
A Detailed experimental setup509

A.1 Atari environment510

We use a selection of games from the widely used Atari Learning Environment (ALE, [Bellemare511

et al., 2013]). It is configured to not expose the ‘life-loss’ signal, and use the full action set (18512

discrete actions) for all games (not the per-game reduced effective action spaces). We also use the513

sticky-action randomisation as in [Machado et al., 2018]. Episodes time-out after 108k frames (i.e.514

30 minutes of real-time game play).515

Differently from most past Atari RL agents following DQN [Mnih et al., 2015], our agent uses the raw516

210× 160 RGB frames as input to its value function (one at a time, without frame stacking), though517

it still applies a max-pool operation over the most recent 2 frames to mitigate flickering inherent to518

the Atari simulator. As in most past work, an action-repeat of 4 is applied, over which rewards are519

summed.520

A.2 Agent521

The agent used in our Atari experiments is a distributed implementation of a value- and replay-based522

RL algorithm derived from the Recurrent Replay Distributed DQN (R2D2) architecture [Kapturowski523

et al., 2019]. This system comprises of a fleet of 120 CPU-based actors (combined with a single TPU524

for batch inference) concurrently generating experience and feeding it to a distributed experience525

replay buffer, and a single TPU-based learner randomly sampling batches of experience sequences526

from replay and performing updates of the recurrent value function by gradient descent on a suitable527

RL loss.528

The value function is represented by a convolutional torso feeding into a linear layer, followed by a529

recurrent LSTM [Hochreiter and Schmidhuber, 1997] core, whose output is processed by a further530

linear layer before finally being output via a Dueling value head [Wang et al., 2016]. The exact531

parameterisation follows the slightly modified R2D2 presented in [Dabney et al., 2020] and [Schaul532

et al., 2021], see Table 1 for a full list of hyper-parameters. It is trained via stochastic gradient descent533

on a multi-step TD loss (more precisely, a 5-step Q-learning loss) with the use of a periodically534

updated target network [Mnih et al., 2015] for bootstrap target computation, using minibatches of535

sampled replay sequences. Replay sampling is performed using prioritized experience replay [Schaul536

et al., 2016] with priorities computed from sequences’ TD errors following the scheme introduced537

in [Kapturowski et al., 2019]. As in R2D2, sequences of 80 observations are used for replay, with538

a prefix of 20 observations used for burn-in. In a slight deviation from the original, our agent uses539

a fixed replay ratio of 1, i.e. the learner or actors get throttled dynamically if the average number540

of times a sample gets replayed exceeds or falls below this value; this makes experiments more541

reproducible and stable.542

Actors periodically pull the most recent network parameters from the learner to be used in their543

exploratory policy. In addition to feeding the replay buffer, all actors periodically report their reward,544

discount and return histories to the learner, which then calculates running estimates of reward,545

discount and return statistics to perform return-based scaling [Schaul et al., 2021]. If applicable, the546

episodic returns from the actors are also sent to the non-stationary bandit(s) that adapt the distribution547

over exploration parameters (e.g., target ratios ρ or period lengths nX ). In return, the bandit(s)548

provide samples from that distribution to each actor at the start of a new episode, as in [Schaul et al.,549

2019].550

Our agent is implemented with JAX [Bradbury et al., 2018], uses the Haiku [Hennigan et al., 2020],551

Optax [Budden et al., 2020b], Chex [Budden et al., 2020a], and RLax [Hessel et al., 2020] libraries552

for neural networks, optimisation, testing, and RL losses, respectively, and Reverb [Cassirer et al.,553

2020] for distributed experience replay.554

A.3 Training and evaluation protocols555

All our experiments ran for 200k learner updates. With a replay ratio of 1, sequence length of 80556

(adjacent sequences overlapping by 40 observations), a batch size of 64, and an action-repeat of 4557

this corresponds to a training budget of 200000× 64× 40× 1× 4 ≈ 2B environment frames (which558

15



Neural Network
Convolutional torso channels 32, 64, 128, 128

Convolutional torso kernel sizes 7, 5, 5, 3
Convolutional torso strides 4, 2, 2, 1

Pre-LSTM linear layer units 512
LSTM hidden units 512

Post-LSTM linear layer units 256
Dueling value head units 2× 256 (separate linear layer for each of value and advantage)

Acting
Initial random No-Ops None

Sticky actions Yes (prob 0.25)
Action repeats 4

Number of actors 120
Actor parameter update interval 400 environment steps

Replay
Replay sequence length 80 (+ prefix of 20 of burn-in)

Replay buffer size 4× 106 observations (105 part-overlapping sequences)
Priority exponent 0.9

Importance sampling exponent 0.6
Fixed replay ratio 1 update per sample (on average)

Learning
Multi-step Q-learning k = 5
Off-policy corrections None

Discount γ 0.997
Reward clipping None

Return-based scaling as in [Schaul et al., 2021]
Mini-batch size 64

Optimizer & settings Adam [Kingma and Ba, 2014],
learning rate η = 2× 10−4, ε = 10−8,

momentum β1 = 0.9, second moment β2 = 0.999
Gradient norm clipping 40

Target network update interval 400 updates
RND settings

Convolutional torso channels 32, 64, 64
Convolutional torso kernel sizes 8, 4, 3

Convolutional torso strides 4, 2, 1
MLP hidden units 128

Image downsampling stride 2× 2

Table 1: Hyper-parameters and settings.

is less than 10% of the original R2D2 budget). In wall-clock-time, one such experiment takes about559

12 hours (while 2 TPUs and 120 CPUs).560

For evaluation, a separate actor (not feeding the replay buffer) is running alongside the agent561

using a greedy policy (ε = 0), and pulling the most recent parameters at the beginning of each562

episode. We follow standard evaluation methodology for Atari, reporting mean and median ‘human-563

normalised’ scores as introduced in [Mnih et al., 2015] (i.e. the episode returns are normalised so that564

0 corresponds to the score of a uniformly random policy while 1 corresponds to human performance),565

as well as the mean ‘human-capped’ score which caps the per-game performance at human level.566

Error bars or shaded curves correspond to the minimum and maximum values across these seeds.567

A.4 Random network distillation568

The agent setup for the XI experiments differs in a few ways from the default described above. First,569

a separate network is trained via Random Network Distillation (RND, [Burda et al., 2018]), which570

consists of a simple convnet with an MLP (no recurrence); for detailed settings, see RND section571

in Table 1. The RND prediction network is updated jointly with the Q-value network, on the same572

data. The intrinsic reward derived from the RND loss is pursued at the same discount γ = 0.997 as573

16



the external reward in G. The Q-value network is augmented with a second head that predicts the574

Q-values for the intrinsic reward; this branches off after the ‘Post-LSTM linear layer’ (with 256), and575

is the same type of dueling head, using the same scale normalisation method [Schaul et al., 2021]. In576

addition, the 5-step Q-learning is adapted to use a simple off-policy correction, namely trace-cutting577

on non-greedy actions (akin to Watkins Q(λ) with λ = 1), separately for each learning head. The XI578

policy is the greedy policy according to the Q-values of the second head. Note that because of these579

differences in set-up, and especially because the second head can function as an auxiliary learning580

target, it may be misleading to compare XI and XU results head-to-head: we recommend looking at581

how things change within one of these settings (across variants of intra-episodic exploration or the582

baselines), rather than between them.583

A.5 Homeostasis584

The role of the homeostasis mechanism is to transform a sequence of scalar signals xt ∈ R (for585

1 ≤ t ≤ T ) into a sequence of binary switching decisions yt ∈ {0, 1} so that the average number of586

switches approximates a desired target rate ρ, that is , 1
T

∑
t yt ≈ ρ, and high values of xt correspond587

to a higher probability of yt = 1. Furthermore, the decision at any point yt can only be based on the588

past signals x1:t. One way to achieve this is to exponentiate x (to turn it into a positive number x+)589

and then set an adaptive threshold to determine when to switch. Algorithm 1 describes how this is590

done in pseudo-code. The implementation defines a time-scale of interest τ := min(t, 100/ρ), and591

uses it to track moving averages of three quantities, namely the mean and variance of x, as well as592

the mean of x+.593

Algorithm 1 Homeostasis

Require: target rate ρ
1: initialize x← 0, x2 ← 1, x+ ← 1
2: for t ∈ {1, . . . , T} do
3: obtain next scalar signal return xt
4: set time-scale τ ← min(t, 100ρ )

5: update moving average x← (1− 1
τ )x+ 1

τ xt
6: update moving variance x2 ← (1− 1

τ )x
2 + 1

τ (xt − x)
2

7: standardise and exponentiate x+ ← exp

(
xt−x√
x2

)
8: update transformed moving average x+ ← (1− 1

τ )x
+ + 1

τ x
+

9: sample yt ∼ Bernoulli
(
min

(
1, ρ x+

x+

))
10: end for

In our informed trigger experiments we use value promise as the particular choice of trigger signal594

xt = Dpromise(t− k, t). As discussed in Section3.1, when using a bandit, its choices for target rates595

are ρ ∈ {0.1, 0.01, 0.001, 0.0001}.596

B Other variants597

The results we report in the main paper are but a subset of the possible variants that could be tried in598

this rather large design space. In fact, we have done initial investigations on a few of these, which we599

report below.600

B.1 Additional explore modes601

Softer explore-exploit modes The all-or-nothing setting with a greedy exploit mode and a uniform602

random explore mode is clear and simple, but it is plausible that less extreme choices could work603

well too, such as an ε-greedy explore mode with ε = 0.4 and an ε-greedy exploit mode with ε = 0.1.604

We denote this pairing as XS . Preliminary results (see Figure 14) indicate that overall performance is605

mostly similar to XU , possibly less affected by the choice of granularity and triggers.606

17



Figure 8: Preliminary results comparing different informed triggers: value-discrepancy, action-
mismatch, and variance-based, when using XI exploration mode.

Different discounts Another category of explore mode (Xγ) is to pursue external reward but at a607

different time-scale (e.g., a much shorter discount like γ = 0.97). This results in less of a switch608

between explore and exploit modes, but rather in an alternation of long-term and short-term reward609

pursuits, producing a different kind of behavioural diversity. So far, we do not have conclusive results610

to report with this mode.611

B.2 Additional informed triggers612

Action-mismatch-based triggers Another type of informed trigger is to derive an uncertainty613

estimate from the discrepancies across an ensemble. For example, we can train two heads that use an614

identical Q-learning update but are initialised differently. From that, we can measure multiple forms615

of discrepancy, a nice and robust one is to rank the actions according to each head and compute how616

large the overlap among the top-k actions is.617

Variance-based triggers Another type of informed trigger is to measure the variance of the Q-618

values themselves, taken across such an ensemble (of two heads) and use that as an alternative619

uncertainty-based trigger.620

Figure 8 shows preliminary results on how performance compares across these two new informed621

triggers, in relation to the value-promise one from Section 2.4. Overall, the action-mismatch trigger622

seems to have an edge, at least in this setting, and we plan to investigate this further in the future.623

From other probing experiments, it appears that for other explore modes, different trigger signals are624

more suitable.625

C Additional results626

This section includes additional results. Wherever the main figures included a subset of games627

or variants (Figures 4, 5, 7) we show full results here (Figures 10, 11, 12, respectively), and the628

aggregated performances of Figure 3 are split out into individual games in Figure 9. Also, some of629

the learning curves from Figures 4 and 10 are shown in Figure 14. In addition, Figure 13 illustrates630

how the internal bandit probabilities evolve over time based on starting mode for the experiments631

shown in Figure 6.632

18



Figure 9: Extension of Figure 3, showing the characteristic space of exploration and how different
explore-exploit proportions translate to performance, for XU mode (top) and XI mode (bottom).

19



Figure 10: Extension of figure 4 for XU mode (top) and XI mode (bottom).

20



Figure 11: Extension of Figure 5 to the 7 Atari games we experimented with. First two columns:
temporal structures for a blind, step-based trigger; the 15 episodes we randomly selected correspond
to 100 and 1000 fixed switching steps; the exploration period was fixed to 10 steps. Last two
columns: temporal structures obtained with an equivalent informed trigger and corresponding to
target rates of 0.01 and 0.001, respectively.

21



Figure 12: Extension of Figure 7, showing behavioural characteristics (exploration proportion
pX ) between two forms of blind switching, step-based (left) and probabilistic (center), with their
corresponding performances (right).

22



Figure 13: Extension of Figure 6, showing the performance differences between two blind intra-
episode experiments, starting either in explore (X , rows 2 and 4) or in exploit mode (G, rows 1
and 3). We show the bandit arm probabilities for each of the step sizes nX and how they change
over the course of learning for XU (top two rows) and for XI modes (bottom two rows). Findings:
for symmetric blind triggers, starting with exploitation results in slower rates of switching (high
nX = nG like red and green); in contrast, starting with exploration results in behaviours promoting
higher switching rates (small nX = nG like blue and orange). Note that these preferences are not
matching perfectly across all games, and thus results are domain-dependent.

23



Figure 14: Comparing 3 different X modes on the same 4 experimental settings and across 7 Atari
games: uniform exploration (XU , left), soft-epsilon-based exploration (XS , center), and intrinsic
exploration (XI , right).

24


