
A Missing Proofs517

A.1 Proof of Proposition 1518

Definition 2. A metric space is an ordered pair (M,d) where M is a set and d is a metric on M , i.e.,519

a function d : M ⇥M ! R such that for any x, y, z 2 M , the following holds:520

1. d(x, y) � 0, d(x, y) = 0 , x = y,521

2. d(x, y) = d(y, x),522

3. d(x, z) d(x, y) + d(y, z).523

The first two properties are obviously guaranteed by D
⇢
W . As for the triangle inequality,524

Es⇠⇢(s)[DW (✓i(s), ✓k(s)]

= Es⇠⇢(s)[

|A|X

l=1

|✓i(s)� ✓k(s)|]

= Es⇠⇢(s)[

|A|X

l=1

|✓i(s)� ✓j(s) + ✓j(s)� ✓k(s)|]

 Es⇠⇢(s)[

(|A|X

l=1

|✓i(s)� ✓j(s)|+ |✓j(s)� ✓k(s)|)]

= Es⇠⇢(s)[

|A|X

l=1

|✓i(s)� ✓j(s)|] + Es⇠⇢(s)[

|A|X

l=1

|✓j(s)� ✓k(s)|]

= Es⇠⇢(s)[DW (✓i(s), ✓j(s)] + Es⇠⇢(s)[DW (✓j(s), ✓k(s)]

B Proof of Proposition 2525

⇢✓(s) = P (s0 = s|✓) + P (s1 = s|✓) + ...+ P (sT = s|✓)

L.L.N.
= lim

N!1

PN
i=1

I(s0 = s|⌧i)
N

+

PN
i=1

I(s1 = s|⌧i)
N

+ ...+

PN
i=1

I(sT = s|⌧i)
N

= lim
N!1

PT
j=0

PN
i=1

I(sj = s|⌧i)
N

⇢✓(s) =
NX

i=1

TX

j=0

I(sj = s|⌧i)
N

E[⇢✓(s)� ⇢✓(s)] = 0

C Implementation Details526

C.1 More Details on WSR527

WSR: Penalty Method The Penalty Method considers the constraints of Eq.(6) by putting con-528

straint g(✓) into a penalty term, followed by solving the following unconstrained problem in an529

iterative manner,530

max
✓2⇥

f(✓) +
1� ↵

↵
min{g(✓), 0}, (8)

The limit of the above unconstrained problem when ↵ ! 0 then leads to the solution of the original531

constrained problem. As an approximation, WSR chooses a fixed weight ↵, and uses the gradient of532

r✓f + 1�↵
↵ r✓g instead of r✓f + 1�↵

↵ r✓ min{g(✓), 0}, thus the final solution will intensely rely533

on the selection of ↵.534

14

C.2 Calculation of DW535

We use deterministic part of policies in the calculation of DW , i.e., we remove the Gaussian noise on536

the action space in PPO and use DW (a1, a2) = |a1 � a2|.537

C.3 Network Structure538

We use MLP with 2 hidden layers as our actor models in PPO. The first hidden layer is fixed to539

have 32 units. We choose to use 10, 64 and 256 hidden units for the three tasks respectively in all of540

the main experiments, after taking the success rate, performance and computation expense (i.e. the541

preference to use less unit when the other two factors are similar) into consideration.542

C.4 Training Timesteps543

We fix the training timesteps in our experiments. The timesteps are fixed to be 1M in Hopper-v3,544

1.6M for Walker2d-v3 and 3M for HalfCheetah-v3.545

D Visualize Diversity546

D.1 Mujoco Locomotion547

In this section, we provide some qualitative results of IPD on the Mujoco locomotion tasks. In all548

of our experiments we use the vanilla Mujoco locomotion benchmarks, with the default settings on549

defining healthy states. Although otherwise the visualization of learned policies might become more550

diverse (e.g., a Hopper agent may learn to stand-up after falling down while another agent may learn551

to move forward on the ground if we set the z-axis healthy threshold as 0).552

With the method of IPD, the Hopper policies (Figure 5) learns to jump further and avoids falling553

down rather instead of just jumping and falling down (Figure 6). In the Walker2d environment, the554

color of purple indicates the left leg is visible. It can be seen that the IPD policies (Figure 7) learn to555

use both left and right legs in walking, while the PPO policies usually learn jumping. (Figure 8). In556

HalfCheetah, the IPD policies (Figure 9) perform much better than the PPO policies (Figure 10). The557

IPD policies leran to run with head-downward (Figure 9 line 1), head-upward (Figure 9 line 3), and558

forward (Figure 9 line 5) while the PPO policies are always head-downward.559

In Hopper and HalfCheetah, IPD is able to improve the primal task performance by avoiding always560

getting trapped in some certain sub-optimal behaviors.561

15

Figure 5: The visualization of policy behaviors of agents trained by our method in Hopper-v3 environment.
Agents learn to jump with different strides.

Figure 6: The visualization of policy behaviors of agents trained by PPO in Hopper-v3 environment. Most
agents learn a policy that can be described as Jump as far as possible and fall down, leading to relative poor
performance.

16

Figure 7: The visualization of policy behaviors of agents trained by our method in Walker2d-v3 environment.
Instead of bouncing at the ground using both legs, our agents learns to use both legs to step forward.

Figure 8: The visualization of policy behaviors of agents trained by PPO in Walker2d-v3 environment. Most of
the PPO agents only learn to use their right leg to support the body and jump forward.

17

Figure 9: The visualization of policy behaviors of agents trained by our method in HalfCheetah-v3 environment.
Our agents run much faster compared to PPO agents and at the mean time several patterns of motion have
emerged.

Figure 10: The visualization of policy behaviors of agents trained by PPO in HalfCheetah-v3 environment. Since
we only draw fixed number of frames in each line, in the limited time steps the PPO agents can not run enough
distance to leave the range of our drawing, which shows that our agents run much faster.

18

	Introduction
	Related Work
	Methods
	Measuring the Difference between Policies
	Estimation of DWq(i,j) and the Selection of q(s)
	Constrained Optimization Formulation for Novel Policy Generation
	Practical Novel Policy Generation Methods

	Experiments
	The Four Reward Maze Problem
	The MuJoCo Benchmark
	Novel Policy Generation without Performance Decay

	Conclusion
	Missing Proofs
	Proof of Proposition 1

	Proof of Proposition 2
	Implementation Details
	More Details on WSR
	Calculation of DW
	Network Structure
	Training Timesteps

	Visualize Diversity
	Mujoco Locomotion

