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ABSTRACT

Preference optimization techniques, such as Direct Preference Optimization
(DPO), are frequently employed to enhance the reasoning capabilities of large
language models (LLMs) in domains like mathematical reasoning and coding,
typically following supervised fine-tuning. These methods rely on high-quality
labels for reasoning tasks to generate preference pairs; however, the availability of
reasoning datasets with human-verified labels is limited. In this study, we intro-
duce a novel approach to generate pseudo feedback for reasoning tasks by framing
the labeling of solutions to reason problems as an evaluation against associated
test cases. We explore two forms of pseudo feedback based on test cases: one
generated by frontier LLMs and the other by extending self-consistency to multi-
test-case. We conduct experiments on both mathematical reasoning and coding
tasks using pseudo feedback for preference optimization, and observe improve-
ments across both tasks. Specifically, using Mathstral-7B as our base model, we
improve MATH results from 58.3 to 68.6, surpassing both NuminaMath-72B and
GPT-4-Turbo-1106-preview. In GSM8K and College Math, our scores
increase from 85.6 to 90.3 and from 34.3 to 42.3, respectively. Building on
Deepseek-coder-7B-v1.5, we achieve a score of 24.3 on LiveCodeBench (from
21.1), surpassing Claude-3-Haiku. 1

1 INTRODUCTION

Large language models (LLMs) have demonstrated exceptional capabilities in reasoning tasks such
math reasoning and coding (Roziere et al., 2023; Dubey et al., 2024; Guo et al., 2024). A de facto
pipeline for enhancing the reasoning capabilities of LLMs involves further exposing them to rea-
soning specific data through continued pre-training or supervised fine-tuning (Roziere et al., 2023;
Dubey et al., 2024; Yu et al., 2023; Tang et al., 2024; Dong et al., 2023), followed by preference
learning techniques such as direct preference optimization (DPO; Rafailov et al. (2023)) or proximal
policy optimization (PPO; Schulman et al. (2017)). Both DPO and PPO depend on reliable labels
for reasoning problems to generate preference pairs and train reward models (Lightman et al., 2024;
Uesato et al., 2022). Unfortunately, reasoning datasets with large-scale, human-verified labels re-
main limited, and scaling them through domain experts is becoming increasingly time-consuming
and expensive, particularly as LLMs continue to evolve in capabilities (Burns et al., 2024; Bowman
et al., 2022), which greatly limits the potential of preference learning methods such DPO and PPO.

Scalable oversight (Bowman et al., 2022) demonstrates that the annotation effort of human experts
can be significantly reduced with the assistance of non-expert LLMs. However, complete elimina-
tion of human annotation remains unattainable. Building on this, Khan et al. (2024a) further reduced
labeling costs by incorporating a debating mechanism, though this approach is constrained to reason-

†Work done during internship at Microsoft Research.
1The code is released at: https://github.com/microsoft/unilm/tree/master/PFPO
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ing tasks with a finite answer space (e.g., multiple-choice questions). Other works have employed
self-consistency-based answers or their variants as pseudo-labels to filter self-generated solutions
(Huang et al., 2022; Yang et al., 2024c), but these methods struggle to generalize to reasoning tasks
that lack explicit answer labels (e.g., coding).

To address these challenges, we frame the labeling of solutions to reasoning problems as the evalu-
ation of these solutions against the test cases of the problems. For tasks with explicit answer labels
(e.g., mathematical reasoning and multiple-choice questions), we treat them as cases with a single
test pair, where the input is empty, and the output is the answer label. In contrast, for tasks without
explicit answer labels (e.g., coding), we consider them as problems with multiple test case pairs. A
solution to a reasoning problem is deemed correct if and only if it passes all associated test cases.
Sample solutions generated by an LLM for the same problem can be validated using the test case
suite, with correct and incorrect solutions used to construct preference pairs for DPO training or to
train a reward model for PPO. In this paper, we propose two types of pseudo feedback (i.e., pseudo
test cases) for reasoning problems, both of which eliminate the need for human experts and can be
applied at scale. First, we explore pseudo feedback from frontier LLMs, where we decompose the
process of creating pseudo test cases into multiple steps to ensure that each step is manageable for
frontier LLMs. Intuitively, if an LLM can pass test cases carefully curated by a stronger LLM, it
is likely to provide a correct solution. Previous work Wang et al. (2022); Snell et al. (2024) has
demonstrated that self-consistency improves the reasoning performance of LLMs. Based on this
insight, we introduce a second form of pseudo feedback, utilizing self-consistency from our policy
LLM, which is of vital importance when frontier LLMs are no longer available. Unlike the method
in Wang et al. (2022), which is limited to single-test-case problems, our self-consistency feedback
is designed to generalize to problems with multiple test cases. We also find that these two types of
pseudo feedback complement each other and can be applied iteratively in a pipeline. We conducted
experiments on both mathematical reasoning and coding using pseudo feedback for preference op-
timization and we observe improvements across both tasks. Specifically, using Mathstral-7B as our
base model, we improved our MATH results from 58.3 to 68.6, surpassing both NuminaMath-72B
and GPT-4-Turbo-1106-preview. In GSM8K and College Math, our results increased from
85.6 to 90.3 and from 34.3 to 42.3, respectively. Building on Deepseek-coder-7B-v1.5, we achieved
a score of 24.3 on LiveCodeBench (from 21.1), surpassing Claude-3-Haiku.

In a nutshell, our contribution in this paper can be summarized as follows:

• We formulate the labeling of solutions to reasoning problems as the process of evaluating
them against the associated test cases, which facilitates preference optimization.

• We explore two types of pseudo feedback based on test cases: one created from frontier
LLMs and the other derived from generalized self-consistency w.r.t. multiple test cases.

• Experiments on mathematical reasoning and coding demonstrate the superiority of these
two types of feedback. We also find they can be applied in a pipeline and iteratively to
further improve the reasoning performance.

2 RELATED WORK

LLMs exhibit remarkable capabilities by tuning on high-quality data annotated by experts or more
advanced models (Achiam et al., 2023). However, these external annotations can be costly, posing
a challenge to further enhance model’s performance. Inspired by the natural evolution process of
human intelligence, researchers explore self-evolution methods (Tao et al., 2024) that enable models
to autonomously acquire, refine, and learn from their own knowledge. Some works (Wang et al.,
2023b; Ding et al., 2024) reformulate the training objective to directly model performance improve-
ment. Others tune the model with its own responses. They first filter the model’s outputs relying
on ground truth labels (Zelikman et al., 2022; Wang et al., 2024b), expert annotations (Dubey et al.,
2024), or more advanced models (Yang et al., 2024a; Kirchner et al., 2024), and then use the result-
ing refined examples for supervised or contrastive learning (Chen et al., 2024b; Yuan et al., 2024).
However, they still depend on external supervision and cannot extend to larger unlabeled datasets.
Recent work (Huang et al., 2022) constructs pseudo labels via self-consistency, but the improvement
is limited, possibly due to model collapse (Shumailov et al., 2023; Alemohammad et al., 2023).
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For related work about mathematical reasoning (Wei et al., 2022; He-Yueya et al., 2023; Chen et al.,
2021b; 2022; Lightman et al., 2024; Wang et al., 2024a; Jiao et al., 2024; Lai et al., 2024; Cobbe
et al., 2021b; Li et al., 2022a; Weng et al., 2022; Yu et al., 2023; Luo et al., 2023; Mitra et al.,
2024; Yue et al., 2023) and code generation (Guo et al., 2024; DeepSeek-AI et al., 2024; Nijkamp
et al., 2023b;a; Zelikman et al., 2022; Li et al., 2023a; 2022b; Wei et al., 2024; Le et al., 2022; Liu
et al., 2023; Dou et al., 2024; Weyssow et al., 2024), we will discuss them in Appendix F due to the
limitation of space.

3 METHOD

In reasoning tasks such as mathematical reasoning and coding, the solution to a problem can be ver-
ified using a standard answer or a set of test cases. This property makes it possible to automatically
create preference pairs for an LLM solving reasoning tasks and further improve reasoning capa-
bilities of the LLM with preference optimization. However, annotating reasoning problems with
answers or test cases manually is expensive and time consuming. As a result, this process is difficult
to executed in large scale. Therefore, we propose PFPO (Pseudo-Feedback Preference Optimiza-
tion), a method to automatically create pseudo answers or test cases to facilitate preference learning.
In this section, we first introduce preference optimization for reasoning in Section 3.1 (assuming
gold answers or test cases are available). Then we will go to details of PFPO, which creates pseudo
answers or test cases.

3.1 PREFERENCE OPTIMIZATION FOR REASONING

Suppose we have a set of reasoning problems x with their test cases T : D = {(xi, Ti)}|D|
i=1, where

T = {⟨ i1, o1 ⟩, ⟨ i2, o2 ⟩, . . . , ⟨ i|T |, o|T | ⟩} and ⟨ ik, ok ⟩ is the input-output pair of a test case. Note
that T is a generalized representation for either a collection of test cases or the gold answer for prob-
lem x. If x is a coding problem, T is a set of test cases to verify the correctness of the corresponding
solution of x. While if x is one of the other reasoning problems such as mathematical reasoning or
multi-choice science questions, there is only one test case in T = {⟨ i, o ⟩} and the input i is empty.
For example, “compute 1+1” is a math question with i = ∅ as its test case input and o = 2 as its
test case output.

Given a reasoning problem x and its test cases T , we are ready to evaluate the correctness of a
solution y produced by an LLM πθ as follows:

r =
1

|T |
(

|T |∑
k=1

1(g(y, ik) = ok)) (1)

where g(·, ·) is a function to either execute the solution y or extract the answer from y. In the most
strict form, y is a correct solution to problem x when r = 1. Otherwise (i.e., r < 1), y is an incorrect
solution. Note that in mathematical reasoning, there is only one test case and r ∈ {0, 1}.

Note that given a problem x and its corresponding test cases T , the process of verifying an arbitrary
solution y does not need any human labeling effort. We can construct preference pairs for an LLM
automatically as follows. First, we use an LLM πθ to sample N solutions Y = {y1, y2, . . . , yN}
for problem x and obtain their verification results R = {r1, r2, . . . , rN}. To further improve πθ, we
can use PPO (Schulman et al., 2017) to optimize these feedback online or use DPO (Rafailov et al.,
2023) to do preference optimization offline. In this work, we employ DPO due to its simplicity.
Then, we create preference pairs from R and valid pairs (yw, yl) requires rw = 1 and rl < 1.

P = {(yw, yl)|rw = 1, rl < 1, rw ∈ R, rl ∈ R} (2)

Given these valid preference pairs, We optimize our LLM πθ using the following objective:

LDPO(πθ;πref;D) = −Ex∈D,yw,yl∼πθ(·|x)

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
(3)

where πref is the reference model before the DPO stage (usually it is the model of the supervised
fine-tuning stage). β is a hyper-parameter to control the distance between πθ and πref.
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Policy Model 𝜋!

Solution 𝑠!: CoT + Program

Solution 𝑠": CoT + Program

Solution 𝑠#: CoT + Program

Solution 𝑠$: CoT + Program

⋯

Question:
Please complete the following Python 
function to implement the addition 
algorithm for vectors.

def vector_add(a: List[float], b: List[float]):
a=[1,2,3], b=[3,4,5]

General LLM

a=[7,7,7], b=[1,1,1]

Outputs Frequency

[4, 5, 8] 2

[4, 6, 8] 3

[4, 7, 8] 1

Outputs Frequency

[8, 8, 9] 2

[8, 7, 8] 1

[8, 8, 8] 3

Input
a=[1, 2, 3]
b=[3, 4, 5]

Output
[4, 6, 8]

Input
a=[7, 7, 7]
b=[1, 1, 1]

Output
[8, 8, 8]

Test Case Inputs
Execute

Verify

Figure 1: The process of employing self-consistency (i.e., majority voting) to construct pseudo test
cases for code generation problem. The outputs owing the highest frequency will be treated as
pseudo outputs for verifying generated programs.

3.2 PSEUDO FEEDBACK PREFERENCE OPTIMIZATION FOR REASONING

In this section, we introduce how to obtain pseudo feedback for reasoning problems and the method
of leverage them for preference learning.

3.2.1 PSEUDO FEEDBACK FROM FRONTIER LLM

Single-Test-Case Feedback For single-test-case reasoning tasks such as mathematical reasoning,
the input is explicitly given in the problem itself. Therefore, we do not need to create new test cases.
Given a problem x, we can use a frontier LLM to generate a solution ỹ and extract its pseudo answer
g(ỹ, ·) as our pseudo feedback (see Equation 1). The solution y ∼ πθ(·|x) from our model is likely
to be correct if g(y, ∅) = g(ỹ, ∅):

r = 1(g(y, ∅) = g(ỹ, ∅))) (4)

Since solutions of many reasoning datasets used for LLM supervised fine-tuning are created by
frontier LLM (Taori et al., 2023; Tang et al., 2024), we can re-use the SFT datasets and extract the
pseudo feedback as a free lunch.

Multi-Test-Case Feedback For multi-test-case reasoning tasks such as coding, test cases for cod-
ing problems are usually not available and manually label them are expensive. We choose to generate
pseudo test cases by prompting frontier LLMs. There are three steps to generate test cases as shown
in Figure 1:

• Step 1: Given a problem x, generate input test cases I = {ĩ1, ĩ2, . . . , ˜iK} by prompting a
general2 LLM.

• Step 2: Generate pseudo (code) solutions Y = {y′1, y′2, . . . , y′|Y|} for problem x using a
frontier LLM.

• Step 3: Generate pseudo output test cases O = {o′1, o′2, . . . , o′K} using majority voting by
executing all solutions in Y for each input test case in I.

The output test case o′k corresponds to the input ĩk is obtained as follows: after executing all pseudo
solutions, we obtain a set of candidate pseudo output O′

k = {g(y′1, ĩk), g(y′2, ĩk), . . . , g(y′|Y|, ĩk)}.
The output test case o′k is the most frequent element in O′

k:

o′k = argmax
o∈O′

k

f(o) (5)

where f(o) = |{x ∈ O′
k | x = o}| is a frequency function that gives the number of times an element

o appears in O′
k. The resulting set of pseudo test cases is T ′ = {⟨ ĩ1, o′1 ⟩, ⟨ ĩ2, o′2 ⟩, . . . , ⟨ ˜iK , o′K ⟩}.

At this point, we can verify arbitrary solution y to problem x as in Equation 1.

2Here we differentiate general LLM with the frontier one as generating only the inputs is much easier
compared with solving the problem itself. Thus this process does not necessarily rely on SOTA LLMs.
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Frontier LLM 𝑦!
" : … The answer is 7.

Pseudo Label: \\boxed{7}

Model 𝜋"

𝑦!,$: … The answer is 16. 
𝑦!,%: … The answer is 7. 
𝑦!,&: … The answer is 7. 
𝑦!,': … The answer is 3.

Pseudo Feedback from Self-ConsistencyPseudo Feedback from Frontier LLM

Model 𝜋"

Prompt 𝒙𝒊: What’s the result of …?

Solutions to 𝑥!
𝑦!,$ , 𝑦!,% , ⋯ , 𝑦!,)

𝑦!,$: … The answer is 16.

𝑦!,%: … The answer is 7. ✅

❌ Preference Pair
𝑦!,$ ≫ 	𝑦!,%

Model 𝜋"*%

Direct 
Preference 

Optimization

Figure 2: The overall training workflow of our method. For simplicity, we only show single step
with outcome feedback for mathematical reasoning. Given an arbitrary prompt, we will sample
multiple solutions from the current policy model and construct preference pairs according to pseudo
feedback from frontier LLM or self-consistency. Finally, the constructed preference pair will be
used to improve the policy model through DPO.

Note that we do not choose to generate both input and output test cases in a single step by prompting
LLMs, as Gu et al. (2024) have pointed out that, generating the test case output based given input
is a challenging task, which requires strong reasoning capabilities of LLMs. Also note that the
single-test-case pseudo feedback described earlier is essentially equivalent to multi-test-case method
feedback with number of test cases equals to one and the input test case is empty.

3.2.2 PSEUDO FEEDBACK FROM SELF-CONSISTENCY

Methods above leverage frontier LLMs to create pseudo feedback. We can alternatively create feed-
back from our own policy model πθ to facilitate self-improvement without external guidance. We
start from the method for the multi-test-case reasoning tasks, since the single-test-case counterpart is
a special case of it. Specifically, we re-use the input test cases generated in Step 1 (Section 3.2.1).
The main difference starts from Step 2. In the second step, we use our policy model πθ to sample
pseudo solutions. The pseudo output in the third step is also based on executing all pseudo solutions
from our policy model πθ. We can apply the same process to single-test-case reasoning tasks such
as mathematical reasoning, which is equivalent to using majority voted answer from πθ samples as
pseudo feedback. We can again use Equation 1 to verify the correctness of solutions from πθ.

3.2.3 PREFERENCE LEARNING UNDER PSEUDO FEEDBACK

Given the problem x and the pseudo feedback (i.e., test cases) T ′ we have created, the preference
optimization process is as follows. We first sample N solutions Y = {y1, y2, . . . , yN} to problem
x from our policy πθ. We then obtain our verification results R = {r1, r2, . . . , rN} using Equation
1 (i.e., executing all solutions on all test cases). We then move to create preference pairs using a
different method as in Equation 2:

Po = {(yw, yl)|rw ≥ ϵ, rw − rl > σ, rw ∈ R, rl ∈ R} (6)

where ϵ and σ are two hyper-parameters controlling the quality lower-bound of positive samples
and the margin, respectively. Because our pseudo test cases may contains errors and if a solution
yk is required to pass all test cases, we may end up with no positive solutions for problem x. As a
result, if a solution passes enough tests (rw ≥ ϵ) and significantly more tests than another solution
(rw − rl > σ), we treat them ((yw, yl)) as an eligible preference pair.

The above preference pairs in Po are based on outcome feedback of test cases. Recent studies (Wang
et al., 2024a; Jiao et al., 2024) demonstrate that the outcome feedback can be used to estimate the
expected returns of intermediate reasoning steps, which can help the model produce better reasoning
trajectory. Motivated from this, we also construct the step-level process preference data. Following
pDPO (Jiao et al., 2024), given the solution prefix ŷ, we employ the same policy model to sample
M completions following ŷ, and treat the averaged outcome feedback r̂ of the completions as the
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expected returns of ŷ.
r̂ = Ey∼πθ(·|x,ŷ) r(ŷ ◦ y) (7)

where ◦ is the concatenation operator. After that, the process preference data can be defined as:

Ps = {(ŷw, ŷl)|r̂w ≥ ϵ, r̂w − r̂l > σ, r̂w ∈ R, r̂l ∈ R} (8)

The final preference data we use is a combination of the outcome and process preference datasets
P = Po

⋃
Ps. We use the DPO objective (Equation 3) to optimize the policy model πθ.

Iterative Training PFPO can be applied after the supervised fine-tuning (SFT) stage and we
can train the policy model iteratively with both the feedback from frontier LLMs and from self-
consistency. Imperially, we find applying LLM feedback first and then followed by self-consistency
feedback rather than the opposite achieves better results. Figure 2 illustrates the process of single
step.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Prompt Collection For mathematical reasoning, we followed Tang et al. (2024) to create 800K
prompts under the help of GPT-4o. 500K of them are paired with one solution written by GPT-
4o to construct pseudo feedback from frontier LLM. The 500K data is named as MathScale-500K,
and the other prompts are called MathScale-300K. We also filtered out around 790K prompts from
NuminaMath 3 by removing those that we cannot extract the predicted answers from or having
appeared in the test set of MATH. For validation, we randomly sampled 2,000 question-solution
pairs from the training set of MWPBench (Tang et al., 2024) after removing the questions from
GSM8K (Cobbe et al., 2021a).

For code generation, we have collected the problems from the training set of APPs (Hendrycks et al.,
2021a), Magicoder (Wei et al., 2024) and xCodeEval (Khan et al., 2024b), which contains 5,000,
9,000 and 6,400 questions, respectively. We remove all prompts where the test case inputs are failed
to be synthesized. We randomly sampled 500 questions from the training set of APPs for validation.
For APPs and xCodeEval, we use GPT-4o to generate the test case inputs. For Magicoder, we
employ Mistral-Large-Instruct-2407 4 for test case inputs generation, because of large size of the
original magicoder dataset. The detailed prompt can be found in Appendix C.1.

Evaluation For mathematical reasoning, the performance is evaluated on the test set of
MATH (Hendrycks et al., 2021b), GSM8K (Cobbe et al., 2021a), and College Math (Tang et al.,
2024) by Accuracy. For code generation, we evaluate the models on HumanEval (Chen et al.,
2021a), MBPP (sanitized version) (Austin et al., 2021), APPs (Hendrycks et al., 2021a), and Live-
CodeBench (Jain et al., 2024) by Pass@1. Without specific clarification, all evaluations are con-
ducted using zero-shot prompting and greedy decoding.

For simplicity, we only highlight the main results our method. For more details include the detailed
source of prompts, from which checkpoints are the models initialized, please refer to Appendix A.
All hyper-parameters for different experiments can be found in Appendix B.

4.2 EXPERIMENTAL RESULTS

4.2.1 MATHEMATICAL REASONING

We took two models for experiments: Llama-3.1-8B-base (Dubey et al., 2024) and Mathstral-7B-
v0.1. We first conducted SFT on 500K MathScale data with GPT-4o annotation, followed by our
method, with GPT-4o generated labels as pseudo feedback. As shown in Table 1, the pseudo feed-
back from GPT-4o can achieve consistent improvements on Llama-3.1-8b-base and Mathstral-7B.
On MATH and College MATH, PFPO-LLM have made 1.2 and 4.1 averaged aboslute improve-
ments compared with Llama-3.1-8b w/ SFT and Mathstral-7B w/ SFT, respectively.

3https://huggingface.co/datasets/AI-MO/NuminaMath-CoT
4https://huggingface.co/mistralai/Mistral-Large-Instruct-2407
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Table 1: Overall results on mathematical reasoning benchmarks. PFPO-LLM refers to the training
phase employing the pseudo feedback from frontier model (GPT-4o), while PFPO-Self indicates
the phase using pseudo feedback constructed from self-generated solutions. NuminaMath-72B-CoT
is built on Qwen2-72B by fine-tuning on NuminaMath. †: Results are from Chan et al. (2024). We
employ an evaluation strategy similar to Yang et al. (2024b).

MATH GSM8K College Math
GPT-4o-2024-0512 78.7 95.8 46.7
GPT-4-Turbo-2024-0409 72.8 94.8 44.2
GPT-4-Turbo-1106-preview† 64.3 — —
GPT-4-0613 55.0 93.5 39.0
NuminaMath-72B-CoT (Beeching et al., 2024) 67.1 91.7 39.8
Llama-3.1-8B-Instruct (Dubey et al., 2024) 47.5 84.5 27.5
Llama-3.1-70B-Instruct (Dubey et al., 2024) 68.1 95.5 41.8
Llama-3.1-8B-base (Dubey et al., 2024) 20.3 (4-shot) 56.7 (8-shot) 20.1 (4-shot)

w/ SFT 53.8 85.1 34.6
w/ PFPO-LLM Iter. 0 55.0 86.6 35.8
w/ PFPO-Self Iter. 1 55.9 87.6 36.6
w/ PFPO-Self Iter. 2 56.6 88.9 37.0
w/ PFPO-Self Iter. 3 57.0 88.8 36.7
w/ PFPO-Self Iter. 4 57.4 89.1 37.6
w/ PFPO-Self Iter. 5 57.8 89.6 38.0

Mathstral-7B-v0.1 (Mistral AI Team, 2024b) 58.3 85.6 34.3
w/ SFT 61.4 87.3 38.4

w/ PFPO-LLM Iter. 0 66.7 90.0 41.3
w/ PFPO-Self Iter. 1 67.8 90.8 42.0
w/ PFPO-Self Iter. 2 68.6 90.3 42.2
w/ PFPO-Self Iter. 3 68.2 90.4 42.3

At the second phase, we started iterative pDPO training on unseen prompts with self-consistency-
based pseudo feedback. For Llama-3.1-8b, we used the prompts from NuminaMath-790K to syn-
thesize solutions and construct pseudo feedback via self-consistency. The prompts are divided into
non-overlapped splits for iterative training. As shown in the table, by employing pseudo feed-
back, the models achieve continuous improvements across different iterations. Specifically, our
method achieves the best results at Iteration 5. Compared with Llama-3.1-8b w/ PFPO-LLM Iter.
0, it achieves consistent improvements with 2.8 on MATH, 3.0 on GSM8K, as well 2.2 on Col-
lege Math, revealing the potential of iterative preference optimization via pseudo feedback from
self-consistency.

For Mathstral-7B, we use the prompts in MathScale-300K for iterative training with pseudo feed-
back, since we did not observe improvements on NuminaMath. The prompts across different
iterations are the same. As shown in the table, Mathstral-7B w/ PFPO-Self Iter. 2 achieves
1.9 absolute improvements on MATH, compared with the SFT model. And it can outperform
the stronger counterparts like NuminaMath-72B-CoT5, Llama-3.1-70B-Instruct, and GPT-4-Turbo-
1106-preview, with only 7B parameters, which have demonstrated the effectiveness of pseudo feed-
back. Besides, we find the performance will saturate after several iterations. We discuss the possible
reasons in Appendix A.2.

4.2.2 CODE GENERATION

For code generation, we selected Deepseek-coder-7B-v1.5-Instruct (Guo et al., 2024) for experi-
ments. We first use GPT-4o to generate 11 program solutions for each question in the APPs training
set, and use the ground-truth test cases to remove those having failed tests. The left solutions are
kept to first fine-tune the base model. The resulted model is referred as w/ SFT (APPs).

Direct Preference Optimization via Test Case Execution Feedback As described in Sec-
tion 3.2.2, we have constructed preference dataset via executing the generated programs over real or
synthetic test cases. The evaluation results are shown in Table 2 and 3.

5https://huggingface.co/AI-MO/NuminaMath-72B-CoT
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Table 2: Overall results (Pass@1) on program generation benchmarks. PFPO-Self refers to our
training from pseudo feedback method, and the content in the brackets afterwards indicates the
source of prompts. Specifically, M.C. refers to the prompt set of Magicoder (Wei et al., 2024), and
xCode. is the short for xCodeEval (Khan et al., 2024b). Introductory, Interview, and Competition
indicate the three difficulty levels of APPs. w/ (p)DPO (APPs) refers to that the execution feedback
is synthesized based on the groundtruth test cases annotated in APPs training set.

APPs
HumanEval MBPP

Overall Introductory Interview Competition
GPT-4-0613 35.1 61.8 34.4 10.6 87.8 82.1
GPT-4o-2024-0513 34.0 56.6 32.2 16.7 93.3 87.2
Llama-3.1-8B-Instruct (Dubey et al., 2024) 11.5 29.4 8.5 2.7 72.6 71.2
Llama-3.1-70B-Instruct (Dubey et al., 2024) 24.9 51.8 21.3 9.1 80.5 83.3
Codestral-22B-V0.1 (Mistral AI Team, 2024a) 20.3 45.2 16.9 5.8 81.1 78.2
CodeQwen1.5-7B-chat (Qwen Team, 2024) 8.6 24.1 16.8 2.0 85.6 80.5
Qwen2.5-Coder-7B-Instruct (Hui et al., 2024) 15.7 37.3 12.3 4.1 85.4 86.0
Deepseek-coder-33B-Instruct (Guo et al., 2024) 18.4 44.2 14.5 4.4 77.4 79.0
Deepseek-coder-v1.5-Instruct 14.3 35.7 10.8 3.2 75.6 73.9
w/ SFT (APPs) 15.4 37.8 11.6 4.1 72.0 72.8
w/ DPO (APPs) 16.3 36.2 13.3 5.3 74.4 74.3
w/ pDPO (APPs) 16.9 37.3 13.8 6.1 73.8 73.2
w/ PFPO-LLM Iter. 0 (APPs) 17.9 38.3 14.7 7.1 73.8 75.9
w/ PFPO-Self Iter. 0 (APPs) 17.4 37.5 14.8 5.4 73.2 75.1
w/ PFPO-Self Iter. 1 (APPs & M.C.) 18.0 39.2 14.9 6.2 79.3 75.5
w/ PFPO-Self Iter. 2 (APPs & M.C. & xCode.) 19.1 40.9 15.9 6.9 73.8 75.1

Table 3: Overall results on LiveCodeBench. We follow the recommended setting by sampling 10
solutions for each problem with temperature as 0.2, and estimating the Pass@1 results. The cutoff
date of the test questions is from 2023-09-01 to 2024-09-01. All results except those of our models
are referenced from the official leaderboard ( https://livecodebench.github.io/).

Overall Easy Medium Hard
Claude-3.5-Sonnet 51.3 87.2 45.3 11.0
Claude-3-Sonnet 26.9 67.2 7.3 1.4
Claude-3-Haiku 24.0 61.3 5.5 0.9
GPT-3.5-Turbo-0125 24.0 55.0 11.6 0.3
Llama-3.1-70B-Instruct (Dubey et al., 2024) 31.8 67.9 17.3 4.1
Llama-3-70B-Instruct (Dubey et al., 2024) 27.4 59.4 15.6 1.3
CodeQwen1.5-7B-Chat (Qwen Team, 2024) 16.8 35.9 10.9 0.3
DeepSeekCoder-V2-236B (DeepSeek-AI et al., 2024) 41.9 79.9 32.0 4.9
Deepseek-Coder-33B-Instruct (Guo et al., 2024) 23.4 56.1 8.6 0.9
Deepseek-coder-7B-v1.5-Insturct 21.1 51.3 7.4 0.2

w/ SFT (APPs) 22.9 53.0 10.6 0.2
w/ DPO (APPs) 22.9 53.7 9.4 1.0
w/ pDPO (APPs) 22.9 55.0 8.1 1.3
w/ PFPO-LLM Iter. 0 (APPs) 24.0 56.8 9.3 1.4
w/ PFPO-Self Iter. 0 (APPs) 23.4 54.2 10.3 0.7
w/ PFPO-Self Iter. 1 (APPs & M.C.) 23.7 55.8 9.5 1.1
w/ PFPO-Self Iter. 2 (APPs & M.C. & xCode) 24.3 56.8 9.8 1.6

Table 4: The averaged number
of test cases of each problem in
the training set of APPs.

Avg. No. Original Synthetic
Training 5.16 9.95

First, we aim to discuss the effectiveness of fully synthetic test
cases, a topic that has not yet been extensively explored. We use
w/ DPO and w/ pDPO to denote methods utilizing ground truth
test cases to gather execution feedback, while PFPO-Self Iter.
0 (APPs) employs the same prompt set but simulates execution
feedback using pseudo test cases. From the results presented,
we observe that pseudo test cases outperform ground truth ones
in almost all benchmarks, with the exception of HumanEval. In
particular, PFPO-Self Iter. 0 leads both 0.5 absolute improvements on APPs and LiveCodeBench
compared with the groundtruth pDPO. This improvement is attributed to the potential of increasing
the number of synthetic test cases, thereby reducing the false positive rate associated with missing

8

https://livecodebench.github.io/leaderboard.html


Published as a conference paper at ICLR 2025

(a) (b) (c) (d)

Figure 3: (a) The Pass@1 performance of the test set of APPs of our model variant, w/ PFPO-
Self Iter. 2 (APPs & M.C. & xCode, DPO) under different strategies. G.D. indicates greedy de-
coding, S.C. is the short for self-consistency. We took the groundtruth test case inputs to execute
the programs sampled from our policy model. For each group of test case inputs, we employ self-
consistency across different programs to determine the pseudo outputs. For S.C. - P, we select one
of the programs matching the pseudo outputs for evaluation. For S.C. - T, we simply check whether
the pseudo outputs are consistent with the ground-truth outputs, which indeed highlights an upper
bound of test case self-consistency, since sometimes we fail to select at least one solution matching
all the pseudo outputs. (b) - (d) We measure the top-1 frequency among the outputs and average
them by the number of test cases. The x-axis indicates the averaged top-1 frequency, and the y-axis
demonstrates the corresponding amount of data samples. The three figures show the relationships
on (b) all questions, (c) introductory-level questions, and (d) interview-level questions, respectively.

corner cases. As shown in Table 4, the questions in the APPs training set contain only 5.16 test cases
on average, whereas we can ensure that each problem has approximately 10 test cases.

Besides, by comparing w/ PFPO-LLM Iter. 0 (APPs) and w/ PFPO-Self Iter. 0 (APPs), we find that
the pseudo feedback generated by frontier LLM also demonstrates better results on code generation.
This is also reflected through the quality of synthetic test cases, and we have a deep analysis in
Appendix A.4.

Iterative Training Afterwards, we attempted to introduce more training data in an iterative man-
ner to see if the pseudo feedback can continuously enhance the performance. As shown in Table 2
and 3, after three rounds of training, PFPO-Self Iter. 2 has made 3.7 and 1.4 absolute improvements
on APPs and LiveCodeBench, respectively. We also observed more significant improvements on the
Easy and Hard level of LiveCodeBench, i.e., 3.8 and 1.4 absolute points, respectively. Besides, on
HumanEval and MBPP, we did not observe extra improvements after introducing xCodeEval. This
is probably because xCodeEval contains only standard input/output problems, which could lead to
distribution shift. The small scale of test cases and problems in HumanEval and MBPP also make
the evaluation not really stable.

4.3 RELATIONSHIP BETWEEN SELF-CONSISTENCY AND RELIABLE PSEUDO FEEDBACK

In this section, we will explore the impact of test-case-based self-consistency during inference for
coding. We sample 64 solutions for each problem in the APPs test set and apply self-consistency
over the provided test cases to select the final programs. Two strategies are developed within this
process: Self-Consistency for Programs (S.C. - P) and Self-Consistency for Test Cases (S.C. -
T). Following Section 3.2.2, we execute the sampled programs on the test case inputs annotated
by the dataset and determine the pseudo outputs for each group of inputs through majority voting.

First of all, we hope to evaluate the correctness of the self-consistency based pseudo outputs by
checking the consistency with the ground truth outputs. If this is true, we treat this question is
passed. This strategy is called S.C. - T. After that, we can check if there exists at lease one program
among the sampled solutions such that its outputs can match all the pseudo outputs, which is called
S.C. - P. In other words, for S.C. - T, we assume that there is such a program among the candidates
that can obtain the expected pseudo outputs, so we only care about if the pseudo outputs are as
expected. For S.C. - P, we also consider if such a program is included in the sampled solutions.
To this end, S.C. - T can be considered the upper bound of self-consistency, as there are cases
where no solution matches the pseudo outputs. As illustrated in Figure 3 (a), the test-case-based
self-consistency also makes significant improvements during test time. Besides, by continuously
sampling solutions against the pseudo outputs, the pass rate would be further improved.
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(b) w/ PFPO-4o Iter. 0 (c) w/ PFPO-Self Iter. 1 (d) w/ PFPO-Self Iter. 2(a) w/ SFT-4o 

Figure 4: Performance comparison of four Mathstral-7B variants by scaling inference

Besides, we also want to explore the reliance of self-consistency based pseudo feedback. From Fig-
ure 3 (b) to (d), we display the distribution of top-1 output frequency averaged by the number of test
cases, i.e., the confidence of the policy model, on overall, introductory-level, and interview-level
problems. We find that, self-consistency over test cases provide reliable pseudo feedback when dif-
ferent programs achieve high consistency rate. Although the margin between positive and negative
solutions is reduced with the increase of difficulty, by continuously improving the sampling budget,
the uncertainty can also be reduced. This may help to both control the difficulty of training set, and
lower down the possible inaccurate feedback. On mathematical reasoning, similar conclusion still
holds. Figure 5 demonstrates the accumulated ratio of corrected predictions with the development
of self-consistency-based prediction ratio among all candidate answers.

4.4 SCALING INFERENCE AND REWARD MODELING FROM PSEUDO FEEDBACK

Figure 5: The accumulated ratio of cor-
rect predictions over all questions. The
x-axis denotes the ratio of the top-1 fre-
quency among all predicted candidates,
i.e.,, the confidence for self-consistency.
Each point in the figure indicating how
many predictions are correct when the
confidence is lower than the x-value.

In this section, we increase the inference budget (Snell
et al., 2024) to assess how it further improves mathe-
matical reasoning. Specifically, we explore two strate-
gies: self-consistency and best-of-N weighted (Li et al.,
2023b). The reward model used for best-of-N weighted
is optimized on the same training set of Mathstral-7B w/
PFPO-Self Iter. 1, thus also benefiting from the pseudo
feedback derived from self-consistency.

The results in Figure 4 indicate that: (i) Scaling infer-
ence makes significant improvements, and employing an
extra reward model to score responses can bring more
benefits, especially when using smaller sampling bud-
get. (ii) Pseudo feedback can also enhance reward mod-
eling. (iii) As highlighted by Snell et al. (2024), com-
bining pseudo reward models with other inference tech-
niques (e.g., weighted best-of-N (Li et al., 2023b), look-
ahead search, and step-level beam search) may improve
performance. We leave the relevant exploration as future
work.

5 CONCLUSION

In this paper, we demonstrated the potential of synthesizing pseudo-feedback from both frontier
LLMs and the model itself. By incorporating feedback from GPT-4o, we improved Llama-3.1-8b-
base-SFT’s performance on the MATH from 53.8 to 55.0 and enhanced Mathstral-7B’s performance
from 61.4 to 66.7. Furthermore, by leveraging self-generated feedback based on self-consistency,
we increased Llama-3.1-8b’s performance to 57.8 and Mathstral-7B’s to 68.6. For code gener-
ation, we introduced a novel test case-level self-consistency strategy. By employing fully self-
constructed pseudo test cases, we boosted the SFT model’s performance from 15.4 to 19.1 on APPs
and from 22.9 to 24.3 on LiveCodeBench. Additionally, we analyzed the relationship between self-
consistency and reliance on synthetic pseudo labels, offering insights for future research. For future
work, we hope to combine the pseudo reward models with scaling inference techniques to seek more
improvements on more challenge scenarios.
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A MORE RESULTS AND ANALYSIS

We list detailed results, the source of training prompts, as well as some variants not presented in the
main content, in Table 9, 11, and 12.

A.1 COMPARISON BETWEEN DPO AND PDPO

From the results across different base models and tasks, we find that pDPO usually have signif-
icantly better results than DPO. The only exception appears on HumanEval and MBPP, which is
possibly due to the two benchmark does not require detailed reasoning process, and the mismatch in
distribution causes performance degradation.

A.2 VARIANTS OF ITERATIVE DPO TRAINING

In our experiments, we have employed several variants of Iterative DPO training for different con-
siderations. For NuminaMath-790K, collecting all prompts for single iteration of DPO training can
make it more challenging to avoid policy shifting, as pointed out by Xiong et al. (2024). To this
end, we split the whole dataset into several parts for iterative training. During each iteration, we
use around 160K prompts to collect solutions, construct pseudo feedback, and optimize the policy
model.

For MathScale-300K, since the dataset is much smaller, we use all prompts across different itera-
tions, and the process ends when we cannot observe significant improvements.

For code generation, we use a hybrid strategy. During each iteration, we introduce new dataset of
prompts to be mixed with the original prompts, and collect new solutions. The pseudo test cases are
also constructed based on the new solution programs. The reason is that we do not have too much
data but we also hope to approach on-policy training.

During each iteration, the reference model is initialized from the policy model in last iteration,
instead of the original base model.

A.3 EFFECT FROM THE AMOUNT OF SYNTHETIC TEST CASES

As shown in Table 2 and 3, PFPO-Self achieves even higher results than the model optimized on
ground-truth test cases. One possible reason behind this is we have synthesized more test cases for
self-consistency to reduce the false positive rate. To further verify this point, we down-sampled the
synthetic test cases to align with the number of ground truth test cases. Specifically, for each coding
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problem, if the synthesized test cases exceeded the number of ground truth test cases, we randomly
selected a subset of synthesized cases to match the number of ground truth test cases. Otherwise, all
synthetic test cases were retained.

As shown in Table 7, the results demonstrate that reducing the number of synthetic test cases sig-
nificantly decreases performance. This highlights the importance of scaling test cases for verifying
program correctness effectively.

A.4 QUALITY ANALYSIS OF SYNTHETIC TEST CASES

In this section, we will analyze the quality of the synthetic test cases. Specifically, for each question
in the APPs training set, we selected a ground-truth program to evaluate the synthetic test cases. A
synthetic test case is valid, if and only if given the test case input and its output matches the output
of the ground-truth program. We calculate the pass rate as metric, which represents the percentage
of valid test cases among the total generated. The results are shown in Table 8, where the Model
column denotes the model optimized by the pseudo feedback constructed from the corresponding
test cases.

From the table, we can conclude that: (1) The synthetic test cases constructed by the weaker policy
models has already demonstrate good quality. For example, 62.68% of the test cases for first round
training, i.e., PFPO-Self-Self Iter. 0 are correct. (2) Iterative training on fixed prompt set will
lead to overfitting. As the saturation of the quality of synthetic test cases, the policy model will
fail to collect more correct instances from the training set, and the model will thus stop learning.
(3) Pseudo feedback from frontier LLMs usually demonstrates better quality. We find that the test
cases synthesized from frontier LLM’s solutions achieve 82.41% pass rate. Yet, we find that PFPO-
LLM cannot outperform PFPO-Self Iter. 2, which is possibly due to less training data and the
off-policy optimization of DPO, and can be alleviated by more rounds of traininig.

A.5 ANALYSIS ABOUT PLATEAUED PERFORMANCE OVER ITERATIONS

As also observed by Xiong et al. (2024) and Chen et al. (2024a), iterative style DPO tends to saturate
after several iterations, regardless of whether the preference pairs are human labeled or synthetic.
We believe there are at least two reasons for the saturation. The first one (as mentioned in Ap-
pendix A.4) is the quality of synthetic test cases may plateau at some point. The second reason
could be that as the model improves with each iteration, more problems in the training set become
“too easy” for the model at its current stage. For extremely challenging problems where no correct
solution can be generated despite many attempts (sampling), we are unable to create valid prefer-
ence pairs and are thus unlikely to solve them in the next iteration. And the number of moderately
challenging problems, which are most effective for improving the model, gradually decreases after
each iteration.

One possible solution to this is introducing unseen problems in each iteration to increase the likeli-
hood of hitting new moderately challenging problems. In the third block of Table 1, we simulated
the above setting by introducing new problems across iterations. As detailed in Appendix A, we split
the NuminaMath dataset into five subsets of equal size and use a different subset for each iteration.
We observed consistent improvements across iterations (see w/ PFPO-Self Iter. 1 to 5 rows in Table
1). However, please note that applying the above method requires a significant amount of unseen
high-quality questions in that domain. Therefore, we cannot apply this strategy with “Mathstral-7B-
v0.1” based models (Mathstral-7B-v0.1 has been trained on Numina already) or in coding domain
(high quality prompts in coding domain is very limited). Finally, it is worth noting that our method’s
advantage lies in its scalability, as no additional human annotation for answers is required when
incorporating new problems.

A.6 PERFORMANCE ON MORE CHALLENGING DATASET

We also evaluated our performance on a subset of challenging math problems to explore whether
the iterative training procedure also makes continuous improvements.

For the dataset construction, we began by sampling 16 solutions generated by Mathstral-7B w/ SFT
on the MATH test set. We then identified questions for which the predicted answers, even after
applying majority voting, remained incorrect. This yielded a MATH-Challenging test set of 1,580
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questions. As shown in Table 10, the results indicate that our method can achieve improvements
even on challenging questions over iterations.

B HYPER-PARAMETERS

All hyper-parameters are listed in Table 5.

C PROMPTS

C.1 TEST CASE INPUTS GENERATION

The 2-shot prompt for test case inputs generation is shown in Figure 6, 7, and 8.

C.2 PROMPT FOR COMPETITION-LEVEL CODE GENERATION WITH RATIONALE

The 1-shot prompt for competition-level code generation is shown in Figure 9, 10, and 11. During
SFT, we remove the 1-shot example.

D MORE IMPLEMENTATION DETAILS ABOUT PDPO

Our own implementation of pDPO include the following steps: (1) Sample multiple solutions for
each problem from the policy model. (2) Supposing a non-empty line is a reasoning step, we sample
multiple prefixes for each solution following a fixed ratio, where each prefix is composed of several
continuous reasoning steps from the begining. If the prefix dataset is too large, we will control that
each problem will have fixed amount of prefixes. In most experiments, we will set the ratio as 30%
and choose the fixed amount in {8, 10, 20}, as shown in Table 5. (3) Take the prompt, problem, as
well as each solution prefix to compose new input, and sample 3 completions for it. (4) Estimate
the expected returns of each prefix by checking the results approached by the completions. (5) Here
is the main difference with the original implementation of pDPO (Jiao et al., 2024): The authors
choose to first sample small amount of prefixes as well as the estimated expected returns for training
another reward model, and use the reward model to annotate the complete solutions. This is to
reduce the computation resource usage. Instead, in this paper, we simply estimate expected returns
for all sampled solutions within given budget, and train the policy model on the prefixes (incomplete
solutions) via DPO directly.

E RESULTS OF DIFFERENT TRAINING ORDER

Table 6 compares the results of different training order. Assuming MathScale-300K and MathScale-
500K share similar difficulty, the results indicate that the better quality the training data has, the
earlier iteration it should be employed in.

F RELATED WORK

F.1 MATHEMATICAL REASONING

To enhance the model’s critical capability in mathematical reasoning, researchers have explored
various techniques to guide the reasoning process. These efforts include prompts engineering (Wei
et al., 2022), tool usage (He-Yueya et al., 2023; Chen et al., 2021b; 2022), process rewarding (Light-
man et al., 2024; Wang et al., 2024a; Jiao et al., 2024; Lai et al., 2024), and verifiers (Cobbe et al.,
2021b; Li et al., 2022a; Weng et al., 2022). In addition to improve frozen LLMs, researchers also
work on synthesizing math related data to fine-tune them (Yu et al., 2023; Luo et al., 2023; Mitra
et al., 2024; Yue et al., 2023).
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F.2 CODE GENERATION

Code generation has long been recognized as challenging due to data sparsity. The emergence of
LLMs (Guo et al., 2024; DeepSeek-AI et al., 2024; Nijkamp et al., 2023b;a; Zelikman et al., 2022;
Li et al., 2023a) pretrained on corpus including rich code has partially reduced this problem. Yet, it is
still far from enough due to the significant gap between code completion and programming to solve
complex problems. Li et al. (2022b) make earlier efforts towards competition-level code generation,
which is achieved by filtering solutions from large sampling space via example test cases. Wei et al.
(2024) propose to synthesize instruction tuning dataset for code generation via self-instruct (Wang
et al., 2023a). Besides, Le et al. (2022); Liu et al. (2023) and Dou et al. (2024) propose to use the
feedback from compiler and unit test to improve code generation through reinforcement learning.
However, these approaches still rely on human annotation to obtain test cases, and thus cannot
be scaled to large scale training. Dou et al. (2024) further employ the unit test based feedback for
process supervision. Weyssow et al. (2024) have constructed a preference dataset for code generation
annotated by GPT-3.5. Yet, the absence of test cases hinder it to be generally employed in on-policy
learning.

Table 5: The hyper-parameters used in our experiments. K - S.C. refers to the amount of sampled
solutions for each problem that are used to determine the pseudo label via self-consistency. Instead,
K - DPO indicates the amount of sampled solutions per question used for constructing preference
pairs. No. Prefix is the amount of sampled prefixes per question used for process DPO training.
There are two kinds of values for No. Prefix. The integers are the exact amount, while the percentage
indicates that we sampled the specific ratio of prefixes among all solutions for each problem. This is
used to address the problem of limited training data. β is the coefficient used in DPO training. α is
the weight for NLL loss. ϵ is the reward (feedback) lower bound of positive samples to control the
quality. For pDPO training, sometimes we use fraction to simply indicate the number of sampled
completions as well as the successful attempts. For example, 1

3 means that we sample 3 completions
for each prefix, and if there is at least 1 completion is successful, it is kept. σ is the margin to control
the gap between positive and negative samples.

Model K - S.C. K - DPO No. Prefix β α ϵ σ

Mathstral-7B w/ SFT

w/ DPO (M.S.-500k, Iter. 0) 10 10 — 0.5 0.2 1.0 0.0

w/ pDPO (M.S.-500k, Iter. 0) 10 — 10 0.1 0.2 2
3 0.0

w/ pDPO (M.S.-300k-S.C., Iter. 1) 10 10 10 0.5 1.0 1
3 0.0

w/ pDPO (M.S.-300k-S.C., Iter. 2) 10 10 10 0.5 1.0 1
3 0.0

Llama-3.1-8b w/ SFT

w/ DPO (M.S.-500k, Iter. 0) 10 10 — 0.5 0.2 1.0 0.0

w/ pDPO (M.S.-500k, Iter. 0) 10 10 10 0.5 0.2 1
3 0.0

w/ pDPO (Numina-S.C. 160k, Iter. 1) 16 — 8 0.5 0.2 1
3 0.0

w/ pDPO (Numina-S.C. 320k, Iter. 2) 16 16 8 0.5 1.0 1
3 0.0

w/ pDPO (Numina-S.C. 480k, Iter. 3) 16 — 8 0.5 1.0 1
3 0.0

w/ pDPO (Numina-S.C. 640k, Iter. 3) 16 — 8 0.6 0.2 1
3 0.0

w/ pDPO (Numina-S.C. 790k, Iter. 3) 16 — 32 0.6 0.2 2
3 0.0

Deepseek-coder-v1.5-chat w/ SFT

w/ DPO (APPs) 10 10 — 0.1 0.0 1.0 0.0

w/ pDPO (APPs) 10 — 30% 0.1 0.2 1
5 0.0

w/ DPO (APPs - S.C.) 10 10 — 0.1 0.0 0.5 0.6

w/ pDPO (APPs - S.C.) 10 — 30% 0.1 0.0 0.5 0.4

w/ DPO (APPs & M.C. - S.C.) 10 10 — 0.4 0.2 0.5 0.6

w/ DPO (APPs & M.C. & xCode. - S.C.) 10 10 — 0.4 0.2 0.5 0.6

w/ pDPO (APPs & M.C. & xCode. - S.C.) 10 10 10 0.5 0.2 0.5 0.4

w/ pDPO (APPs & M.C. - S.C.) 10 10 20 0.4 0.2 0.5 0.4
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Table 6: The experimental results of models trained via different orders. The prompt set for DPO
training keeps the same with the original setting, where PFPO-Self employs MathScale-300K and
PFPO-LLM takes MathScale-500K.

MATH GSM8K Colledge Math
Mathstral-7B-v0.1 58.3 85.6 34.3

w/ SFT-4o 61.4 87.3 38.4
w/ PFPO-LLM Iter. 0 66.7 90.0 41.3
w/ PFPO-Self Iter. 1 67.8 90.8 42.0
w/ PFPO-Self Iter. 0 64.6 89.8 39.4
w/ PFPO-LLM Iter. 1 65.2 89.1 39.3

Table 7: The experimental results exploring the influence by the amount of synthetic test cases.
w/ down-sampled synthetic test cases refers to the setting that we reduce the amount of synthetic
test cases to which is equal and less than the that of the ground-truth test cases annotated for each
problem in the training set of APPs.

APPs LiveCodeBench
DeepSeek-coder-v1.5-chat 14.3 21.1

w/ SFT 15.4 22.9
w/ golden test cases 16.9 22.9
w/ synthetic test cases 17.4 23.4
w/ down-sampled synthetic test cases 14.8 21.1

Table 8: The pass rate evaluated by executing the annotated ground-truth solution program on our
synthetic test cases. The Model column denotes the one using the corresponding test cases for
preference optimization.

Model Pass Rate
PFPO-LLM Iter. 0 (APPs) 82.41
PFPO-Self Iter. 0 (APPs) 62.68
PFPO-Self Iter. 1 (APPs & M.C.) 66.80
PFPO-Self Iter. 2 (APPs & M.C. & xCode.) 66.75
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Table 9: Overall results on mathematical reasoning benchmarks. The indentation across different
levels represents the corresponding model is initialized from the parent-level. M.S. refers to the short
of MathScale, and S.C. means Self-Consistency.

MATH GSM8K College Math
Llama-3.1-8B-base
w/ SFT (M.S.-500k) 53.8 85.1 34.6
w/ DPO (M.S.-500k) 53.8 86.0 35.1
w/ pDPO (M.S.-500k) 55.0 86.6 35.8

w/ pDPO (Numina-S.C. 160k) 55.9 87.6 36.6
w/ pDPO (Numina-S.C. 320k) 56.6 88.9 37.0
w/ pDPO (Numina-S.C. 480k) 57.0 88.8 36.7

w/ pDPO (Numina-S.C. 640k) 57.4 89.1 37.6
w/ pDPO (Numina-S.C. 790K) 57.8 89.6 38.0

Mathstral-7B-v0.1 58.3 85.6 34.3
w/ SFT (M.S.-500k) 61.4 87.3 38.4
w/ DPO (M.S.-500k) 63.0 88.6 39.1
w/ pDPO (M.S.-500k) 66.7 90.0 41.3

w/ pDPO (M.S.-300k-S.C., Iter. 0) 67.8 90.8 42.0
w/ pDPO (M.S.-300k-S.C., Iter. 1) 68.6 90.3 42.2
w/ pDPO (M.S.-300k-S.C., Iter. 2) 68.2 90.4 42.3

Table 10: The performance on the more challenging sub-test set of MATH, which is constructed
from the failed questions Mathstral-7B w/ SFT via Maj@16.

Mathstral-7B Greedy Decoding
w/ SFT 19.6

PFPO-LLM Iter. 0 23.6
PFPO-Self Iter. 1 24.6
PFPO-Self Iter. 2 26.7

Table 11: Overall results (Pass@1) on program generation benchmarks. M.C. refers to the prompt
set of Magicoder (Wei et al., 2024), and xCode. is the short for xCodeEval (Khan et al., 2024b).
Introductory, Interview, and Competition indicate the three difficulty levels of APPs. S.C. indicates
that the test cases used for constructing preference dataset are synthesized through self-consistency.
On the contrary, the row without S.C. refers that the test cases the golden ones from the original
dataset.

APPs
HumanEval MBPP

Overall Introductory Interview Competition

Deepseek-coder-v1.5-chat 14.3 35.7 10.8 3.2 75.6 73.9

w/ SFT (APPs - GPT-4o) 15.4 37.8 11.6 4.1 72.0 72.8

w/ DPO (APPs) 16.3 36.2 13.3 5.3 74.4 74.3

w/ pDPO (APPs) 16.9 37.3 13.8 6.1 73.8 73.2

w/ DPO (APPs - S.C.) 16.8 39.2 13.2 5.3 76.2 75.9

w/ pDPO (APPs - S.C.) 17.4 37.5 14.8 5.4 73.2 75.1

w/ DPO (APPs & M.C. - S.C.) 18.0 39.2 14.9 6.2 79.3 75.5

w/ DPO (APPs & M.C. & xCode. - S.C.) 19.2 42.2 15.8 6.5 75.0 74.2

w/ pDPO (APPs & M.C. & xCode. - S.C.) 19.1 40.9 15.9 6.9 73.8 75.1

w/ pDPO (APPs & M.C. - S.C.) 18.5 40.0 15.3 6.5 75.6 76.3
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Table 12: Overall results on LiveCodeBench. We follow the recommended setting by sampling 10
solutions for each problem with temperature as 0.2, and estimating the Pass@1 results. The cutoff
date of the test questions is from 2023-09-01 to 2024-09-01. All results except those of our models
are referenced from the official leaderboard.

Overall Easy Medium Hard

Claude-3.5-Sonnet 51.3 87.2 45.3 11.0

DeepSeekCoder-V2 41.9 79.9 32.0 4.9

Claude-3-Sonnet 26.9 67.2 7.3 1.4

Claude-3-Haiku 24.0 61.3 5.5 0.9

GPT-3.5-Turbo-0125 24.0 55.0 11.6 0.3

LLama-3-70b-Instruct 27.4 59.4 15.6 1.3

Deepseek-Coder-33b-Chat 23.4 56.1 8.6 0.9

Deepseek-coder-v1.5-chat 21.1 51.3 7.4 0.2

w/ SFT (APPs - GPT-4o) 22.9 53.0 10.6 0.2

w/ DPO (APPs) 22.9 53.7 9.4 1.0

w/ pDPO (APPs) 22.9 55.0 8.1 1.3

w/ DPO (APPs - S.C.) 24.2 55.7 11.0 0.8

w/ pDPO (APPs - S.C.) 23.4 54.2 10.3 0.7

w/ DPO (APPs & M.C. - S.C.) 23.7 55.8 9.5 1.1

w/ DPO (APPs & M.C. & xCode. - S.C.) 23.7 55.8 9.4 1.3

w/ pDPO (APPs & M.C. & xCode. - S.C.) 24.3 56.8 9.8 1.6
w/ pDPO (APPs & M.C. - S.C.) 24.6 56.9 11.4 0.2
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You are an expert programmer. Your task is to write some test cases to the programming problems to help verify 
the expected program solutions. You only need to give me the inputs in the required format. Now, let me 
introduce the details to you:

## Program Format

There will be two kinds of programming problems. One type of problem accepts standard input-output stream. 
As a result, the test case inputs should contain only the inputs text stream.

Another kind of problem is based on function calling, which shows a segment of starter code to illustrate the 
function head, defining the name of the arguments to be accepted. In this case, you should return me the inputs 
in the format of function callinåg, like `function_name(*arguments)`.

## Response Format

You should return me the test case inputs in `json_object` format. You need to generate **10** groups of test 
case inputs, and each key field is named as `test_case_i`, where `i` is the index of the test case. The value of each 
key is the test case inputs in the required format, which should be a string.

## Examples for Standard Input-Output and Function Calling.

### Standard Input-Output Stream

#### Programming Problem

Polycarp has $n$ different binary words. A word called binary if it contains only characters '0' and '1'. For 
example, these words are binary: "0001", "11", "0" and "0011100".

Polycarp wants to offer his set of $n$ binary words to play a game "words". In this game, players name words 
and each next word (starting from the second) must start with the last character of the previous word. The first 
word can be any. For example, these sequence of words can be named during the game: "0101", "1", "10", "00", 
"00001".

Word reversal is the operation of reversing the order of the characters. For example, the word "0111" after the 
reversal becomes "1110", the word "11010" after the reversal becomes "01011".

Probably, Polycarp has such a set of words that there is no way to put them in the order correspondent to the 
game rules. In this situation, he wants to reverse some words from his set so that:  the final set of $n$ words still 
contains different words (i.e. all words are unique);  there is a way to put all words of the final set of words in 
the order so that the final sequence of $n$ words is consistent with the game rules.

Polycarp wants to reverse minimal number of words. Please, help him.

-----Input-----

The first line of the input contains one integer $t$ ($1 \le t \le 10^4$) — the number of test cases in the input. 
Then $t$ test cases follow.

The first line of a test case contains one integer $n$ ($1 \le n \le 2\cdot10^5$) — the number of words in the 
Polycarp's set. Next $n$ lines contain these words. All of $n$ words aren't empty and contains only characters '0' 
and '1'. The sum of word lengths doesn't exceed $4\cdot10^6$. All words are different.

Guaranteed, that the sum of $n$ for all test cases in the input doesn't exceed $2\cdot10^5$. Also, guaranteed that 
the sum of word lengths for all test cases in the input doesn't exceed $4\cdot10^6$.

-----Output-----

Print answer for all of $t$ test cases in the order they appear.

Figure 6: 2-shot prompt for test case inputs generation. Page 1.
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If there is no answer for the test case, print -1. Otherwise, the first line of the output should contain $k$ ($0 \le k 
\le n$) — the minimal number of words in the set which should be reversed. The second line of the output 
should contain $k$ distinct integers — the indexes of the words in the set which should be reversed. Words are 
numerated from $1$ to $n$ in the order they appear. If $k=0$ you can skip this line (or you can print an empty 
line). If there are many answers you can print any of them.

-----Example-----
Input
4
4
0001
1000
0011
0111
3
010
101
0
2
00000
00001
4
01
001
0001
00001

Output
1
3
-1
0

2
1 2

#### Response

{
    "test_case_0": "3\n3\n101\n110\n011\n2\n01\n10\n4\n0001\n1000\n0011\n0111",
    "test_case_1": "2\n2\n01\n10\n3\n000\n111\n110",
    ...
}

### Function Calling

#### Programming Problem

Given a single positive integer x, we will write an expression of the form x (op1) x (op2) x (op3) x ... where each 
operator op1, op2, etc. is either addition, subtraction, multiplication, or division (+, -, *, or /).  For example, with 
x = 3, we might write 3 * 3 / 3 + 3 - 3 which is a value of 3.
When writing such an expression, we adhere to the following conventions:

The division operator (/) returns rational numbers.
There are no parentheses placed anywhere.
We use the usual order of operations: multiplication and division happens before addition and subtraction.
It's not allowed to use the unary negation operator (-).  For example, "x - x" is a valid expression as it only uses 
subtraction, but "-x + x" is not because it uses negation.

Figure 7: 2-shot prompt for test case inputs generation. Page 2.
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We would like to write an expression with the least number of operators such that the expression equals the 
given target.  Return the least number of operators used.

Example 1:
Input: x = 3, target = 19
Output: 5
Explanation: 3 * 3 + 3 * 3 + 3 / 3.  The expression contains 5 operations.

Example 2:

Input: x = 5, target = 501
Output: 8
Explanation: 5 * 5 * 5 * 5 - 5 * 5 * 5 + 5 / 5.  The expression contains 8 operations.

Example 3:
Input: x = 100, target = 100000000
Output: 3
Explanation: 100 * 100 * 100 * 100.  The expression contains 3 operations.

Note:

2 <= x <= 100
1 <= target <= 2 * 10^8

class Solution:
    def leastOpsExpressTarget(self, x: int, target: int) -> int:

#### Response

{
    "test_case_0": "leastOpsExpressTarget(3, 19)",
    "test_case_1": "leastOpsExpressTarget(3, 32)",
    "test_case_2": "leastOpsExpressTarget(6, 100)",
    ...
}

## Get Started

Note that in the above examples, I omit some test case inputs. You should return **10** groups of inputs to me 
in `json_object` format.

#### Programming Problem

[[Question]]

#### Response

Figure 8: 2-shot prompt for test case inputs generation. Page 3.
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You are an expert programmer. I will show you a programming problem. Please carefully comprehend the 
requirements in the problem, and write down the solution program to pass it under the given time and memory 
constraints.

**REMEMBER** to strictly follow the steps below to help reduce the potential flaws:
(1) According to the input scale and the time/memory constraints, think about the time complexity and space 
complexity of your solution.
(2) Think **step-by-step** to design the algorithm.
(3) Translate your thoughts into Python program to solve it.

Besides, your Python solution program should be located between <BEGIN> and <END> tags:
<BEGIN>
t = int(input())
...
print(ans)
<END>

Here is an example:

## Problem

You are given an array $a$ of length $n$ consisting of zeros. You perform $n$ actions with this array: during the 
$i$-th action, the following sequence of operations appears:  Choose the maximum by length subarray 
(continuous subsegment) consisting only of zeros, among all such segments choose the leftmost one;  Let this 
segment be $[l; r]$. If $r-l+1$ is odd (not divisible by $2$) then assign (set) $a[\frac{l+r}{2}] := i$ (where $i$ is 
the number of the current action), otherwise (if $r-l+1$ is even) assign (set) $a[\frac{l+r-1}{2}] := i$. 

Consider the array $a$ of length $5$ (initially $a=[0, 0, 0, 0, 0]$). Then it changes as follows:  Firstly, we 
choose the segment $[1; 5]$ and assign $a[3] := 1$, so $a$ becomes $[0, 0, 1, 0, 0]$;  then we choose the 
segment $[1; 2]$ and assign $a[1] := 2$, so $a$ becomes $[2, 0, 1, 0, 0]$;  then we choose the segment $[4; 5]$ 
and assign $a[4] := 3$, so $a$ becomes $[2, 0, 1, 3, 0]$;  then we choose the segment $[2; 2]$ and assign $a[2] 
:= 4$, so $a$ becomes $[2, 4, 1, 3, 0]$;  and at last we choose the segment $[5; 5]$ and assign $a[5] := 5$, so 
$a$ becomes $[2, 4, 1, 3, 5]$. 

Your task is to find the array $a$ of length $n$ after performing all $n$ actions. Note that the answer exists and 
unique.

You have to answer $t$ independent test cases.

-----Input-----

The first line of the input contains one integer $t$ ($1 \le t \le 10^4$) — the number of test cases. Then $t$ test 
cases follow.

The only line of the test case contains one integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the length of $a$.

It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 
10^5$).

-----Output-----

For each test case, print the answer — the array $a$ of length $n$ after performing $n$ actions described in the 
problem statement. Note that the answer exists and unique.

Figure 9: 1-shot competition-level code generation prompt. When being applied to SFT, the 1-shot
example is removed. Page 1.
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If there is no answer for the test case, print -1. Otherwise, the first line of the output should contain $k$ ($0 \le k 
\le n$) — the minimal number of words in the set which should be reversed. The second line of the output 
should contain $k$ distinct integers — the indexes of the words in the set which should be reversed. Words are 
numerated from $1$ to $n$ in the order they appear. If $k=0$ you can skip this line (or you can print an empty 
line). If there are many answers you can print any of them.

-----Example-----
Input
4
4
0001
1000
0011
0111
3
010
101
0
2
00000
00001
4
01
001
0001
00001

Output
1
3
-1
0

2
1 2

#### Response

{
    "test_case_0": "3\n3\n101\n110\n011\n2\n01\n10\n4\n0001\n1000\n0011\n0111",
    "test_case_1": "2\n2\n01\n10\n3\n000\n111\n110",
    ...
}

### Function Calling

#### Programming Problem

Given a single positive integer x, we will write an expression of the form x (op1) x (op2) x (op3) x ... where each 
operator op1, op2, etc. is either addition, subtraction, multiplication, or division (+, -, *, or /).  For example, with 
x = 3, we might write 3 * 3 / 3 + 3 - 3 which is a value of 3.
When writing such an expression, we adhere to the following conventions:

The division operator (/) returns rational numbers.
There are no parentheses placed anywhere.
We use the usual order of operations: multiplication and division happens before addition and subtraction.
It's not allowed to use the unary negation operator (-).  For example, "x - x" is a valid expression as it only uses 
subtraction, but "-x + x" is not because it uses negation.

Figure 10: 1-shot competition-level code generation prompt. When being applied to SFT, the 1-shot
example is removed. Page 2.
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We would like to write an expression with the least number of operators such that the expression equals the 
given target.  Return the least number of operators used.

Example 1:
Input: x = 3, target = 19
Output: 5
Explanation: 3 * 3 + 3 * 3 + 3 / 3.  The expression contains 5 operations.

Example 2:

Input: x = 5, target = 501
Output: 8
Explanation: 5 * 5 * 5 * 5 - 5 * 5 * 5 + 5 / 5.  The expression contains 8 operations.

Example 3:
Input: x = 100, target = 100000000
Output: 3
Explanation: 100 * 100 * 100 * 100.  The expression contains 3 operations.

Note:

2 <= x <= 100
1 <= target <= 2 * 10^8

class Solution:
    def leastOpsExpressTarget(self, x: int, target: int) -> int:

#### Response

{
    "test_case_0": "leastOpsExpressTarget(3, 19)",
    "test_case_1": "leastOpsExpressTarget(3, 32)",
    "test_case_2": "leastOpsExpressTarget(6, 100)",
    ...
}

## Get Started

Note that in the above examples, I omit some test case inputs. You should return **10** groups of inputs to me 
in `json_object` format.

#### Programming Problem

[[Question]]

#### Response

Figure 11: 1-shot competition-level code generation prompt. When being applied to SFT, the 1-shot
example is removed. Page 3.
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