proposition
shows that Assumption 1 is satisfied with the constant K = Kϕ

(
KσM
σ2
1

+ Kθ

σ1

)
.

Proposition F.1. Consider a VAE with parameters ϕ and θ and let Kϕ,Kθ ∈ R be the Lipschitz
norms of the encoder and decoder respectively. Also, consider the loss function lθrec : Z × X → R
defined as

lθrec(z,x) =
1

σθ(z)
∥x− gθ(z)∥

where σθ : Z → R>0 is Kσ-Lipschitz. Assume and for all z ∈ Z , σθ(z) > σ1 and ∥x− gθ(z)∥ ≤ M
for some fixed 0 < σ1 < 1 and M > 0. Then the variational distribution qϕ(z|x) satisfies Assumption

1 with E = {f : Z → R : ∥f∥Lip ≤ KσM
σ2
1

+ Kθ

σ1
}, K = Kϕ

(
KσM
σ2
1

+ Kθ

σ1

)
, and ℓ = lθrec.

Proof. The first part of Assumption 1 is satisfied, since KσM
σ2
1

+ Kθ

σ1
> Kθ. Now, for the second part

of Assumption 1, we need to show that lθrec is KσM
σ2
1

+ Kθ

σ1
-Lipschitz continuous. First,∣∣∣∣ 1

σθ(z1)
− 1

σθ(z2)

∣∣∣∣ = ∣∣∣∣σθ(z2)− σθ(z1)

σθ(z1)σθ(z2)

∣∣∣∣ ≤ Kσ ∥z1 − z2∥
σ2
1

.

We have∣∣lθrec(z1,x)− lθrec(z2,x
∣∣ = ∣∣∣∣ 1

σθ(z1)
∥x− gθ(z1)∥ −

1

σθ(z2)
∥x− gθ(z2)∥

∣∣∣∣
=

∣∣∣∣ 1

σθ(z1)
− 1

σθ(z2)

∣∣∣∣ ∥x− gθ(z1)∥+
1

σθ(z2)
|∥x− gθ(z1)∥ − ∥x− gθ(z2)∥|

≤ KσM

σ2
1

∥z1 − z2∥+
Kθ

σ1
∥z1 − z2∥

=

(
KσM

σ2
1

+
Kθ

σ1

)
∥z1 − z2∥

Now, let us focus on bounding the exponential moment. In this case, when the instance space is
bounded, the upper bound on the exponential moment (in the proof of Theorem 4.3) is:

λ2∆2

8nσ2
1

, instead of
λ2∆2

8n
.

And under the manifold assumption, we get the following upper bound (in the proof of Theorem 4.4):

λ2K2
∗

2nσ2
1

, instead of
λ2K2

∗
2n

Note that although the upper bounds on the average distance remain unchanged, the coefficient KϕKθ

is replaced by Kϕ

(
KσM
σ2
1

+ Kθ

σ1

)
, which is larger, specially if σ1 is very small.

F.2 Uniformity with respect to θ

As mentioned in the main paper, although our bounds hold uniformly for any encoder ϕ, they only
hold for a given decoder θ. the consequence of this limitation is that the numerical computations of
the bounds need to be done on a sample set disjoint from the training set (e.g. a validation or test set).
Let Θ denote a set of decoder parameters over which the optimization is performed.

From a theoretical perspective, the union bound can be used to circumvent this issue, when we
consider a finite set of parameters Θ. In that case, the log 1

δ in Theorem 3.1 becomes log |Θ|
δ , which
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loosens the bound. Moreover, since Θ denotes a set of neural network parameters, this assumption
may not be appropriate unless one chooses a very large set Θ, which can significantly loosen the
bound.

Another option would be to make assumptions on the complexity of the set of loss functions
{ℓθrec : θ ∈ Θ} parameterized by decoder parameters θ ∈ Θ (e.g. the Rademacher complexity), in
order to obtain uniform bounds in a more general case. We leave such explorations to future works.

F.3 Additional Remarks

Remark F.1 (Alternate formulation of Assumption 1). We can provide an equivalent formulation of
Assumption 1. A posterior q(h|x) and a loss function ℓ satisfy Assumption 1 with a constant K > 0
if and only if for any x ∈ X ,∣∣∣∣ E

h∼q(h|x1)
ℓ(h,x)− E

h∼q(h|x2)
ℓ(h,x)

∣∣∣∣ ≤ Kd(x1,x2).

The formulation given in the paper is more intuitive, but this expression shows that the specific choice
of E does not matter. The equivalence of the two formulations is a consequence of the definition of
an IPM.
Remark F.2 (Prior Learning in PAC-Bayes). The majority of PAC-Bayesian bounds (McAllester,
1999; Seeger, 2002; Germain et al., 2009; Mbacke et al., 2023) require the prior distribution p on
the hypothesis class to be independent of the training set4. In practice, this means one has to use
data-free priors when minimizing PAC-Bayes bounds. Since, in that case, the learned posterior is
likely very far from the prior, the KL-divergence tends to be orders of magnitude larger than the
empirical risk. In practice, this means the optimization is monopolized by the KL-divergence, leading
to a poor performance of the learning algorithm. In order to avoid this issue and still obtain a valid
certificate, the following “prior learning trick” is used. Split the training set S = {x1, . . . ,xn} in
two disjoint subsets S1, S2, where |S1| = n0, |S2| = n− n0 with n0 < n. Then, learn the prior p on
S1, learn the posterior q on S (the whole training set), and compute the certificate on S2.

The reason why this trick cannot be directly applied to circumvent the fact that our bounds are valid
for a given decoder, is that the encoder and the decoder are jointly optimized in VAEs. Hence, one
has to make sure the samples used to learn the encoder (hence, train the model) are not used in
the computation of the risk certificate. We emphasize that in our case, the issue does not lie in the
learning of the prior (the standard VAE considers a standard Gaussian prior), but of the loss function
ℓθrec, which is dependent on the decoder’s parameters θ.

4PAC-Bayesian bounds with data-dependent priors were developed by Dziugaite and Roy (2018); Rivasplata
et al. (2020).
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