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ABSTRACT

Lifelong user behavior sequences are crucial for capturing user interests and pre-
dicting user responses in modern recommendation systems. A two-stage paradigm
is typically adopted to handle these long sequences: a subset of relevant behav-
iors is first searched from the original long sequences via an attention mecha-
nism in the first stage and then aggregated with the target item to construct a
discriminative representation for prediction in the second stage. In this work,
we identify and characterize, for the first time, a neglected deficiency in exist-
ing long-sequence recommendation models: a single set of embeddings struggles
with learning both attention and representation, leading to interference between
these two processes. Initial attempts to address this issue with some common
methods (e.g., linear projections—a technique borrowed from language process-
ing) proved ineffective, shedding light on the unique challenges of recommenda-
tion models. To overcome this, we propose the Decoupled Attention and Repre-
sentation Embeddings (DARE) model, where two distinct embedding tables are
initialized and learned separately to fully decouple attention and representation.
Extensive experiments and analysis demonstrate that DARE provides more accu-
rate searches of correlated behaviors and outperforms baselines with AUC gains
up to 9‰ on public datasets and notable improvements on Tencent’s advertising
platform. Furthermore, decoupling embedding spaces allows us to reduce the at-
tention embedding dimension and accelerate the search procedure by 50% without
significant performance impact, enabling more efficient, high-performance online
serving. Code in PyTorch for experiments, including model analysis, is available
at https://github.com/thuml/DARE.

1 INTRODUCTION

In recommendation systems, content providers must deliver well-suited items to diverse users. To
enhance user engagement, the provided items should align with user interests, as evidenced by their
clicking behaviors. Thus, the Click-Through Rate (CTR) prediction for target items has become
a fundamental task. Accurate predictions rely heavily on effectively capturing user interests as
reflected in their history behaviors. Previous research has shown that longer user histories facilitate
more accurate predictions (Pi et al., 2020). Consequently, long-sequence recommendation models
have attracted significant research interest in recent years (Chen et al., 2021; Cao et al., 2022).

In online services, system response delays can severely disrupt the user experience, making efficient
handling of long sequences within a limited time crucial. A general paradigm employs a two-stage
process (Pi et al., 2020): search (a.k.a. General Search Unit) and sequence modeling (a.k.a. Exact
Search Unit). This method relies on two core modules: the attention module1, which measures the
target-behavior correlation, and the representation module, which generates discriminative represen-
tations of behaviors. The search stage uses the attention module to retrieve top-k relevant behaviors,

˚Equal contribution. Work was done while Ningya Feng and Baixu Chen were interns at Tencent.
1In this paper, “attention” refers to attention scores—the softmax output that weights each behavior.
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Figure 1: Overview of our work. During search, only a limited number of important behaviors
are retrieved according to their attention scores. During sequence modeling, the selected behaviors
are aggregated into a discriminative representation for prediction. Our DARE model decouples the
embeddings used in attention calculation and representation aggregation, effectively resolving their
conflict and leading to improved performance and faster inference speed.

constructing a shorter sub-sequence from the original long behavior sequence2. The sequence mod-
eling stage relies on both modules to predict user responses by aggregating behavior representations
in the sub-sequence based on their attention, thus extracting a discriminative representation. Existing
works widely adopt this paradigm (Pi et al., 2020; Chang et al., 2023; Si et al., 2024).

Attention is critical in the long-sequence recommendation, as it not only models the importance
of each behavior for sequence modeling but, more importantly, determines which behaviors are
selected in the search stage. However, in most existing works, the attention and representation mod-
ules share the same embeddings despite serving distinct functions—one learning correlation scores,
the other learning discriminative representations. We analyze these two modules, for the first time,
in the perspective of Multi-Task Learning (MTL). (Caruana, 1997). Adopting gradient analysis com-
monly used in MTL (Yu et al., 2020; Liu et al., 2021), we reveal that, unfortunately, gradients of
these shared embeddings are dominated by representation, and more concerning, gradient directions
from two modules tend to conflict with each other. Domination and conflict of gradients are two typ-
ical phenomena of interference between tasks, influencing the model’s performance on both tasks.
Our experimental results are consistent with the theoretical insight: attention fails to capture be-
havior importance accurately, causing key behaviors to be mistakenly filtered out during the search
stage (as shown in Sec. 4.3). Furthermore, gradient conflicts also degrade the discriminability of the
representations (as shown in Sec. 4.4).

Inspired by the use of separate query, key (for attention), and value (for representation) projec-
tion matrices in the original self-attention mechanism (Vaswani et al., 2017), we experimented with
attention- and representation-specific projections in recommendation models, aiming to resolve con-
flicts between these two modules. However, this approach did not yield positive results. We also
tried three other kinds of candidate methods, but unfortunately, none of them worked effectively.
Through insightful empirical analysis, we hypothesize that the failure is due to the significantly
lower capacity (i.e., fewer parameters) of the projection matrices in recommendation models com-
pared to those in natural language processing (NLP). This limitation is difficult to overcome, as it
stems from the low embedding dimension imposed by interaction collapse theory (Guo et al., 2024).

To address these issues, we propose the Decoupled Attention and Representation Embeddings
(DARE) model, which completely decouples these two modules at the embedding level by using
two independent embedding tables—one for attention and the other for representation. This de-
coupling allows us to fully optimize attention to capture correlation and representation to enhance
discriminability. Furthermore, by separating the embeddings, we can accelerate the search stage by
50% by reducing the attention embedding dimension to half, with minimal impact on performance.
On the public Taobao and Tmall long-sequence datasets, DARE outperforms the state-of-the-art
TWIN model across all embedding dimensions, achieving AUC improvements of up to 9‰. Online
evaluation on Tencent’s advertising platform, one of the world’s largest platforms, achieves a 1.47%
lift in GMV (Gross Merchandise Value). Our contribution can be summarized as follows:

2The search stage can also be “hard” selecting behaviors by category, but we focus on soft search based on
learned correlations for better user interest modeling.
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• We identify the issue of interference between attention and representation learning in exist-
ing long-sequence recommendation models and demonstrate that common methods (e.g.,
linear projections borrowed from NLP) fail to decouple these two modules effectively.

• We propose the DARE model, which uses module-specific embeddings to fully decouple
attention and representation. Our comprehensive analysis shows that our model signifi-
cantly improves attention accuracy and representation discriminability.

• Our model achieves state-of-the-art on two public datasets and gets a 1.47% GMV lift in
one of the world’s largest recommendation systems. Additionally, our method can largely
accelerate the search stage by reducing decoupled attention embedding size.

2 AN IN-DEPTH ANALYSIS INTO ATTENTION AND REPRESENTATION

In this section, we first review the general formulation for long-sequence recommendation. Then,
we analyze the training of shared embeddings, highlighting the domination and conflict of gradients
from the attention and representation modules. Finally, we explore why straightforward approaches
(e.g., using module-specific projection matrices) fail to address the issue.

2.1 PRELIMINARIES

Problem formulation. We consider the fundamental task, Click-Through Rate (CTR) prediction,
which aims to predict whether a user will click a specific target item based on the user’s behavior
history. This is typically formulated as binary classification, learning a predictor f : X ÞÑ r0, 1s

given a training dataset D “ tpx1, y1q, . . . , px|D|, y|D|qu, where x contains a sequence of items
representing behavior history and another single item representing the target.

Long-sequence recommendation model. To satisfy the strictly limited inference time in online
services, current long-sequence recommendation models generally construct a short sequence first
by retrieving top-k correlated behaviors. The attention scores are measured by the scaled dot product
of behavior and target embedding. Formally, the i-th history behavior and target t is embedded
into ei and vt P Rd, and without loss of generality, 1, 2, . . . ,K “ Top-Kpxei,vty, i P r1, N sq,
where x¨, ¨y stands for dot product. Then the weight of each behavior wi is calculated using softmax

function: wi “ exei,vty{
?

d

řK
j“1 exej ,vty{

?
d

. Finally, the representations of retrieved behaviors are compressed

into h “
řK

i“1 wi ¨ei. TWIN (Chang et al., 2023) follows this structure and achieves state-of-the-art
performance through exquisite industrial optimization.

2.2 GRADIENT ANALYSIS OF DOMINATION AND CONFLICT

The attention and representation modules can be seen as two tasks: the former focuses on learning
correlation scores for behaviors, while the latter focuses on learning discriminative (i.e., separable)
representations in a high-dimensional space. However, current methods use a shared embedding
for both tasks, which may cause a similar phenomenon to “task conflict” in Multi-Task Learning
(MTL) (Yu et al., 2020; Liu et al., 2021) and prevent either from being fully achieved. To validate
this assumption, we analyze the gradients from both modules on the shared embeddings.

Attention Representation
Gradient Source

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e 

M
ag

ni
tu

de
 (×

)

Figure 2: The magnitude of embedding
gradients from the attention and repre-
sentation modules.

Experimental validation. Following the methods in
MTL, we empirically observe the gradients back prop-
agated to the embeddings from the attention and repre-
sentation modules. Comparing their gradient norms, we
find that gradients from the representation are five times
larger, dominating those from attention, as demonstrated
in Fig. 2. Observing their gradient directions, we fur-
ther find that in nearly two-thirds of cases, the cosine of
the gradient angles is negative, indicating the conflict be-
tween them, as shown in Fig. 3. Domination and conflict
are two typical phenomena of task interference, suggest-
ing challenges in learning them well.
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Figure 3: Cosine angles of gradients.

In summary, the attention module and representation
modules optimize the embedding table towards different
directions with varying intensities during training, caus-
ing attention to lose correlation accuracy and representa-
tion to lose its discriminability. Notably, due to domina-
tion, such influence is more severe to attention, as indi-
cated by the poor learned correlation between categories
in Sec. 4.3. While some commonly used techniques in
MTL may ease the conflict, we tend to seek an optimized
model structure that further resolves the conflict.

Finding 1. In sequential recommenders, gradients from the representation module tend to con-
flict with that from the attention module, and typically dominate the embedding gradients.
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Figure 4: Illustration and evaluation for adopting linear projections. (a-b) The attention module
in the original TWIN and after adopting linear projections. (c) Performance of TWIN variants.
Adopting linear projections causes an AUC drop of nearly 2% on Taobao.

2.3 RECOMMENDATION MODELS CALL FOR MORE POWERFUL DECOUPLING METHODS

Normal decoupling methods fail to resolve conflicts. To address such conflict, a straightfor-
ward approach is to use separate projections for attention and representation, mapping the original
embeddings into two new decoupled spaces. This is adopted in the standard self-attention mech-
anism (Vaswani et al., 2017), which introduces query, key (for attention), and value projection
matrices (for representation). Inspired by this, we propose a variant of TWIN that utilizes linear
projections to decouple attention and representation modules, named TWIN (w/ proj.). The com-
parison with the original TWIN structure is shown in Fig. 4a and 4b. Surprisingly, linear projection,
which works well in NLP, loses efficacy in recommendation systems, leading to negative performance
impact, as shown in Tab. 4c. We also tried three kinds of other candidate methods (MLP-based pro-
jection, strengthening the capacity of linear projection, and gradient normalization), resulting in a
total of eight models, but none of them resolved the conflict effectively. For the structure of these
models and more details, refer to Appendix C.

2 4 8 16 32 64 128
Embedding Dimension

1.5

2.0

2.5

3.0

Lo
ss

w/ Linear Projection
w/o Linear Projection

Figure 5: The influence of linear projec-
tions with different embedding dimen-
sions in NLP.

Larger embedding dimension makes linear projec-
tion effective in NLP. The failure of introducing pro-
jection matrices makes us wonder why it works well in
NLP but not in recommendation. One possible reason is
that the relative capacity of projection matrices regarding
the token numbers in NLP is usually strong, e.g., with
an embedding dimension of 4096 in LLaMA3.1 (Dubey
et al., 2024), there are around 16 million parameters
(4096 ˆ 4096 “ 16, 777, 216) in each projection matrix
to map only 128,000 tokens in the vocabulary. To vali-
date our hypothesis, we conduct a synthetic experiment
in NLP using nanoGPT (Andrej) with the Shakespeare
dataset. In particular, we decrease its embedding dimen-
sion from 128 to 2 and check the performance gap be-
tween the two models with/without projection matrices. As shown in Fig. 5, we observe that when
the matrix has enough capacity, i.e., the embedding dimension is larger than 16, projection leads to
significantly less loss. However, when the matrix capacity is further reduced, the gap vanishes. Our
experiment indicates that using projection matrices only works with enough capacity.
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Figure 6: Architecture of the proposed DARE model. One embedding is responsible for atten-
tion, learning the correlation between the target and history behaviors, while another embedding is
responsible for representation, learning discriminative representations for prediction. Decoupling
these two embeddings allows us to resolve the conflict between the two modules.

Limited embedding dimension makes linear projections fail in recommendation. In contrast,
due to the interaction collapse theory (Guo et al., 2024), the embedding dimension in recommenda-
tion is usually no larger than 200, leading to only up to 40000 parameters for each matrix to map
millions to billions of IDs. Therefore, the projection matrices in recommendation never get enough
capacity, making them unable to decouple attention and representation. In this case, other normal
decoupling methods mentioned in Appendix C also suffer from weak capacity.

Finding 2. Normal methods like linear projection fail to decouple attention and representation
in sequential recommendation models due to limited capacity caused by embedding dimension.

3 DARE: DECOUPLED ATTENTION AND REPRESENTATION EMBEDDINGS

With all eight normal decoupling models shown in Appendix C failed, based on our analysis, we seek
methods with enough capacity, hoping to completely resolve the conflict. To this end, we propose
to decouple these two modules at the embedding level. That is, we employ two embedding tables,
one for attention (EAtt) and another for representation (ERepr). With gradient back propagated to
different embedding tables, our method has the potential to fully resolve the gradient domination
and conflict between these two modules. We introduce our model specifically in this section and
demonstrate its advantage by experiments in the next section.

3.1 ATTENTION EMBEDDING

Attention measures the correlation between history behaviors and the target (Zhou et al., 2018).
Following the common practice, we use the scaled dot-product function (Vaswani et al., 2017).
Mathematically, the i-th history behavior i and target t, are embedded into eAtt

i ,vAtt
t „ EAtt, where

EAtt is the attention embedding table. After retrieval 1, 2, . . . ,K “ Top-Kpxei,vty, i P r1, N sq

their weight wi is formalized as:

wi “
exeAtt

i ,vAtt
t y{

?
|EAtt|

řK
j“1 e

xeAtt
j ,vAtt

t y{
?

|EAtt|
, (1)

where x¨, ¨y stands for dot product and |EAtt| stands for the embedding dimension.

3.2 REPRESENTATION EMBEDDING

In the representation part, another embedding table ERepr is used, where i and t is embedded into
eRepr
i ,vRepr

t „ ERepr. Most existing methods multiply the attention weight with the representation
of each retrieved behavior and then concatenate it with the embedding of the target as the input of
Multi-Layer Perceptron (MLP): r

ř

i wiei,vts. However, it has been proved that MLP struggles to
effectively learn explicit interactions (Rendle et al., 2020; Zhai et al., 2023). To enhance the discrim-
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inability, following TIN (Zhou et al., 2024), we adopt the target-aware representation eRepr
i d vRepr

t ,
denoted as TR in our following paper (refer to Sec. 4.4 for empirical evaluation of discriminability).

The overall structure of our model is shown in Fig. 6. Formally, user history h is compressed into:
h “

řK
i“1 wi ¨ peRepr

i d vRepr
t q.

3.3 INFERENCE ACCELERATION

By decoupling the attention and representation embedding tables, the dimension of attention em-
beddings EAtt and the dimension of representation embeddings ERepr have more flexibility. In
particular, we can reduce EAtt while keeping ERepr to accelerate the searching over the original long
sequence whilst not affecting the model’s performance. Empirical experiments in Sec. 4.5 show that
our model has the potential to speed up searching by 50% with quite little influence on performance
and even by 75% with an acceptable performance loss.

3.4 DISCUSSION

Target Item 0

Embedding

(EATT-h)

History Item i

Embedding

(EATT-t)

Embedding

(ERepr-h)
Embedding

(ERepr-t)

Attention Representation

Figure 7: Illustration of the TWIN-4E model.

Considering the superiority of decoupling the
attention and representation embeddings, one
may naturally raise an idea: we can further
decouple the embeddings of history and target
within the attention (and representation) mod-
ule, i.e. forming a TWIN with 4 Embeddings
method, or TWIN-4E in short, consisting of
attention-history (named keys in NLP) eAtt

i P

EAtt-h, attention-target (named querys in NLP)
vAtt
t P EAtt-t, representation-history (named values in NLP) eRepr

i P ERepr-h and representation-
target vRepr

t P ERepr-t. The structure of TWIN-4E is shown in Fig. 7. Compared to our DARE
model, TWIN-4E further decouples the behaviors and the target, meaning that the same category or
item has two totally independent embeddings as behavior and target. This is strongly against two
prior knowledge in recommendation system. 1. The correlation of two behaviors is similar no matter
which is the target and which is from history. 2. Behaviors with the same category should be more
correlated, which is natural in DARE since a vector’s dot product with itself tends to be bigger.

4 EXPERIMENTS

4.1 SETUP

Datasets and task. We use the publicly available Taobao (Zhu et al., 2018; 2019; Zhuo et al.,
2020) and Tmall (Tianchi, 2018) datasets, which provide users’ behavior data over specific time
periods on their platforms. Each dataset includes the items users clicked, represented by item IDs
and their corresponding category IDs. Thus, a user’s history is modeled as a sequence of item and
category IDs. The model’s input consists of a recent, continuous sub-sequence of the user’s lifelong
history, along with a target item. For positive samples, the target items are the actual items users
clicked next, and the model is expected to output “Yes.” For negative samples, the target items
are randomly sampled, and the model should output “No.” In addition to these public datasets, we
validated our performance on one of the world’s largest online advertising platforms. More details
on datasets and training/validation/test splits are shown in Appendix B.

Baselines. We compare against a variety of recommendation models, including ETA (Chen et al.,
2021), SDIM (Cao et al., 2022), DIN (Zhou et al., 2018), TWIN (Chang et al., 2023) and its variants,
as well as TWIN-V2 (Si et al., 2024). As discussed in Sec.3.2, the target-aware representation by
crossing eRepr

i d vRepr
t significantly improves representation discriminability, so we include it in our

baselines for fairness. TWIN-4E refers to the model introduced in Sec. 3.4, while TWIN (w/ proj.)
refers to the model described in Sec. 2.3. TWIN (hard) represents a variant using “hard search” in
the search stage, meaning it only retrieves behaviors from the same category as the target. TWIN
(w/o TR) refers to the original TWIN model without target-aware representation, i.e., representing
user history as h “

ř

i wi ¨ ei instead of h “
ř

i wipei d vtq.
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Table 1: Overall comparison reported by the means and standard deviations of AUC. The best
results are highlighted in bold, while the previous best model is underlined. Our model outperforms
all existing methods with obvious advantages, especially with small embedding dimensions.

Setup Embedding Dim. = 16 Embedding Dim. = 64 Embedding Dim. = 128

Dataset Taobao Tmall Taobao Tmall Taobao Tmall

ETA (2021) 0.91326
p0.00338q

0.95744
p0.00108q

0.92300
p0.00079q

0.96658
p0.00042q

0.92480
p0.00032q

0.96956
p0.00039q

SDIM (2022) 0.90430
p0.00103q

0.93516
p0.00069q

0.90854
p0.00085q

0.94110
p0.00093q

0.91108
p0.00119q

0.94298
p0.00081q

DIN (2018) 0.90442
p0.00060q

0.95894
p0.00037q

0.90912
p0.00092q

0.96194
p0.00033q

0.91078
p0.00054q

0.96428
p0.00013q

TWIN (2023) 0.91688
p0.00211q

0.95812
p0.00073q

0.92636
p0.00052q

0.96684
p0.00039q

0.93116
p0.00056q

0.97060
p0.00005q

TWIN (hard) 0.91002
p0.00053q

0.96026
p0.00024q

0.91984
p0.00048q

0.96448
p0.00042q

0.91446
p0.00055q

0.96712
p0.00019q

TWIN (w/ proj.) 0.89642
p0.00351q

0.96152
p0.00088q

0.87176
p0.00437q

0.95570
p0.00403q

0.87990
p0.02022q

0.95724
p0.00194q

TWIN (w/o TR) 0.90732
p0.00063q

0.96170
p0.00057q

0.91590
p0.00083q

0.96320
p0.00032q

0.92060
p0.00084q

0.96366
p0.00103q

TWIN-V2 (2024) 0.89434
p0.00077q

0.94714
p0.00110q

0.90170
p0.00063q

0.95378
p0.00037q

0.90586
p0.00059q

0.95732
p0.00045q

TWIN-4E 0.90414
p0.01329q

0.96124
p0.00026q

0.90356
p0.01505q

0.96372
p0.0004q

0.90946
p0.01508q

0.96016
p0.01048q

DARE (Ours) 0.92568
p0.00025q

0.96800
p0.00024q

0.92992
p0.00046q

0.97074
p0.00012q

0.93242
p0.00045q

0.97254
p0.00016q

4.2 OVERALL PERFORMANCE

In recommendation systems, it is well-recognized that even increasing AUC by 1‰ to 2‰ is more
than enough to bring online profit. As shown in Tab. 1, our model achieves AUC improvements of
1‰ and 9‰ compared to current state-of-the-art methods across all settings with various embedding
sizes. In particular, significant AUC lifts of 9‰ and 6‰ are witnessed with an embedding dimension
of 16 on Taobao and Tmall datasets, respectively.

There are also some notable findings. TWIN outperforms TWIN (w/o TR) in most cases, proving
that target-aware representation eRepr

i d vRepr
t do help enhance discriminability (further evidence

is shown in Sec. 4.4). Our DARE model has an obvious advantage over TWIN-4E, confirming
that the prior knowledge discussed in Sec. 3.4 is well-suited for the recommendation system. ETA
and SDIM, which are based on TWIN and focus on accelerating the search stage at the expense
of performance, understandably show lower AUC scores. TWIN-V2, a domain-specific method
optimized for video recommendations, is less effective in our settings.

4.3 ATTENTION ACCURACY

Mutual information, which captures the shared information between two variables, is a powerful
tool for understanding relationships in data. We calculate the mutual information between behaviors
and the target as the ground truth correlation, following (Zhou et al., 2024). The learned attention
score reflects the model’s measurement of the importance of each behavior. Therefore, we compare
the attention distribution with mutual information in Fig. 8.

In particular, Fig. 8a presents the mutual information between a target category and behaviors with
top-10 categories and their target-relative positions (i.e., how close to the target is the behavior across
time). We observe a strong semantic-temporal correlation: behaviors from the same category as the
target (5th row) are generally more correlated, with a noticeable temporal decay pattern. Fig. 8b
presents TWIN’s learned attention scores, which show a decent temporal decay pattern but over-
estimate the semantic correlation of behaviors across different categories, making it too sensitive
to recent behaviors, even those from unrelated categories. In contrast, our proposed DARE can
effectively capture both the temporal decaying and semantic patterns.

The retrieval in the search stage relies entirely on attention scores. Thus, we further investigate the
retrieval on the test dataset, which provides a more intuitive reflection of attention quality. Behaviors
with top-k mutual information are considered the optimal retrieval, and we evaluate model perfor-
mance using normalized discounted cumulative gain (NDCG) (Järvelin & Kekäläinen, 2002). The
results, along with case studies, are presented in Fig. 9 (more examples in Appendix E.4). We find:

7



Published as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10
Target-relative Position

16
11

9
87

15
1

19
18

12
20

To
p-

10
 A

pp
ea

re
d 

C
at

eg
or

ie
s

0.01 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0.02 0.01 0.01 0 0 0 0 0 0 0

0.01 0.01 0 0 0 0 0 0 0 0

1 0.87 0.67 0.59 0.51 0.47 0.41 0.37 0.34 0.33

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0 0 0 0 0 0 0 0 0 0

0.16 0.12 0.12 0.11 0.1 0.09 0.09 0.09 0.08 0.07

0 0 0.01 0.01 0 0 0 0 0.01 0

0.01 0.01 0 0 0 0 0 0 0 0

Category-wise Target-aware Correlation

(a) GT mutual information

1 2 3 4 5 6 7 8 9 10
Target-relative Position

16
11

9
87

15
1

19
18

12
20

To
p-

10
 A

pp
ea

re
d 

C
at

eg
or

ie
s

0.4 0.27 0.2 0.17 0.08 0.1 0.04 0.02 0.01 0.01

0.45 0.3 0.23 0.19 0.1 0.12 0.05 0.03 0.02 0.01

0.38 0.25 0.19 0.16 0.07 0.1 0.04 0.01 0.01 0

0.36 0.24 0.18 0.15 0.07 0.09 0.03 0.01 0.01 0

1 0.69 0.54 0.46 0.26 0.31 0.16 0.11 0.1 0.08

0.53 0.36 0.28 0.23 0.12 0.15 0.07 0.04 0.03 0.02

0.4 0.26 0.2 0.17 0.08 0.1 0.04 0.02 0.01 0

0.72 0.49 0.38 0.33 0.17 0.21 0.1 0.07 0.06 0.04

0.53 0.36 0.28 0.23 0.12 0.15 0.07 0.04 0.03 0.02

0.36 0.24 0.18 0.15 0.07 0.09 0.03 0.01 0.01 0

Attention Given Target Category ID 15

(b) TWIN learned correlation

1 2 3 4 5 6 7 8 9 10
Target-relative Position

16
11

9
87

15
1

19
18

12
20

To
p-

10
 A

pp
ea

re
d 

C
at

eg
or

ie
s

0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0

0.08 0.05 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01

0.02 0.01 0.01 0 0 0 0 0 0 0

0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0 0

1 0.62 0.42 0.29 0.22 0.23 0.21 0.18 0.16 0.13

0.14 0.09 0.06 0.04 0.03 0.03 0.03 0.02 0.02 0.02

0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0 0

0.35 0.22 0.15 0.1 0.08 0.08 0.07 0.06 0.05 0.05

0.12 0.07 0.05 0.03 0.02 0.03 0.02 0.02 0.02 0.01

0.01 0.01 0 0 0 0 0 0 0 0

Attention Given Target Category ID 15
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Figure 8: The ground truth (GT) and learned correlation between history behaviors of top-10 fre-
quent categories (y-axis) at various positions (x-axis), with category 15 as the target. Our correlation
scores are noticeably closer to the ground truth.

0 5 10 15 20
Behaviors Returned by Search

0.0

0.3

0.6

0.9

N
D

C
G

Retrieval Performance on Taobao

DARE
TWIN-4E
TWIN
TWIN w/ Proj.
DIN

(a) Retrieval on Taobao

161 161 161 161 87 16 11 87 78 87
Behavior Sequence

Ground Truth

DARE

TWIN-4E

TWIN

TWIN w/ Proj.

DIN

0 0 0 0 1 0.05 0 0.8 0.01 0.72

0.28 0.13 0.05 0 1 0.21 0.12 0.76 0.01 0.56

0.88 0.43 0.22 0.16 1 0.05 0 0.62 0.05 0.42

1 0.65 0.49 0.4 0.39 0.27 0.05 0.12 0 0.06

0 0 0 0 0.93 0.14 0 0.97 0.05 1

0.01 0.02 0.07 0.09 0.14 0.04 0 0.2 0.04 1

Correlations with Category 87

(b) Case study 1

310 9 9 5 6 6 6 9 15 11
Behavior Sequence

Ground Truth

DARE

TWIN-4E

TWIN

TWIN w/ Proj.

DIN

0.09 0.43 0.17 1 0.34 0.25 0.27 0 0.57 0.01

0.45 0.47 0.26 1 0.08 0.09 0.06 0 0.14 0.01

1 0.24 0.11 0.15 0.04 0.02 0.01 0.02 0.05 0

1 0.72 0.55 0.64 0.22 0.28 0.11 0.04 0.03 0

0 0 0 0 0 0 0 0 1 0

0.07 0.22 0.11 1 0 0.02 0 0.17 0.19 0.68

Correlations with Category 19

(c) Case study 2

Figure 9: Retrieval in the search stage. (a) Our model can retrieve more correlated behaviors. (b-c)
Two showcases where the x-axis is the categories of the recent ten behaviors.

• DARE achieves significantly better retrieval. As shown in Fig. 9a, the NDCG of our
model is substantially higher than all baselines, with a 46.5% increase (0.8124 vs. 0.5545)
compared to TWIN and a 27.3% increase (0.8124 vs. 0.6382) compared to DIN.

• TWIN is overly sensitive to temporal information. As discussed, TWIN tends to select re-
cent behaviors regardless of their categories, against the ground truth, due to overestimated
correlations between different categories, as shown in Fig. 9b and 9c.

• Other methods perform unstably. For the other methods, they filter out some important
behaviors and retrieve unrelated ones in many cases, which explains their bad performance.

Result 1. DARE succeeds in capturing the semantic-temporal correlation between behaviors
and the target, retaining more correlated behaviors during the search stage.

4.4 REPRESENTATION DISCRIMINABILITY

We then analyze the discriminability of learned representation. On test datasets, we take the com-
pressed representation of user history h “

řK
i“1 wi ¨ pei d vtq, which forms a vector for each test

sample. Using K-means, we quantize these vectors, mapping each h to a cluster Qphq. The mutual
information (MI) between the discrete variable Qphq and label Y (whether the target was clicked)
can then reflect the representation’s discriminability: Discriminabilityph, Y q “ MIpQphq, Y q.

As shown in Fig. 10a, across various numbers of clusters, our DARE model outperforms the state-of-
the-art TWIN model, demonstrating that decoupling improves representation discriminability. There
are also other notable findings. Although DIN achieves more accurate retrieval in the search stage (as
evidenced by a higher NDCG in Fig. 9a), its representation discriminability is obviously lower than
TWIN, especially on Taobao dataset, which explains its lower overall performance. TWIN-4E shows
comparable discriminability to our DARE model, further confirming that its poorer performance is
due to inaccurate attention caused by the lack of recommendation-specific prior knowledge.

To fully demonstrate the effectiveness of ei d vt, we compare it with the classical concatenation
rΣiei,vts. As shown in Fig. 10c, a huge gap (in orange) is caused by the target-aware representation,
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Figure 10: Representation discriminability of different models, measured by the mutual information
between the quantized representations and labels.
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Figure 11: Efficiency during training and inference. (a-b) Our model performs obviously better
with fewer training data. (c-d) Reducing the search embedding dimension, a key factor of online
inference speed, has little influence on our model, while TWIN suffers an obvious performance loss.

while smaller gaps (in blue and green) result from decoupling. Notably, our DARE model also
outperforms TWIN even when using concatenation.

Result 2. In the DARE model, the form of target-aware representation and embedding decou-
pling both improve the discriminability of representation significantly.

4.5 CONVERGENCE AND EFFICIENCY

Faster convergence during training. In recommendation systems, faster learning speed means
the model can achieve strong performance with less training data, which is especially crucial for
online services. We track accuracy on the validation dataset during training, shown in Fig. 11a.
Our DARE model converges significantly faster. For example, on the Tmall dataset, TWIN reaches
90% accuracy after more than 1300 iterations. In contrast, our DARE model achieves comparable
performance in only about 450 iterations—one-third of the time required by TWIN.

Efficient search during inference. By decoupling the attention embedding space ei,vt P RKA

and representation embedding space ei,vt P RKR , we can assign different dimensions for these
two spaces. Empirically, we find that the attention module performs comparably well with smaller
embedding dimensions, allowing us to reduce the size of the attention space (KA ! KR) and
significantly accelerate the search stage, as its complexity is OpKANq where N is the length of
the user history. Using KA “ 128 as a baseline (“1”), we normalize the complexity of smaller
embedding dimensions. Fig. 11c shows that our model can accelerate the searching speed by 50%
with quite little influence on performance and even by 75% with an acceptable performance loss,
offering more flexible options for practical use. In contrast, TWIN experiences a significant AUC
drop when reducing the embedding dimension.

Result 3. Embedding decoupling leads to faster model training convergence and at least 50%
inference acceleration without significantly influencing the AUC by reducing the dimension of
attention embeddings.
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4.6 ONLINE A/B TESTING AND DEPLOYMENTS

We apply our methods to Tencent’s advertising platform. Since users’ behaviors on ads are sparse,
which makes the sequence length relatively shorter than the content recommendation scenario, we
involve the user’s behavior sequence from our article and the micro-video recommendation scenario.
Specifically, the user’s ad and content behaviors in the last two years are introduced. Before the
search, the maximal length of the ads and content sequence is 4000 and 6000, respectively, with
170 and 1500 on average. After searching with DARE, the sequence length is reduced to less than
500. Regarding sequence features (side info), we choose the category ID, behavior type ID, scenario
ID, and two target-aware temporal encodings, i.e., position relative to the target, and time interval
relative to the target (with discretization). There are about 1.0 billion training samples per day.
During the 5-day online A/B test in September 2024, the proposed DARE method achieves 0.57%
cost, and 1.47% GMV (Gross Merchandize Value) lift over the production baseline of TWIN. This
would lead to hundreds of millions of dollars in revenue lift per year.

4.7 SUPPLEMENTARY EXPERIMENT RESULTS IN APPENDIX

Retrieval number in the search stage. DARE’s advantage is more obvious with less retrieval num-
ber, proving once again that DARE selects important behaviors more accurately (Appendix D.1).

Sequence length and short-sequence modeling. DARE can consistently benefit from longer se-
quences, while it delivers marginal advantages in short-sequence modeling (Appendix D.2).

GAUC and Logloss. Besides AUC, we also evaluate DARE and all the baselines under GAUC and
Logloss. DARE shows consistent superiority, proving the solidity of our results (Appendix E.1).

5 RELATED WORK

Click-through rate prediction and long-sequence modeling. CTR prediction is fundamental
in recommendation systems, as user interest is often reflected in their clicking behaviors. Deep
Interest Network (DIN) (Zhou et al., 2018) introduces target-aware attention, using an MLP to learn
attentive weights of each history behavior regarding a specific target. This framework has been
extended by models like DIEN (Zhou et al., 2019), DSIN (Feng et al., 2019), and BST (Chen et al.,
2019) to capture user interests better. Research has proved that longer user histories lead to more
accurate predictions, bringing long-sequence modeling under the spotlight. SIM (Pi et al., 2020)
introduces a search stage (GSU), greatly accelerating the sequence modeling stage (ESU). Models
like ETA (Chen et al., 2021) and SDIM (Cao et al., 2022) further improve this framework. Notably,
TWIN (Chang et al., 2023) and TWIN-V2 (Si et al., 2024) unify the target-aware attention metrics
used in both stages, significantly improving search quality. However, as pointed out in Sec. 2.2,
in all these methods, attention learning is often dominated by representation learning, creating a
significant gap between the learned and actual behavior correlations.

Attention. The attention mechanism, most well-known in Transformers (Vaswani et al., 2017),
has proven highly effective and is widely used for correlation measurement. Transformers employ
Q, K (attention projection), and V (representation projection) matrices to generate queries, keys,
and values for each item. The scaled dot product of query and key serves as the correlation score,
while the value serves as the representation. This structure is widely used in many domains, in-
cluding natural language processing (Brown et al., 2020) and computer vision (Dosovitskiy et al.,
2021). However, in recommendation systems, due to the interaction-collapse theory pointed out by
Guo et al. (2024), the small embedding dimension would make linear projections completely lose
effectiveness, as discussed in Sec. 2.3. Thus, proper adjustment is needed in this specific domain.

6 CONCLUSION

This paper focuses on long-sequence recommendation, starting with an analysis of gradient domina-
tion and conflict on the embeddings. We then propose a novel Decoupled Attention and Representa-
tion Embeddings (DARE) model, which fully decouples attention and representation using separate
embedding tables. Both offline and online experiments demonstrate DARE’s potential, with com-
prehensive analysis highlighting its advantages in attention accuracy, representation discriminability,
and faster inference speed.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide the hyperparameters and baseline implementation details in
Appendix A, along with dataset details in Appendix B. We have released the full code, includ-
ing dataset processing, model training, and analysis experiments, at https://github.com/
thuml/DARE.
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A IMPLEMENTATION DETAILS

A.1 HYPER-PARAMETERS AND MODEL DETAILS

The hyper-parameters we use are listed as follows:

Parameter Value

Retrieve number 20
Epoch 2

Batch size 2048
Learning rate 0.01
Weight decay 1e-6

Besides, we use the Adam optimizer. Layers of the Multi-layer Perceptron (MLP) are set as 200 ˆ

80 ˆ 2, which is the same as Zhou et al. (2024).

These settings remain the same in all our experiments.

A.2 BASELINE IMPLEMENTATION

Many current methods are not open-source and may focus on a certain domain. Thus, we followed
their idea and implemented their method according to our task setting. Some notable details are
shown as follows:

• DIN is primarily designed for short-sequence modeling, so we introduced the search stage
and aligned it with long-sequence models. Specifically, while the original DIN aggregates
all historical behaviors using a learned weight, our approach enables DIN to select the top-
K most significant behaviors based on these weights, the same as other long-sequence mod-
eling techniques. Note that the original DIN is impractical for long-sequence modeling, as
aggregating such extensive history would result in prohibitively high time complexity.

• TWIN-V2 is specifically designed for Kuaishou, a short video-sharing app, leveraging
video-specific features to optimize performance in video recommendations. However, our
experiments focus on a more general scenario where only item IDs and category IDs are
available. Thus, we made some necessary adjustments while retaining the core ideas of
TWIN-V2. e.g., TWIN-V2 would first group the videos based on the proportion a video
is played, which does not have a corresponding feature in our datasets. Consequently, we
grouped user history using temporal information instead. It’s understandable that outside
its specific domain, TWIN-V2 cannot fully realize its potential.

B DATA PROCESSING

Dataset information. Some detailed information is shown in Table 2. We use Taobao (Zhu et al.,
2018; 2019; Zhuo et al., 2020) and Tmall (Tianchi, 2018) datasets in our experiments. The propor-
tion of active users (Users with more than 50 behaviors) in these two datasets is more than 60%,
which is relatively satisfying. Note that the Taobao dataset is more complex, with more categories
and more items, which is a higher challenge for model capacity.

Table 2: Some basic information of public datasets (active user: User with more than 50 behaviors).

Dataset #Category #Item #User # Active User

Taobao 9407 4,068,790 984,114 603,176
Tmall 1492 1,080,666 423,862 246,477

Training-validation-test split. We sequentially number history behaviors from one (the most re-
cent behavior) to T (the most ancient behavior) according to the time step. The test dataset contains
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predictions of the first behaviors, while the second behaviors are used as the validation dataset. For
the training dataset, we use the p3 ` 5i, 0 ď i ď 18qth behavior. Models would finish predicting
the jth behavior based on j ´ 200 to j ´ 1 behaviors (padding if history length is not long enough).
Only users with behavior sequences longer than 210 will be reserved.

We make such settings to balance the amount and quality of training data. In our setting, each
selected user would contribute 20 pieces of data visible to our model in the training process. Besides,
we can guarantee that each piece of test data would contain no less than 200 behaviors, making our
results more reliable. To some degree, we break the “independent identical distribution” principle
because we sample more than one piece of data from one user. However, it’s unavoidable since
the dataset is not large enough due to the feature of the recommendation system (item number is
usually several times bigger than user number), so we finally sample with interval 5, using the
pp3 ` 5iqth, 0 ď i ď 18q behaviors as the training dataset.

C THE RESEARCH PROCESS LEADING TO DARE

C.1 OTHER DECOUPLING METHODS

Besides linear projection, we have tried many other decoupling methods before we came up with
the final DARE model. Their structures are illustrated in Figure 12. Specifically:

• Linear projection. This is the structure referred to as TWIN (w/ proj.) in this paragraph,
applying linear projection to address the conflict.

• Item/Category/Time linear projection. Item, category, and time features exhibit signifi-
cant differences (e.g. item number is about 1,000 times larger than category number). So
we tested the effectiveness of linear projections when applied to each feature individually.

• Cate. and time linear projection. The number of items is too large, making it too chal-
lenging for a simple linear projection to project millions of item embeddings into another
space. So we designed this model and only use linear projection on category and time.

• Larger embedding. To enhance the capacity of linear projection while maintaining the
feature dimension, we used a larger embedding dimension while keeping the output di-
mension of linear projection the same as other models.

• MLP projection. We replace the linear projection with Multilayer Perceptron (MLP),
which has much stronger capacity. This experiment aims to figure out the impact of pro-
jection capacity on model performance.

• Avoid domination. Basing on the original TWIN model, whenever the gradient is back
propagated to the embedding (we have demonstrated in Section 2.2 that gradient from
representation is about five times larger than that from attention), we manually scale the
gradient from attention to make its 2-norm the same as representation, which can solve the
problem of domination.

C.2 AUC RESULT

We evaluated the models on the Taobao and Tmall datasets, with the results presented in Table 3.
Among the other eight models except DARE, none of them achieved consistent and significant im-
provements across both datasets. The Taobao dataset is notably more complex, containing nearly
nine times the number of categories as Tmall. Thus, some decoupling methods showed improve-
ments on the simpler Tmall dataset but lost effectiveness on the more complex Taobao dataset.
Interestingly, while the “MLP projection” model theoretically offers greater capacity, it failed to
outperform the simpler linear projection, which captured our attention. To investigate further, we
examined the gradient behavior of these models.

C.3 GRADIENT CONFLICT IN THESE MODELS

We then observed whether these models have the potential to resolve gradient conflict. For each
category, we observed the gradients from attention and representation at every iteration and cal-
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Figure 12: Eight other methods we tried before we came up with DARE.

Table 3: The performance of other models we tried reported by the means and standard deviations of
AUC. Only DARE achieved a satisfying result. Each model’s comparison with the original TWIN
is highlighted: improvements are marked in green, while deteriorations are marked in red.

Setup Taobao Tmall

TWIN (2021) 0.91688 ˘ 0.00211 pbaselineq 0.95812 ˘ 0.00073 pbaselineq

Linear projection 0.89642 ˘ 0.00351 p´0.02046q 0.96152 ˘ 0.00088 p`0.00988q

Item linear projection 0.90886 ˘ 0.00218 p´0.00802q 0.96032 ˘ 0.00119 p`0.00220q

Category linear projection 0.91738 ˘ 0.00099 p`0.00050q 0.96658 ˘ 0.00068 p`0.00846q

Time linear projection 0.91354 ˘ 0.00046 p´0.00334q 0.95758 ˘ 0.00116 p´0.00054q

Cate. and time linear projection 0.91202 ˘ 0.00340 p´0.00486q 0.96604 ˘ 0.00038 p`0.00792q

Larger embedding 0.91348 ˘ 0.00247 p´0.00340q 0.96348 ˘ 0.00057 p`0.00536q

MLP projection 0.86960 ˘ 0.04013 p´0.04728q 0.95678 ˘ 0.00066 p´0.00134q

Avoid domination 0.91976 ˘ 0.00052 p`0.00288q 0.93887 ˘ 0.00127 p´0.01925q

DARE (Ours) 0.92568 ˘ 0.00025 p`0.00880q 0.96800 ˘ 0.00024 p`0.00988q

culated the percentage of iterations in which the gradient for that category exhibited conflict.
Results are shown in Figure 14. As demonstrated in this figure, we can find that:
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(a) Linear projection (62.34%)
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(b) Item linear projection (72.13%)
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(c) Category linear projection
(78.47%)
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(d) Time linear projection (69.26%)
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(e) Cate. and time linear projection
(84.8%)
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(f) Larger embedding (88.29%)
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(g) MLP projection (30.96%)
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(h) Avoid domination (71.51%)
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(i) TWIN (80.91%)

Figure 14: Analysis of gradient conflict on the original TWIN and eight other models we tried.
The number after model name means the ratio of categories falling on the right side of the red line
(meaning that the category reported gradient conflict in more than half iterations). Most models fail
to resolve gradient conflict well.

The conflict of TWIN. In the original TWIN, most categories (80.91%) experienced gradient
conflict in more than half of the iterations.

The failure of these models. Some methods (like Item linear projection) can, to some degree,
solve the conflict, but that’s far from enough. Some methods even worsen the conflict (like Larger
embedding).

0 500 1000 1500 2000
Training Iteration

0.75

0.80

0.85

0.90

Va
lid

at
io

n 
Ac

cu
ra

cy

Training Performance

MLP Projection
DARE

Figure 13: Comparison of MLP projec-
tion and DARE models during training.

The challenge of MLP projection. MLP projection
solves the conflict best, although still 30% categories re-
porting conflict in more than half of iterations, this model
outperforms other projection-based decoupling methods.
However, MLP projection performs poorly. To under-
stand this discrepancy, we further analyzed its perfor-
mance during training, and the results are shown in Fig-
ure 13. Though resolving conflict better than some other
models, MLP projection struggles to optimize in the train-
ing process due to more parameters and higher complex-
ity. For example, after 100 iterations, the accuracy of
DARE is 82.44%, while that of MLP projection is only
74.87% (Note that even continually outputting ”No” can
achieve a 66.7% accuracy).
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Figure 15: On both datasets, when the number of retrieved behaviors increases from 1 to 25, models
first perform better, then keep the same performance. DARE outperforms TWIN at any settings,
achieving even 5.7% higher AUC on Taobao when retrieving 1 behavior.

C.4 CONCLUSION

We explored various decoupling methods, but none could fully resolve gradient conflicts, or may
introduce optimization issues. All the results call for a more effective decoupling method, that is,
back-propagating the gradient to different embedding tables, which can completely solve whatever
problems like domination and conflict, since attention and representation will each have an exclusive
embedding table now. This insight led to the development of DARE.

D INFLUENCE OF HYPER-PARAMETERS

D.1 EFFECTS OF RETRIEVAL NUMBER IN THE SEARCH STAGE

The number of retrieved behaviors, K in this paper, is a crucial hyper-parameter in the two-stage
method. We modified this parameter, and the results are presented in Figure 15. Key findings
include:

• On Taobao dataset, TWIN must retrieve more than 15 behaviors to fulfill its potential,
while DARE can achieve best performance when retrieving more than 10 behaviors. This
indicates that DARE can retrieve those important behaviors more accurately, while TWIN
must retrieve more behaviors to avoid missing important ones.

• DARE consistently outperforms TWIN across all settings, especially with fewer retrieval
numbers. On Taobao dataset, when retrieving only one behavior, DARE can outperform
TWIN with an AUC increase of 5.7% (even a 0.1% AUC increase is considered significant).

• In all our other experiments, the retrieve number is set to 20 to ensure all models perform at
their best. Our advantage over TWIN would only be more obvious in some other settings.

D.2 EFFECTS OF SEQUENCE LENGTH

We analyzed the impact of sequence length and identified scenarios where the DARE model exhibits
a more significant advantage. Results are shown in Figure 16. Some notable findings are:

• Reduced advantage with shorter sequences: DARE’s advantage over TWIN diminishes
as the sequence length decreases. Shorter sequences make it easier to model user history,
reducing the impact of inaccuracies in measuring behavior importance. Under these
conditions, TWIN achieves performance comparable to DARE.
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Figure 16: With shorter sequence length, the advantage of our DARE model over TWIN becomes
smaller. DARE can perform better with longer sequence length, indicating its potential to select
important behaviors in the long user history. However, on Tmall dataset, TWIN works better with
sequence length 120 than 160 or 200, indicating that TWIN relies on larger embedding dimension
to become effective.

• Superior performance with longer sequences: DARE excels with longer sequences. On
the Tmall dataset with embedding dimension=16, however, TWIN performs worse with
a sequence length of 200 compared to 120. This suggests that DARE effectively captures
the importance of each behavior and leverages long user histories at any setting, while
TWIN relies heavily on embedding dimension and would struggle with an abundance of
historical behaviors when embedding dimension is small.

We also tried our method in the short-sequence modeling (removing the search stage and modeling
the whole sequence). We use the Amazon dataset (He & McAuley, 2016; McAuley et al., 2015)
with the same setup as the state-of-the-art TIN model (Zhou et al., 2024). However, the performance
improvement is marginal (TIN: 0.86291˘0.0015 AUC vs. DARE: 0.86309˘0.0004 AUC). For the
Amazon dataset, the average user history length is no longer than ten. Shorter sequence means fewer
candidate behaviors, so it becomes easier to model behavior importance. Removing the search stage
means the important behaviors will never be discarded by mistake as in long-sequence modeling, so
the attention module will not cause a too severe result even if it is not capable enough. As shown by
TIN Zhou et al. (2024), representation is more critical than attention in short-sequence settings, so
the dominance of representation doesn’t significantly impact performance when the attention task is
relatively easier.

Relevance to modern recommendation systems: It is worth noting that modeling longer user his-
tories is a growing trend in recommendation systems (Pi et al., 2020). Contemporary online systems
increasingly incorporate extended user histories, making short sequence modeling less important.
As this trend continues, the advantages of the DARE model will become more pronounced in today
and future online systems.

D.3 EFFECTS OF ATTENTION AND REPRESENTATION EMBEDDING DIMENSION

In general, increasing the embedding dimension improves model performance. However, in practice,
limitations such as the interaction collapse theory (Guo et al., 2024) or strict time constraints make
it impractical to use arbitrarily large embeddings. To address this, we analyzed various attention-
representation dimension combinations, offering insights that could guide future implementations.
The results are presented in Figures17. A key observation is that the representation embedding
dimension has a stronger impact on model performance compared to the attention embedding di-
mension. This suggests that a balanced approach–using a smaller attention embedding for faster
online processing and a larger representation embedding for enhanced performance–could be an
optimal strategy.
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Figure 17: The influence of attention and representation embeddings on AUC.

Table 4: Overall comparison reported by the means and standard deviations of GAUC (grouped by
category). The best results are highlighted in bold, while the previous best model is underlined.

Setup Embedding Dim. = 16 Embedding Dim. = 64 Embedding Dim. = 128

Dataset Taobao Tmall Taobao Tmall Taobao Tmall

ETA (2021) 0.89900
p0.00372q

0.94908
p0.00121q

0.90980
p0.00084q

0.95918
p0.00046q

0.91144
p0.00050q

0.96230
p0.00054q

SDIM (2022) 0.89128
p0.00097q

0.92408
p0.00084q

0.89496
p0.00088q

0.93320
p0.00067q

0.89780
p0.00098q

0.93062
p0.00112q

DIN (2018) 0.88748
p0.00054q

0.94998
p0.00039q

0.89300
p0.00098q

0.95350
p0.00039q

0.89566
p0.00049q

0.95628
p0.00021q

TWIN (2023) 0.90364
p0.00209q

0.94998
p0.00088q

0.91374
p0.00065q

0.95952
p0.00048q

0.91880
p0.00068q

0.96370
p0.00006q

TWIN (hard) 0.89386
p0.00039q

0.95216
p0.00037q

0.90588
p0.00049q

0.95698
p0.00063q

0.90008
p0.00066q

0.95908
p0.00021q

TWIN (w/ proj.) 0.88038
p0.00405q

0.95012
p0.00079q

0.85372
p0.00427q

0.94618
p0.00497q

0.84696
p0.01012q

0.94794
p0.00235q

TWIN (w/o TR) 0.89190
p0.00081q

0.95340
p0.00053q

0.90098
p0.00081q

0.95524
p0.00036q

0.90628
p0.00095q

0.95570
p0.00115q

TWIN-V2 (2024) 0.87954
p0.00067q

0.93772
p0.00118q

0.88758
p0.00050q

0.94510
p0.00038q

0.89164
p0.00063q

0.94894
p0.00056q

TWIN-4E 0.88864
p0.01365q

0.95278
p0.00031q

0.88810
p0.01560q

0.95570
p0.00051q

0.89448
p0.01595q

0.95148
p0.01229q

DARE (Ours) 0.91240
p0.00036q

0.96062
p0.00021q

0.91712
p0.00052q

0.96392
p0.00012q

0.91966
p0.00033q

0.96582
p0.00013q

E EXTENDED EXPERIMENTAL RESULTS

E.1 GAUC AND LOGLOSS

We also evaluated model performance using additional metrics, including GAUC (group area under
the curve, grouped by category in our experiments) and Logloss (test loss). The results are presented
in Tables 4 and 5. Our findings reveal that AUC and GAUC trends are consistent across all models.
Logloss results largely follow the same trend, with the exception of two models: SDIM and TWIN-
V2. Further analysis indicates that these two models tend to be “conservative.” Let p` represent
the probability of a positive outcome predicted by the model and p´ represent the probability of a
negative outcome. The average value of maxtp`, p´u is 89.55% for DARE, compared to 85.90%
for SDIM and 86.78% for TWIN-V2. The prediction-confidence levels of the other seven models
are similar to DARE, whereas SDIM and TWIN-V2 appear more conservative. This conservatism
may help reduce their loss due to the characteristics of cross-entropy loss, but offers no tangible
benefit for prediction accuracy or practical performance.

E.2 GRADIENT CONFLICT ON TWIN

To better illustrate the universality of gradient conflict, we analyzed conflicts on a per-category basis.
Specifically, each category has its own embedding (a row in the embedding table), we observed the
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Table 5: Overall comparison reported by the means and standard deviations of Logloss.

Setup Embedding Dim. = 16 Embedding Dim. = 64 Embedding Dim. = 128

Dataset Taobao Tmall Taobao Tmall Taobao Tmall

ETA (2021) 0.69203
p0.01410q

0.50732
p0.00724q

0.64648
p0.00546q

0.44156
p0.00509q

0.64268
p0.00692q

0.41796
p0.00399q

SDIM (2022) 0.35402
p0.00183q

0.29586
p0.00262q

0.34250
p0.00289q

0.29016
p0.00270q

0.33376
p0.00220q

0.29238
p0.00447q

DIN (2018) 0.70362
p0.00321q

0.46560
p0.00314q

0.68712
p0.00370q

0.44864
p0.00287q

0.68368
p0.00852q

0.42956
p0.00454q

TWIN (2023) 0.67436
p0.00596q

0.49232
p0.00450q

0.68712
p0.00370q

0.43828
p0.00245q

0.61176
p0.00574q

0.40152
p0.00284q

TWIN (hard) 0.66888
p0.00145q

0.47248
p0.00303q

0.64324
p0.00339q

0.44020
p0.00188q

0.63956
p0.00344q

0.40956
p0.00166q

TWIN (w/ proj.) 0.75762
p0.00854q

0.48282
p0.00266q

0.80758
p0.01286q

0.50514
p0.02384q

0.82670
p0.02353q

0.49166
p0.01193q

TWIN (w/o TR) 0.71484
p0.00368q

0.48388
p0.00785q

0.67618
p0.00223q

0.47148
p0.00716q

0.65368
p0.00542q

0.45886
p0.00225q

TWIN-V2 (2024) 0.37096
p0.00198q

0.27066
p0.00194q

0.35412
p0.00134q

0.24926
p0.00187q

0.34526
p0.00185q

0.23646
p0.00139q

TWIN-4E 0.71226
p0.03604q

0.48144
p0.00234q

0.70654
p0.04449q

0.46276
p0.00164q

0.68412
p0.04719q

0.47432
p0.05169q

DARE (Ours) 0.61922
p0.00257q

0.41826
p0.00181q

0.60132
p0.00341q

0.39548
p0.00289q

0.58960
p0.00411q

0.38204
p0.00142q
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(a) Category-wise conflict in TWIN

Conflict Ratio (%) Average Category Frequency (%)

0„10 1.63
10„20 6.04
20„30 24.15
30„40 45.61
40„50 46.11
50„60 64.81
60„70 62.61
70„80 38.83
80„90 14.52
90„100 2.54

(b) Divide categories into groups by conflict ratio. This table
shows the average category frequency in each group.

Figure 18: Conflict analysis on TWIN. The category frequency is measured by the probability that
a category appears in a batch.

gradient from attention and representation on this category-wise embedding. We calculated the
percentage of iterations in which a conflict was reported for each category, with the results shown in
Figure 18 (The same method is used in Appendix C.3). Notably, 80.91% of categories experienced
conflicts in more than half of the iterations.

To explore whether conclusions like “popular categories are more likely to experience conflict” exist,
we further examined the relationship between category-wise conflict ratio and category frequency.
To do this, we grouped categories based on their conflict ratios and calculated the average
category popularity (measured as the probability of a category appearing in a batch) within each
group. The results are presented in Table 18b. The differences observed are largely due to statistical
instability for categories that appear infrequently (for example, those categories appearing only once
would have either 0% or 100% conflict ratio). However, there is no clear trend indicating that popular
categories are either more or less prone to conflicts. This finding underscores the universality of
gradient conflict in the TWIN model.

E.3 LEARNED ATTENTION

Mutual Information (MI) is a measure of the amount of information that two random variables
share. It quantifies the reduction in uncertainty about one variable given knowledge of another. In
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Figure 19: More case studies of the retrieval performance in search stage.

our paper, we use the standard definition of MI:

IpX;Y q “ Σppx, yq log
ppxqppyq

ppx, yq

where ppxq, ppyq and ppx, yq are computed based on the statistical result of the training data.

More cases of comparison between ground truth mutual information and learned attention score are
shown in Figure 20. Each line contains three pictures, where the first picture is the ground truth
mutual information, while the second and third line is the learned attention score of TWIN and
DARE. Our DARE model is closer to the ground truth in all cases.

E.4 RETRIEVAL PERFORMANCE DURING SEARCH

More case studies of the retrieval result in the search stage are shown in Figure 19.

F LIMITATION

There are also some limitations. We empirically find that linear projection only works with higher
embedding dimensions, and small embedding dimensions would cause a severe “over confidence”
problem. However, we still can’t completely find out how this happened or what the underlying
reasons are causing this strange phenomenon, which is left to future work. Besides, our AUC result
in Section 4.2 indicates that target-aware representation benefits model performance in most cases,
leading to an AUC increase of more than 1% on the Taobao dataset. However, on the Tmall dataset
with embedding dimension = 16, TWIN (w/o TR) outperforms TWIN, which is beyond our expecta-
tions. This is possibly due to some features of the Tmall dataset (e.g. fewer items), but we could not
explain this result convincingly, which is also left to future work. Finally, although two-stage meth-
ods are currently more prevalent, we also notice that there exists some one-stage methods like Yu
et al. (2024). The future of these one-stage methods remains an open question, which is left for our
research community.
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(a) GT mutual information
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(b) TWIN learned correlation
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(c) DARE learned correlation

Figure 20: Comparison of learned attention
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