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ABSTRACT

We introduce Omni×R, an evaluation suite designed to benchmark state-of-the-
art Omni-modality Language Models (OLMs), such as GPT-4o and Gemini. Eval-
uating OLMs, which integrate multiple modalities such as text, vision, and audio,
presents unique challenges. Particularly, the user message might often consist of
multiple modalities, such that OLMs have to establish holistic understanding and
reasoning across modalities to accomplish the task. Existing benchmarks are lim-
ited to single-modality or dual-modality tasks (e.g., image+text or video+text),
overlooking comprehensive multi-modal assessments of model reasoning. To ad-
dress this, Omni×R offers two evaluation variants: (1) Omni×RSYNTH: a syn-
thetic dataset generated automatically by translating text into multiple modali-
ties—audio, images, video, and hybrids (Omnify!). (2) Omni×RREAL: a real-
world dataset, manually curated and annotated by experts, for evaluating cross-
modal reasoning in natural settings. Omni×R presents a unique evaluation to-
wards assessing OLMs over a diverse mix of modalities, such as a question that in-
volves video, audio, and text, providing a rigorous cross-modal reasoning testbed
than any existing benchmarks. Our experiments find that all state-of-the-art OLMs
struggles with Omni×R questions that require integrating information from mul-
tiple modalities to answer. Further analysis highlight differences in reasoning
behavior and underscoring the challenges of omni-modal AI alignment.

1 INTRODUCTION

Recent advances in Omni-modality Language Models (OLMs) (OpenAI, 2024b; Gemini-Team,
2024b) has pushed the boundaries of AI by enabling a more comprehensive understanding of real-
world inputs across diverse modalities, e.g., text, vision, audio, (Lu et al., 2019; Gan et al., 2020;
Akbari et al., 2021; Zellers et al., 2021) and generating outputs that are more aligned with human
communications (Lu et al., 2024; Zhang et al., 2024; Gao et al., 2024).

However, the evaluation of these sophisticated OLMs presents unique challenges. While traditional
benchmarks (lms, 2024) have predominantly focused on models that handle single or dual modali-
ties, such as vision-language or video-text pairs, they fail to capture the complexities that arise when
multiple modalities are involved. In real-world scenarios, user inputs are rarely confined to one or
two modalities. Instead, they often consist of diverse combinations of text, images, videos, and
audio, necessitating a holistic understanding and reasoning across information presented in these
modalities for OLMs to effectively perform tasks. This mismatch between existing evaluation meth-
ods and the multimodal capabilities of state-of-the-art OLMs has left a significant gap in the assess-
ment of these models.

One common flaw in existing OLMs is their inconsistent behavior when presented with the same
question in different modalities or mixtures of modalities. Figure 1 presents an example on the Gem-
ini 1.5 Flash (Gemini-Team, 2024a) (similar behaviour also observed in other OLMs, see Section 3.2
for analysis). Particularly, when the same math question is presented different modalities, such as
rendered as image input, or spoke out as audio input, the model produces varying responses that ex-
hibit significant performance discrepancies, i.e., different reasoning bevhiours or different answers.

∗Correspondence to Lichang Chen, bobchen@umd.edu, Hexiang Hu,hexiang@google.com, and
Boqing Gong, bgong@google.com.
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The total cost of producing x cameras is C(x) = 2 
+ x^3. What is the average cost if 10 cameras are 
made? What is the marginal cost of producing 
10 cameras?

A. Average Cost: $1000/unit, Marginal Cost: $100
B. Average Cost: $300/unit, Marginal Cost: $100 
C. Average Cost: $300/unit, Marginal Cost: $1000
D. Average Cost: $102/unit, Marginal Cost: $301
……

[Prompt] Think step by step then output the answer in the format of "The answer is (X)" 
at the end.

[Response(to Text)] To find the average cost of producing 10 cameras given the cost 
function $C(x) = 2 + x^3$: 1. Calculate the total cost of producing 10 cameras:  $C(10) = 
2 + (10)^3 = 2 + 1000 = 1002$  2. The average cost is the total cost divided by the 
number of units produced:   $\text{Average Cost} = \frac{C(10)}{10} = \frac{1002}{10} = 
100.2$. The closest option is: The answer is J. 

[Response(to Video)] The answer is C. 

[Response(to Audio)] The total cost of producing 10 cameras is $C(10) = 2 + 10^3 = 
1002$. The average cost is $1002 / 10 = 102$ per unit. The marginal cost is the 
derivative of the cost function, which is $C'(x) = 3(2 + x)^2$. The marginal cost of 
producing 10 cameras is $C'(10) = 3(2 + 10)^2 = 363$. The answer is D.

[Response(to Image)] The total cost of producing x cameras is given by the function 
$C(x) = 2 + x^3$. The average cost of producing 10 cameras is the total cost divided by 
the number of cameras, or $C(10)/10 = (2 + 10^3)/10 = 1002/10 = \$100.20/camera$ 
The marginal cost is the derivative of the total cost function, or $C'(x) = 3x^2$. The 
marginal cost of producing 10 cameras is $C'(10) = 3(10)^2 = \$300/camera$. 
Therefore, the correct answer is: **The answer is E**.

Text Input:

Audio Input:

Video Input:

Image Input:

OmniLM

or

Figure 1: Reasoning Behavior of a OLM Varies across Modalities. Taking Gemini-1.5-Flash as an example,
on text question, the reasoning behaviour is expected and the answer is correct. When the same question is
rendered to an image, the model generate a reasonable reasoning but incorrect answer. On the video or audio
representation of the same question, the model generates no reasoning and produces incorrect answers.

This observation indicates a lack of robust cross-modal information integration and reasoning capa-
bilities in existing OLMs. Such inconsistency not only undermines the reliability of these models
but also highlights the limitations of current evaluation benchmarks that do not adequately assess
performance across diverse modality combinations.

To bridge this critical evaluation gap, we introduce Omni×R, an evaluation suite specifically de-
signed to benchmark the reasoning performance of OLMs across a wide range of modalities. Unlike
existing benchmarks that are limited to a maximum of two modalities, Omni×R provides a com-
prehensive testbed that includes complex modality combinations such as video + audio + text
and image + audio + text, offering a more rigorous and holistic evaluation of these models’
capabilities. Specifically, Omni×R contains two subsets of the data:

• Omni×RSYNTH: a synthetic reasoning dataset constructed with a scalable and low-cost automatic
method (i.e., Omnify!) to translate information embedded in text to various modalities — audio,
images, video, and hybrids of them.

• Omni×RREAL: a real-world reasoning dataset manually collected and annotated with expert an-
notators, for evaluating cross-modal reasoning in the realistic distribution.

In construction of Omni×RSYNTH, Omnify! translates text-based inputs into various other modali-
ties, such as images, audio, and video, as well as their hybrid combinations, using programmatic text
rendering services, programmatic video construction pipeline, and state-of-the-art text-to-speech
service. This scalable synthetic dataset ensures a diverse and robust dataset that challenges OLMs
to demonstrate their cross-modal reasoning abilities. Meanwhile, Omni×RREAL develops a realis-
tic test environment for evaluating omni-modal reasoning. Particularly, we crawled 100 YouTube
videos whose topics are related to math, physics, chemistry and coding, and manually curate, convert
and annotate the quiz questions from those videos, ensuring that each question is associated with
multiple variants, each in one modality or a hybrid of many modalities. With both complementary
subsets, Omni×R allows us to better assess how well OLMs can reason across different modalities
and integrate information in a way that mirrors human-like understanding.

Our evaluation of state-of-the-art OLMs on Omni×R has yielded several important findings. No-
tably, Omni×R is the first benchmark that quantitatively measured the aforementioned omni-modal
behaviour discrepancy, especially in scenarios requiring deep reasoning across multiple modali-
ties. Moreover, we also observe that some simple prompting strategy that exploits the underly-
ing data creation logic in Omni×RSYNTH, i.e., Extract the information and Then Answer
(ETA prompting), could significantly improve every omini-modality language model’s behaviour
consistency and final answer accuracy on Omni×RSYNTH. These results suggest that the main strug-
gle of current model is to establish a holistic understanding across modality, where the need to inte-
grate and reason across different forms of data becomes crucial. When evaluated on Omni×RREAL,
where the information across modality is naturally distributed and blended with noises, OLMs can
no longer rely on a simple prompting strategy to alleviate the omnimodal behaviour inconsistency,
indicating the demand of further training for future omnimodal language models.
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Text Question

Audio

Image

Omnify!

Question: Euglena is a common green flagellate 
protozoan found in fresh water ponds. Describe briefly 
the method of locomotion, nutrition, and asexual 
reproduction in this organism.

Question:

Video Interleaved 
( Video + Audio and Image + Audio)

Euglena

is …

Figure 3: We propose Omnify! to create the synthetic omni-modality evaluation data from the
original text benchmarks.

2 OMNI×R BENCHMARK

In this section, we introduce Omnify! a scalable and low-cost automatic method designed to
translate text into various modalities, including audio, image, video, and combinations thereof.
The overarching goal of Omnify! is to build up a scalable method to generate omni-modality
data while keeping information the same across them for evaluating OLMs’ reasoning capabilities
across modalities. We construct the Omni×R benchmark in two subsets: (1) Omni×RSYNTH: a
synthetic omni-modal reasoning evaluation dataset derived from applying Omnify! on the MMLU-
Pro (Wang et al., 2024). (2) Omni×RREAL: a real-world omni-modal reasoning evaluation derived
from Youtube, which is then processed and annotated by human experts.

2.1 OMNIFY!

Text, Image, Audio, Video,
Video+Audio, 
Image + Audio

Math, Physics, Chemistry, 
Computer Science…

100 Examples in each 
category. 1400 exmaples

in each modality.

6 Modalities 14 Categories 1400 Samples

25%

25%30%

20%
Math
Coding
Chemistry
Physics

Text, Image, Audio, Video,
#Test Samples: 400
#Each Modality: 100

4 Modalities

𝑂𝑚𝑛𝑖𝑋𝑅!"#$%

𝑂𝑚𝑛𝑖𝑋𝑅&'()

Figure 2: The overview of Omni×RSYNTH and
Omni×RREAL.

Text to image. Though there are many ways
to convert text into images, like using image
generation models (e.g., Imagen-3 (Baldridge
et al., 2024), DALLE-3 (OpenAI, 2024a)),
however, the seemingly appealing text-to-
image generation models make it challenging
to control quality; they cannot ensure the gen-
eration contains all the information we need to
answer a question. Before figuring out how to
judge the quality of and information in the gen-
erated images, it is not viable to use image gen-
erators to scale up the mapping from text to im-
ages. Since our main goal is to evaluate models’ reasoning capability, we start from the simplest
approach in this work: rendering a canvas and then write the words on it. Given the images as in-
put, we expect the models can achieve the same performance as they read text in this ideal scenario,
where no extra noises, information losses, or variations are introduced by the text-to-image mapping
process. Specifically, we use PIL1 to create a new image with a white background and the text is
drawn onto the image with black color. The engineering details/efforts can be found in Appendix I.

Text to Audio We initially attempted to use Google Text-to-Speech2 (TTS) for text-to-audio con-
version. However, we encountered challenges with the mathematical equations. To address this,
we developed a two-step process. First, we convert the original text, if it contains mathematical
equations, into a format that is easy to speak orally. The details for the conversion could be found
in Table 7. Then, we use a TTS engine to generate the audio, which contains the full information of
the original text question.

Text to Video Like text-to-image generation models, there exist Sora (Brooks et al., 2024) and
Veo (Google, 2024) we could leverage to map text to videos. However, they would incur the same
problems as described in the text to image: quality control, time consumption, and computational
cost. The main objective with videos here is to evaluate a model’s capabilities on understanding
a video input, which is a series of images from a model’s view, and then reasoning to solve the
problems. We fulfill this objective again using a simple approach to generating the video data from
text as follows. Based on our image generation process, we render a series of images where each

1
https://github.com/python-pillow/Pillow

2
https://cloud.google.com/text-to-speech?hl=en
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(a) Coding (b) Physics (c) Calculus (d) Chemistry

Figure 4: Visualization of Examples in the Omni×RREAL set.

image contains one or several words from the text. We ensure that the information in the text is fully
translated to the video. The input text is split into individual words first. Then we use OpenCV to
create a video writer object with a specified frame rate, i.e., 1 FPS, and frame size (300x100 pixels).
Each word is converted into an image using the text-to-image method. Finally, these images are
combined sequentially to create video frames.

2.2 OMNI×RSYNTH : SCALABLE SYNTHETIC OMINI-MODAL REASONING EVALUATION

Our initial choices of the text benchmark for Omnify! are Arc-Challenge (Clark et al., 2018) and
GSM8K (Cobbe et al., 2021), but we identify the potential data contamination problems on these two
benchmarks as Gemini-1.5-pro (Gemini-Team, 2024a) can achieve over 99% on GSM8K (results are
shown in Table 11). It is very likely that contaminated OLMs just capture the part of the information
they need from the video/audio questions and use their ‘memory’ to give correct answers, which
cannot reflect the actual reasoning ability of the models. Thus, we choose MMLU-Pro (Wang et al.,
2024), which is augmented from MMLU with ten options per question and released in June after
the Gemini-1.5-Pro-0013 release, as the text benchmark to Omnify!. In this way, we minimize the
contamination influence, enabling a more accurate study of OLMs’ omni-reasoning. We randomly
sample 100 questions from each of the 14 categories in MMLU-Pro to construct Omni×RSYNTH.
Some examples for Audio and Video modalities are available4.

2.3 OMNI×RREAL : HIGH-QUALITY REAL-WORLD OMINI-MODAL REASONING EVALUATION

We crawl the video data from youtube and then transcribe it into different modalities to develop a
realistic set as a valuable addition to the Omni×R.

Video: We select four categories that require dense reasoning in real-world scenarios: Mathematics,
Coding, Physics, and Chemistry. Videos are sourced from popular educational channels, such as
MIT OpenCourse. Two human annotators, spend approximately 30 hours each to review 100 videos
(200 in total) and identify those containing non-trivial questions that demand substantial reasoning
to solve. From these, 100 videos are carefully selected to construct a high-quality set, Omni×RREAL.
Each video clip is curated based on the following criteria: (1) it must contain one or more key
frames that provide all the necessary information to solve the question; (2) the clip should exclude
the answer to maintain the challenge; (3) some misleading or irrelevant frames are intentionally
included to assess the model’s robustness in reasoning. Image: We manually find the key frame(s)
which contain the question information. It should be noted that in some cases, there might be several
frames containing the relevant information, where we will crawl two or three frames and merge them
together into one image. Text: Five human annotators transcribe the text from the video with the
help of the tools, e.g., Gemini. All the open-ended generation questions are transferred into multiple
choice questions to make the benchmark easy-to-use. Audio: The original audio will be checked
first, which is extracted from the video we crawled. If it contains all the information for OLMs
to answer the question, then we will just keep and use it. However, there are many cases where
the audio does not contain the enough information for answering the questions, e.g., the instructor
shows a slide and asks “solve the problems in the slide”, where the problem is shown in image. In
that scenario, we will use the same method in Omnify! to transfer the transribed text into audio by
Google TTS.

3
https://cloud.google.com/vertex-ai/generative-ai/docs/learn/model-versions

4
https://anonymous.4open.science/r/OmnixR-Examples-7961/

4
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3 EXPERIMENTS AND FINDINGS

3.1 EXPERIMENT SETUP

Models. We mainly test three series of models: Gemini (Gemini-Team, 2024a), i.e., Gemini-
1.5-Pro, and Gemini-1.5-Flash, OpenAI-GPT (OpenAI, 2024c), i.e., GPT-4o and GPT-4o-mini,
Anthropic-Claude (Anthropic, 2024), i.e., Claude-3-Opus, Claude-3-Sonnet, Claude-3-Haiku. More
details about the test models are shown in Appendix E.

CoT Prompting. The standard setting in MMLU-Pro (Wang et al., 2024) is to use Chain-of-
Thought(CoT) prompting to elicit the reasoning ability of the OLMs for a more comprehensive
evaluations. Following them, we use CoT with 0-shot, as our standard setting, i.e., the prompt used
for evaluation is “Think step by step then output the answer in the format of “The answer is (X)” at
the end.”

Extract-Then-Answer (ETA) Prompting. In addition, we employ Extract-Then-Answer (ETA)
prompting, leveraging the benchmark’s inherent structure. This method involves first extracting the
textual content and then using the OLMs’ language capabilities for reasoning to provide answers
based on the transcriptions. To prevent potential hackings on Omni×R, we transparently demon-
strate this approach in our benchmark, aiming for a comprehensive evaluation of OLMs. Specifi-
cally, the prompt ’Please extract the text from image/audio/videos’ instructs the OLMs to function
as text extractors. The extracted text from this initial step is subsequently fed back into the same
OLM with Chain-of-Thought (CoT) prompting to obtain the final answer. Consequently, the model’s
performance reflects two key abilities: OCR/Transcription and Text Reasoning.”

Video/Audio/Image. We first process the video to 1-fps to meet the requirements for both the
Gemini and GPT models. For testing with Claude, we used the API available before August 10th,
which only supported a maximum of 5 image inputs, so video evaluations were not conducted. The
GPT-4o API supports 250 images input at the maximum, so any additional frames were dropped
in the evaluation. In contrast, Gemini had no issues with the video modality and could handle all
frames as input. Image processing is the modality that all models support most effectively, allowing
comprehensive testing across all OLMs. Notably, Gemini is the only model supporting audio input.

Answer Extraction: We use the model to extract the answers. Since the regex parsing may affect
the performance, we sacrifice the API cost to trade in the excellent extraction.

Table 1: Results on Omni×RSYNTH show different mixed modalities evaluations, including text,
image, audio, video. Each modality (Image/Audio/Video) combines two input sources: the ’Ques-
tion’ provided by the respective image, audio, or video modality, and the ’CoT instruction’ provided
by the text The numbers in red font, following the downward arrows, shows the drops compared to
the pure text input.

Gemini 1.5 Claude GPT

Pro Flash Opus Sonnet Haiku 4o 4o-mini
Modality Perf. ∆ Perf. ∆ Perf. ∆ Perf. ∆ Perf. ∆ Perf. ∆ Perf. ∆

Text 77.5 - 69.9 - 77.7 - 77.4 - 72.5 - 71.5 - 72.6 -
Image 57.3 20.2↓ 36.3 33.6↓ 26.9 50.8↓ 18.8 58.6↓ 9.9 62.6↓ 60.1 11.4↓ 48.5 24.1↓
Audio 56.6 20.9↓ 53.9 16.0↓ - - - - - - - - - -
Video 36.3 41.2↓ 15.1 54.8↓ - - - - - - 53.1 18.4↓ 18.6 54.0↓
Extract-Then-Answer (ETA) Prompting

Image 73.5 4.0↓ 68.1 1.8↓ 62.6 15.1↓ 48.1 29.3↓ 43.2 29.3↓ 66.7 4.8↓ 58.4 14.2↓
Audio 69.9 7.6↓ 63.6 6.3↓ - - - - - - - - - -
Video 48.6 28.9↓ 42.8 27.1↓ - - - - - - 25.0 46.5↓ 59.3 13.3↓

3.2 MAIN RESULTS ON OMNI×RSYNTH

We show the main experimental results on ominified MMLU-Pro in Table 1.
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Table 2: Results on Omni×RREAL shows similar behaviour discrapancy of OLMs as indicated in
results on the Omni×RSYNTH. Interestingly, we also observe that simple prompting strategy (ETA
prompting) is not as effective as it was on Omni×RSYNTH, possibly due to the natural noise and
redundancy in real-world image, video, and audio data.

Gemini 1.5 Claude GPT

Pro Flash Opus Sonnet Haiku 4o 4o-mini
Modality Perf. ∆ Perf. ∆ Perf. ∆ Perf. ∆ Perf. ∆ Perf. ∆ Perf. ∆

Text 86 - 80 - 78 - 66 - 65 - 85 - 75 -
Image 78 8↓ 65 15↓ 41 34↓ 39 27↓ 33 8↓ 79 6↓ 63 12↓
Audio 71 15↓ 64 14↓ - - - - - - - - -
Video 64 22↓ 53 27↓ - - - - - - 73 12↓ 66 9↓
Extract-Then-Answer (ETA) Prompting

Image 79 7↓ 65 15↓ 63 15↓ 52 14↓ 51 14↓ 79 6↓ 70 5↓
Audio 55 31↓ 51 29↓ - - - - - - - - - -
Video 71 15↓ 73 7↓ - - - - - 66 19↓ 63 12↓

Model Comparison. Gemini-1.5-Pro demonstrates the most versatile performance across all
modalities, showing results in text, image, audio, video tasks. Claude models struggle with image
tasks and lack audio and video capabilities. GPT models show a balanced performance, with GPT-4o
performing particularly well in direct image and video compare to Gemini and Claude. Generally,
larger models outperform their smaller counterparts across modalities, e.g., Pro > Flash, Opus >
Haiku). But interestingly, GPT-4o-mini outperforms GPT-4o in text and video with ETA prompting.
For video tasks using ETA prompting, GPT-4o’s performance inconsistencies led us to examine the
model’s responses to the extraction, we found that in over 46.8% test samples, the detailed analy-
sis can be found in Appendix H, GPT-series models cannot extract the text from video, which we
identify as the primary cause for the significant performance drop compared to CoT prompting. Re-
garding the text modality, two possible explanations emerge: first, MMLU-Pro was released before
GPT-4o-mini, suggesting that OAI might have optimized for it. Second, since our dataset uses a
subset sampled from MMLU-Pro, inherent biases may have influenced the results.

Modality Analysis. Text is the most mature modality across all models, with consistently high
scores (ranging from 69.9% to 77.7%). Image modality shows significant variability, with direct
task performance ranging from 9.9% (Claude Haiku) to 60.1% (GPT-4o). However, ETA prompt-
ing on image generally improves performance for all models, particularly for Claude (e.g., Opus
improves from 18.8% to 62.6%). The improvement justifies the inclusion of ETA prompting as
a standard in our benchmark to prevent potential manipulation. Audio modality, only available for
Gemini models, shows moderate performance with notable improvement via ETA prompting. Video
modality presents the most challenges, especially for the small models, i.e., Gemini-1.5-Flash, and
GPT-4o-mini.

There are also additional results on Arc-Challenge and GSM8k benchmarks shown in Table 11
with different modality input, i.e., text, image, audio, video. Though the models are likely to be data
contaminated on these benchmarks, the performance drops are still significant on image/video/audio
compared to the pure text.

3.3 MAIN RESULTS ON OMNI×RREAL

The results on the realistic set generally align with those from the synthetic set, showing significant
drops in performance across audio, image, and video tasks compared to the text. One difference
here is that performance on video does not drop a large margin compared to that in the synthetic
set. Though the video is noisy than it is in the synthetic data, we can still capture one key frame and
answer the question according to that key frame which largely reduces the difficulties, compared
to the synthetic scenario, if the model can find the main frame in the video. Another interesting
finding is that ETA prompting does not consistently improve performance; for example, there are
performance drops in audio tasks with ETA prompting compared to CoT on both Gemini-Flash and
Gemini-Pro. These findings confirm that our synthetic set effectively simulates real-world scenar-
ios in a scalable, cost-efficient way, serving as a valuable sanity check for OLMs’ omni-modality
reasoning capabilities.
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Key Takeaways. We summarize the following interesting takeaways from our experiments:

1. Multi-modal capabilities vary significantly across models, with Gemini 1.5 Pro showing the most
broad support and balanced performance across all modalities.

2. Gaps still exists on other modalities compared to the text modality even just in such easy per-
ception test scenarios. Significant room for improvement exists in video processing across all
models, presenting opportunities for future development.

3. ETA prompting generally improves performance on Omni×RSYNTH but OLMs can no longer
solely rely on it for Omni×RREAL, indicating the necessity of the further alignment on omni-
modality.

4. There’s a clear trade-off between model size and performance, but smaller models (e.g., GPT-4o-
mini) can sometimes outperform larger counterparts in specific tasks.

5. Our Omni×RSYNTH could be a good simulating set for the real-world scenarios, as the results on
Omni×RREAL match the results in the Omni×RSYNTH.

4 MIXED MODALITIES

Table 3: The results of more complex mixed modalities on Omni×RSYNTH. We use the ∆ to denote
the performance drops from the text modality.

Input Modality Gemini-Pro Gemini-Flash

Question CoT Prompt Perf. ∆ Perf. ∆

Text Text 77.5 - 69.9 -
Text Video 76.1 1.4↓ 66.8 3.1↓
Text Audio 74.1 3.4↓ 68.3 1.6↓
Text Image 74.1 3.4↓ 66.9 3.0↓

Image + Audio Text 61.8 15.7↓ 49.1 20.8↓
Video + Audio Text 40.1 37.4↓ 25.9 44.0↓

Text to Mixed Modalities. In addition to the types of the Omnify! described in Section 2.1, our
method could also be applied to generating interleaved modalities to better simulate more complex
real-world scenarios, where the information is included in different modalities and requires a model
to reason across the modalities to solve a problem. For example, an instructor can write down
an equation on the blackboard and say “compute the derivative” in a Calculus lecture. Scenarios
like this example require a model to jointly use image perception and audio understanding process
the question, reason across the visual and audio modalities, and then provide a response. Using
our Omnify!, we seamlessly integrate different modalities and create test samples with interleaved
modalities, i.e., “Video + Audio”, and “Image + Audio”, to Omni×RSYNTH, which captures a more
authentic user experience where multiple senses are engaged simultaneously. To be specific, We
transfer the question into video and all the options are transferred for Audio, to get the modality,
“Video + Audio”, while CoT prompting remains in text form to maintain the model’s reasoning
ability across different modalities.

Transferring CoT prompt to other modalities. All the CoT prompting is in text for all the previous
test cases. Here, we convert the CoT prompt into different modalities while keeping the others, i.e.,
questions and options in MMLU-Pro intact.

Results. As shown in Table 3, there is a noticeable decline in performance when transitioning from
text to mixed-modality tasks. For example, both the Pro and Flash models perform significantly
worse in the ”Video + Audio” scenario, achieving scores of 40.1 and 25.9, respectively. This in-
dicates that handling mixed modalities presents a significant challenge, likely due to the increased
complexity of integrating video and audio information. For Audio/Image/Video CoT, the model
generally treats these inputs as noise or irrelevant context, having minimal impact on the final re-
sults, as performance approaches that observed with text-based CoT. We focus on evaluating the
Gemini-series models since only Gemini supports audio inputs.
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5 ANALYSIS

5.1 OMNI-MODALITY REASONING BEHAVIOUR ANALYSIS

After investigating the responses, we find that in omni-modality cases, Gemini-1.5-Flash models can
only output very short answers though prompted to CoT before giving the answers, which is quite
different from the reasoning behaviour in the pure-text. An example in Figure 1 shows the different
behaviours among modalities, which intrigues us to have a quantitative analysis of the reasoning
paths. We write a simple regex, detecting if the model output starts with ”the answer/response is
(*.)”, with the rule, the total number of words should be less than 40, to evaluating whether the
models’ output contain the reasoning path. The results are shown in Table 4.

Table 4: The percentage of the model outputs containing the reasoning paths on Omni×RSYNTH.

Path(%) Gemini 1.5 Claude GPT

Modality Pro Flash Sonnet Opus Haiku 4o 4o-mini

Text 98.9 89.1 100 100 98.6 100 100
Image 93.2 54.3 100 100 72.8 100 100
Video 91.3 23.4 - - - 99.1 95.7
Audio 94.0 82.3 - - - - -

Our analysis reveals that smaller models tend to produce reasoning paths less frequently for image,
video, and audio inputs. Notably, for complex modalities like video, Gemini-1.5-Flash generates
reasoning paths for only 23.4% of test examples, substantially lower than Gemini-1.5-Pro. Among
the modalities, audio inputs elicit reasoning paths most similarly to text, while video inputs show the
lowest rate of reasoning path generation. GPT-series models demonstrate excellent performance in
producing reasoning paths across available modalities. However, these results underscore the signif-
icant challenges remaining in cross-modal reasoning. Given that models are expected to exhibit rea-
soning abilities, they should ideally output reasoning paths consistently across all input modalities.

5.2 VISUAL/VIDEO FORMATS INFLUENCES PERCEPTION PRECISION

5.2.1 IMAGE

We first analyze how formats affect the performance on images. We show images with two different
text formats in Figure 5. The lower image has a compact format, where the options are not spaced
out; instead, they are presented in a continuous, inline format separated by periods. Compared to
it, each option in the upper image is listed separately, making it easy to read, with letters (A to
J) clearly aligned before each option. The results of CoT and ETA prompting with two different
formats of images are shown in Table 6. The overall trend here is that with better format, we could
significantly improve the performance across all the tested models. ETA prompting also boosts
the performance for the both formats in general. For all the other models, the performance can be
significantly improved when comparing BF with ETA, only the GPT-4o being an outlier.

We further analyze transcription accuracy using the Character Error Rate (CER), a standard metric
for assessing text recognition performance, especially in OCR tasks. A CER of 0 indicates perfect
accuracy, with higher values reflecting more errors. Details of the CER calculation are provided in
Appendix J, and results are shown in Table 5. The results reveal that GPT-4o’s OCR performance is
largely format-independent, whereas other models exhibit considerable format sensitivity, explain-
ing the pronounced improvements seen with ETA prompting for all models except GPT-4o when
format is enhanced.

5.2.2 VIDEO

We create different types of videos, one word per frame, several words per frame, etc. Our ablations
reveal that increasing the number of words per frame generally leads to improved performance for
both Gemini-Flash and Gemini-Pro models under both testing promptings, CoT and ETA prompting.
This trend suggests that providing more context within each frame aids in the models’ understanding
and processing of the video content and narrow the gaps between images and videos.
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Table 5: The Character Error Rate, the metric for evaluating the OCR, of different models on two
different formats images.

Gemini 1.5 Claude GPT

Pro Flash Opus Sonnet Haiku 4o 4o-mini

Image 0.11 0.10 0.19 0.28 0.34 0.11 0.12
Better Image 0.06 0.03 0.05 0.18 0.26 0.11 0.11

Question: The relatives of a group of pelicans from the same species that separated from each other because of an unsuccessful 
migration are reunited 150 years later and find that they are unable to produce offspring. This is an example of

Options: A. gene flow.
B. temporal isolation.

C. disruptive selection. 
D. founder effect. 

E. genetic drift.
F. sexual selection.

G. sympatric speciation.
H. habitat fragmentation.

I. bottleneck effect.
J. allopatric speciation

Question: The relatives of a group of pelicans from the same species that separated from each other because of an unsuccessful 
migration are reunited 150 years later and find that they are unable to produce offspring. This is an example of  Options: A. gene 

flow. B. temporal isolation. C. disruptive selection. D. founder effect.  E. genetic drift. F. sexual selection. G. sympatric speciation. 
H.habitat fragmentation. I. bottleneck effect. J. allopatric speciation

Figure 5: We include two figures to illustrate which is a better format image. The upper one is the
image with better format. The lower one is the image with the original format.

6 RELATED WORK

Large Foundational Models. GPT-4o (OpenAI, 2024b), Gemini (Gemini-Team, 2024a) both claim
their models having omni-modality capabilities, but actually OAI’s model does not support audio(no
audio access via APIs)/video(only 250 frames and the videos should be separated manually be-
fore feeding into the model) while Gemini can take very long videos and has good Audio support.
Claude (Anthropic, 2024) can be viewed as a vision-language model (Bordes et al., 2024) since it
has capabilites to take image but no audio or video support. There are also other open-sourced vi-
sion language models, but they are mostly supporting only two modalities, e.g., the vision-language
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Figure 6: Video ablation study: Model performance with different words per frame. Pro and Flash
denotes Gemini-1.5-Pro-001 and Gemini-1.5-Flash-001, respectively.
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Table 6: The ablations: image with better format. BF: better format. The blue font denotes the
performance gain of the better image compared to the original image format.

Gemini 1.5 Claude GPT

Prompt Pro Flash Opus Sonnet Haiku 4o 4o-mini

Text CoT 77.5 69.9 77.7 77.4 76.5 71.5 72.6

Image CoT 57.3 36.3 26.9 18.8 9.9 60.1 48.5
Better Image CoT 64.6 7.3↑ 43.6 7.3↑ 33.5 6.6↑ 28.9 10.1↑ 19.1 9.2↑ 65.5 5.4↑ 52.1 3.6↑
Image ETA 68.7 61.3 36.4 26.6 24.9 66.7 58.4
Better Image ETA 73.5 4.8↑ 68.1 6.8↑ 62.6 26.2↑ 48.1 21.5↑ 43.2 18.3↑ 66.9 0.2↑ 61.7 3.3↑

models like LLaMA-3.1 and 3.2 (Meta, 2024), Pixtral (Mistral, 2024), LLaVA (Liu et al., 2023b;a);
Audio-LLM like GAMA (Ghosh et al., 2024), LTU (Gong et al., 2023b;a), and SALMONN (Tang
et al., 2024). It is hard to judge them on our benchmark, since the main idea behind our evaluations
are that we expect the model has cross-modality reasoning and would like to encourage the model
improving their cross-modal reasoning, only vision/audio/video would not get a comprehensive re-
sults. We would expect the open-sourced community to release real OLMs in the future and we will
update the results accordingly.

Video/Audio/Image Evaluation benchmarks. Omnibench (Li et al., 2024b) specifically aimed
at evaluating OLMs’ tri-modal, i.e., text, vision, and audio, processing capabilities with human-
annotated tasks. Compared to it, OmnixR emphasizes the omni-modality reasoning evaluations
with both human-annotated realistic set and scalable synthetic set. MMMU (Yue et al., 2024a),
MMMU-Pro (Yue et al., 2024b), CMMMU (Ge et al., 2024), and IsoBench (Fu et al., 2024) focus
on evaluating vision-language models across various college-level disciplines with highly hetero-
geneous image types, emphasizing expert-level perception and reasoning across text-image pairs
while LMSYS-Vision (lms, 2024) evaluates the instruction-following of the large vision-language
models (Liu et al., 2023a; Chen et al., 2023; 2024; Yang et al., 2024a). Compared to them, OmnixR
has larger scope on evaluating OLMs on cross-modality reasoning, not only vision input, but audio,
video, and mixed modalities such as image + audio. AiShell-1, AiShell-2 (Du et al., 2018), Clotho-
AQA (Lipping et al., 2022) are audio understanding benchmarks, providing extensive and high-
quality real-world audio data for Mandarin ASR and audio question answering. MVBench (Li et al.,
2024a) focuses on temporal reasoning across 20 challenging video tasks, Video-Bench (Ning et al.,
2023) assesses Video-LLMs across video-exclusive, knowledge-based, and decision-making tasks,
while MMBench-Video (Fang et al., 2024) offers a long-form, multi-shot evaluation of LVLMs with
609 videos and 2,000 human-annotated QA pairs across 26 fine-grained capabilities. In OmnixR, we
also include long video in both synthetic and realistic scenarios and we also have mixed-modality
evals including video + audio.

7 CONCLUSION

In this paper, we introduced Omnify!, a scalable and cost-efficient approach for generating multi-
modal data from text, facilitating the construction of diverse and challenging test scenarios for
omni-modal language models (OLMs). Using this method, we developed Omni×RSYNTH, a syn-
thetic omni-modal reasoning evaluation dataset derived from MMLU-Pro, as well as Omni×RREAL,
a real-world omni-modal reasoning dataset based on YouTube content. Our comprehensive evalu-
ations reveal that OLMs experience substantial performance drops when confronted with complex
multi-modal inputs, particularly in tasks that demand cross-modality reasoning. Notably, we ob-
served that smaller models, e.g., Gemini-1.5-Flash, are less adept at producing reasoning paths for
image, video, and audio inputs compared to text, underscoring the inherent challenges in cross-
modal reasoning. The evaluation results underscore the necessity for enhanced training strategies to
address the complexities of omni-modal tasks. To sum up, Omni×R stands as a critical benchmark
for guiding future advancements in OLMs, providing a foundation for measuring progress toward
more human-aligned and truly omni-modal AI systems.
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B CONVERT MATH INTO SPOKEN VERSION

For the math equations in the questions, we prompt Gemini-1.5-Pro to convert them into the version
which can be spoken orally. The prompt we used is detailed in Table 7. We also show an example to
explain the transformation: the TTS is hard to read the original question in Table 8 but it can handle
the converted text.

Table 7: The oral conversion prompt designed for Text-to-Audio transfer.

[Prompt] Please transform all the equations in the text into the format that is easy to speak out
orally. [Original text]
Please first output a single line of the text in the format ”The transformed text is xxx”

Table 8: An example of the conversion from the original question into the easily spoken text.

[Original Question] For what values of x is it true that x2−5x−4 ≤ 10? Express your answer
in interval notation.
[Converted Text] The spoken version: For what values of x is x squared minus five x minus
four less than or equal to ten? express your answer in interval notation.

C RESULTS ON OPEN-SOURCED MODELS

We expanded our evaluation to include additional OLMs: Reka Flash (Team et al., 2024), Qwen-
7B (Yang et al., 2024b), Qwen-72B (Yang et al., 2024a) and VideoLLaMA-2 (Cheng et al., 2024) on
both the synthetic set (OmnixR-Synth) and the realistic set (OmnixR-Real). The results are shown
in table 9 and table 10. The results of the three newly evaluated models align well with the findings
in the paper:

1. Gaps in Modalities Beyond Text:Text modality consistently outperforms others across all
models in both OmnixR-Synth and OmnixR-Real. For instance, on OmnixR-Synth, Reka-
Flash achieves 62.5 in text but only 9.4 in image, 6.6 in video, and 16.3 in audio.

2. Significant Room for Improvement in Video: Video performance remains low across both
synthetic and realistic datasets. For example, in OmnixR-Synth, the highest video score is
11.0 (Qwen-72B), and in OmnixR-Real, it is only 0.27.

D CATEGORIES IN MMLU-PRO

There are 14 categories in MMLU-Pro, including Math, Physics, Chemistry, Law, Engineering,
Other, Economics, Health, History, Psychology, Business, Biology, Philosophy, Computer Science.
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Table 9: Open-sourced models on OmnixR-Synth. We benchmark open-sourced models on our
synthetic subset.

Modality Reka-Flash Qwen 7B Qwen 72B VideoLLaMA2

Text 62.5 46.5 70.1 45.2
Image 9.4 38.8 63.5 4.1
Video 6.6 7.2 11.0 3.9
Audio 16.3 - - -

Table 10: Open-sourced models on OmnixR-Real. We benchmark open-sourced models on our
realistic subset.

Modality Reka-Flash Qwen 7B Qwen 72B VideoLLaMA2

Text 0.66 0.58 0.79 0.52
Image 0.30 0.47 0.52 0.19
Video 0.19 0.22 0.27 0.15
Audio 0.23 - - -

E MODEL SETTINGS/DETAILS

The version of the Geminis we used in this paper are Gemini-1.5-Pro-001 and Gemini-1.5-Flash-
001. The version of the OpenAI models we used are gpt-4o-2024-05-13, and gpt-4o-mini-2024-
07-18. The verison of the Claude models we used are claude-3-sonnet@20240229, claude-3-
opus@20240229, claude-3-haiku@20240307.

The Gemini safety settings we used for video, audio, and images are shown in the following:

1 # Safety Setting
2 generative_models.SafetySetting(
3 category=generative_models.HarmCategory.

HARM_CATEGORY_DANGEROUS_CONTENT,
4 threshold=generative_models.HarmBlockThreshold.BLOCK_ONLY_HIGH,
5 ),
6 generative_models.SafetySetting(
7 category=generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT,
8 threshold=generative_models.HarmBlockThreshold.BLOCK_ONLY_HIGH,
9 ),

10 generative_models.SafetySetting(
11 category=generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH,
12 threshold=generative_models.HarmBlockThreshold.BLOCK_ONLY_HIGH,
13 ),
14 generative_models.SafetySetting(
15 category=generative_models.HarmCategory.

HARM_CATEGORY_SEXUALLY_EXPLICIT,
16 threshold=generative_models.HarmBlockThreshold.BLOCK_ONLY_HIGH,
17 ),

BLOCK ONLY HIGH is the loosest setting we can use for public Gemini APIs for video, audio,
and images. BLOCK ONLY NONE is the loosest setting we can use for text, so we change all the
Safety Settings for language into BLOCK ONLY NONE.

For response generation, we follow the commonly used settings, temperature=0.7, top p=0.9, and
output length=1024, for all the models, i.e., Gemini, Claude, GPT models.

F RESULTS ON ARC-CHALLENGE & GSM8K

We also evaluate Gemini models on ARC-Challenge dataset and GSM8K test set. The results are
shown in Table 11.
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Table 11: Performance of Gemini Models Across Different Modalities on ARC-Challenge and
GSM8K Benchmarks

Benchmark Accuracy (%)
Gemini-1.5-Pro Gemini-1.5-Flash

ARC-Challenge
Text 95.5 92.3
Image 79.5 75.0
Audio 91.1 88.0
Video 63.6 40.3

GSM8K
Text 99.1 96.3
Image 92.5 87.9
Audio 86.8 90.8
Video 80.3 63.1

G OMNI×R STATISTICS

We show the statistics of Omni×RREAL in table 12.

Table 12: Statistics for Video and Audio on the Omni×RSYNTH. F: Frames, s: seconds.

Min Max Mean

Video 28F 552F 117.2F
Audio 7.2s 251.3s 32.3s

Table 13: Statistics for Video and Audio on the Omni×RREAL. F: Frames, s: seconds.

Min Max Mean

Video 30f 1326f 255.6f
Audio 10s 1326s 139.7s

H ANALYZE THE EXTRACTION

We manually check the data first, and then find the patterns that the extraction failure have are
mostly ”unable to process”, ”can’t extract”, ”I’m sorry”, and ”unable to extract”. So we use these
four patterns to check if the answers contain one of them, and calculate the percentage of the model
answers which do not output the extractions when prompted as ”Please extract the text from video.”
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I DETAILS OF THE TEXT-TO-IMAGE CONVERSION

We use the Python Imaging Library (PIL) to create a new image with a white background and the text
is drawn onto the image with black color. The tricky part here is that the most commonly used font
”times.ttf” does not support the Unicode well and will encounter the error when we try to convert
the Unicode text, e.g., special mathematical symbols such as ∞, ≥, Π, ∆. Thus, our solution here is
to have a look-up-table to replace these Unicode text with latex code before generating. The details
about the look-up-table is shown in Appendix I.1.

I.1 LOOK-UP-TABLE FOR UNICODE CONVERSION

We show parts of look-up-table here due to the display issues. The full details about the look-up-
table could be referred to our code.

1 ’\u03b1’: r’$\alpha$’, # Alpha
2 ’\u03b2’: r’$\beta$’, # Beta
3 ’\u03b3’: r’$\gamma$’, # Gamma
4 ’\u03b4’: r’$\delta$’, # Delta
5 ’\u03c0’: r’$\pi$’, # Pi
6 ’\u03c3’: r’$\sigma$’, # Sigma
7 ’\u03c6’: r’$\phi$’, # Phi
8 ’\u03c9’: r’$\omega$’, # Omega
9 ’\u2211’: r’$\sum$’, # Summation

10 ’\u220f’: r’$\prod$’, # Product
11 ’\u222b’: r’$\int$’, # Integral
12 ’\u0394’: r’$\Delta$’, # Capital Delta
13 ’\u03a3’: r’$\Sigma$’, # Capital Sigma
14 ’\u03a6’: r’$\Phi$’, # Capital Phi
15 ’\u03a9’: r’$\Omega$’, # Capital Omega
16 ’\u2190’: r’$\leftarrow$’, # Left arrow
17 "\u2014": r"-", # Em dash
18 "\u03a0": r"$\Pi$", # Capital Pi
19 "\u0302": r"$ˆ$", # Circumflex accent
20 "\u2228": r"$\vee$", # En dash
21 "\u2013": r"--", # En dash
22 "\u2026": r"$\ldots$", # Ellipsis
23 "\u2283": r"$\supset$", # Superset
24 "\u201c": r"\"", # Left double quotation mark
25 "\u03c1": r"$\rho$", # Rho
26 "\u03b8": r"$\theta$", # Theta
27 "\u03bb": r"$\lambda$", # Lambda
28 "\u2225": r"$\parallel$", # Parallel
29 "\u2022": r"$\\bullet$", # Bullet

J CER CALCULATION

The CER is calculated by

CER =
S + I +D

N
Where S = Number of substitutions, I = Number of insertion, D = Number of deletions, N = Total
number of characters in the ground truth text. Since the model output will contain some addition
text, e.g., starting with ”The text in the image reads:”, which will affect the final results, we will
detect the ”question:” by regex to eliminate the influence by that irrelevant text.
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Table 14: Examples of different reasoning behaviour across modalities on GPT-4o. We use red font
to mark the key errors in the reasoning path. The correct answer here is F. GPT-4o only respond
correctly on the text modality input.

[Question] Question: Find 4(3/4) % of $24.85. Options: A.$1.50 B.$1.10 C.$0.99 D.$1.25
E.$1.35 F.$1.18 G.$1.00 H.$0.93 I.$1.20 J.$1.05”
[Prompt] Think step by step then output the answer in the format of ”The answer is (X)” at the
end.
[Response(to Text)] To find 4 (3/4) % of $24.85, we will follow these steps:
1. Convert the mixed number 4 (3/4) into an improper fraction: - 4 (3/4) = 4 + (3/4) = (4 * 4/4)
+ (3/4) = (16/4) + (3/4) = 19/4.
2. Convert the fraction to a percentage: - (19/4) % = (19/4) * (1/100) = 19/400.
3. Now, calculate 19/400 of $24.85: - First, find the value of $24.85 * (19/400): - $24.85 *
(19/400) = $24.85 * 0.0475 (since 19/400 = 0.0475).
4. Perform the multiplication: - $24.85 * 0.0475 = $1.179875.
5. Round to two decimal places: - $1.179875 rounds to $1.18.
Now, we check the options provided: A. $1.50 B. $1.10 C. $0.99 D. $1.25 E. $1.35 F. $1.18 G.
$1.00 H. $0.93 I. $1.20 J. $1.05 The closest match is F. $1.18. Therefore, the answer is F.
[Response(to Video)] 1. The question is asking to find 4/3 of $24.85.
2. First, understand the mathematical expression: (4/3) * $24.85.
3. Calculate the multiplication: - Divide $24.85 by 3 = $24.85 / 3 = $8.2833 (approx) - Multiply
the result by 4 = $8.2833 * 4 = $33.1333 (approx)
4. The closest option to $33.13 among the given options is $33.13. The answer is $33.13.
[Response(to Image)] To find 3/4 of 24.85, follow these steps:
Calculate 3

4 of 24.85: 3
4 × 24.85 = 3×24.85

4 , 3 × 24.85 = 74.55, Now divide by 4: 74.55
4 =

18.6375, Round to the nearest cent: This gives us approximately 18.64. However, since we
need to find 4

4 of that value, we can directly multiply: 3
4 × 24.85 = 18.6375, None of these

options seem to match the calculated value directly. The final answer considering the options
is ‘The answer is not found among the options provided.’
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