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Decoupling General and Personalized Knowledge in Federated
Learning via Additive and Low-rank Decomposition
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ABSTRACT
To address data heterogeneity, the key strategy of Personalized
Federated Learning (PFL) is to decouple general knowledge (shared
among clients) and client-specific knowledge, as the latter can have
a negative impact on collaboration if not removed. Existing PFL
methods primarily adopt a parameter partitioning approach, where
the parameters of a model are designated as one of two types: pa-
rameters shared with other clients to extract general knowledge and
parameters retained locally to learn client-specific knowledge. How-
ever, as these two types of parameters are put together like a jigsaw
puzzle into a single model during the training process, each param-
eter may simultaneously absorb both general and client-specific
knowledge, thus struggling to separate the two types of knowledge
effectively. In this paper, we introduce FedDecomp, a simple but
effective PFL paradigm that employs parameter additive decompo-
sition to address this issue. Instead of assigning each parameter of
a model as either a shared or personalized one, FedDecomp decom-
poses each parameter into the sum of two parameters: a shared one
and a personalized one, thus achieving a more thorough decoupling
of shared and personalized knowledge compared to the parameter
partitioning method. In addition, as we find that retaining local
knowledge of specific clients requires much lower model capacity
compared with general knowledge across all clients, we let the
matrix containing personalized parameters be low rank during the
training process. Moreover, a new alternating training strategy is
proposed to further improve the performance. Experimental results
across multiple datasets and varying degrees of data heterogeneity
demonstrate that FedDecomp outperforms state-of-the-art methods
up to 4.9%.

CCS CONCEPTS
• Computing methodologies→ Distributed artificial intelli-
gence.

KEYWORDS
Personalized Federated Learning, Data Heterogeneity, Parameter
Decomposition
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Parameter Matrix

Partition
∪

Shared ParameterGeneral Knowledge

Personalized ParameterClient-specific Knowledge

Figure 1: A toy example to illustrate the partition based
method.

1 INTRODUCTION
Federated learning (FL) [28] allows clients to collaboratively train
a global model without directly sharing their raw data. It has gar-
nered widespread attention in the design of multimedia artificial
intelligence systems [4, 20, 36, 41]. A central challenge in FL is data
heterogeneity, where the data distributions across diverse clients
are not independently and identically distributed (non-IID). Such
disparities in data distributions hamper the training of the global
model, leading to a decrease in the performance of FL [10, 22, 39].

To confront this challenge, the concept of Personalized Federated
Learning (PFL) has been introduced. Within PFL studies, it is widely
accepted that the knowledge learned by a client should be decou-
pled into two categories: the general knowledge across all clients
and client-specific knowledge for this client [6, 34, 38]. The former
is used for sharing among clients to promote collaboration, while
the latter is retained locally to keep personalization and reduce the
impact of data heterogeneity on collaboration. This understanding
prompts mainstream PFL research to propose a partition based
method where each parameter in the client’s personalized model is
designated as one of two types before training begins: parameter
shared with other clients to extract general knowledge and parame-
ter retained in personalization to learn client-specific knowledge. A
multitude of studies have emerged. For instance, FedPer [2] focuses
on personalizing the classifier, whereas FedBN [24] targets the per-
sonalization of Batch Normalization layers. FedCAC [34] proposes
to select personalized parameters based on measurable metrics.

Although the aforementioned methods have achieved some suc-
cess and attractedwidespread attention, they still haven’t effectively
separated the two types of knowledge. This is because the personal-
ized parameters and shared parameters of a model learn from local
data together as a whole, allowing each parameter to potentially
absorb both general and client-specific knowledge simultaneously.
This means that personalized parameters may contain some gen-
eral knowledge that should be shared, and shared parameters may
contain some client-specific knowledge that should be personalized.
Fig. 1 is a toy example that illustrates this point intuitively. The
square on the far left represents a personalized model parameter

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Parameter Matrix
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Figure 2: A toy example to illustrate ourmethod. The depth of
blue/orange in the shared/personalized parameters indicates
the amount of knowledge from the corresponding parame-
ters in the original parameter matrix.

matrix containing nine parameters. The blue diagonal rectangle and
the orange diagonal rectangle within each parameter represent the
general knowledge and personalized knowledge contained in that
parameter, respectively, with their area size indicating the amount
of knowledge. It can be seen that each parameter contains both
general and personalized knowledge. The partition based method
divides some parameters into shared parameters (as shown by the
blue squares), and the rest into personalized parameters (as shown
by the orange squares). Obviously, this "black or white" partitioning
method cannot achieve knowledge decoupling within parameters,
leading to some client-specific knowledge in shared parameters
being shared, thereby reducing the degree of model personaliza-
tion; while some shared knowledge in personalized parameters is
personalized, thus reducing the level of client collaboration.

In this paper, we propose a new PFL paradigm based on parame-
ter additive decomposition, called FedDecomp, to address the afore-
mentioned issues. Unlike methods based on partitioning, which
classify a parameter as either personalized or shared, FedDecomp
decomposes each parameter into the sum of two parameters be-
fore training begins: one shared to facilitate knowledge exchange
among clients and one retained locally to maintain personalization.
Furthermore, we find that in PFL, general knowledge should be
retained in shared parameters with high model capacity to cover all
clients, while a client’s specific knowledge can be learned by per-
sonalized parameters with lower model capacity as a supplement
to general knowledge. Hence, FedDecomp constrains the matrix
containing personalized parameters to be low rank. This allows the
personalized part to focus its learning on the most critical aspects of
the local knowledge and reduce the overfitting to the local knowl-
edge. Consequently, it helps to retain a significant portion of the
general knowledge acquired from other clients, thereby enhancing
generalization. Fig. 2 illustrates our proposed method. It can be seen
that in our method, both the general knowledge and client-specific
knowledge in each parameter can be decoupled and accordingly
captured by shared and personalized parameters, achieving more
efficient client collaboration and personalization.

In addition, different from the current methods which simply
train personalized parameters and shared parameters simultane-
ously, we examine the training order of shared and personalized
parameter matrices during local updates. Specifically, we propose
to initially train the personalized low-rank part to mitigate the

influence of non-IID data, followed by training the shared full-rank
part. Our findings suggest that adopting an alternating approach,
unlike concurrent training methods, yields greater benefits.

Our primary contribution in this paper can be summarized as
follows:

• We introduce a new method of decomposing shared and person-
alized parameters in PFL, namely FedDecomp. Specifically, we
decompose each layer of the personalized model into the sum
of a shared full-rank part to preserve general knowledge and a
personalized low-rank part to preserve client-specific knowledge.

• We introduce an innovative training strategy designed to op-
timize FedDecomp, effectively mitigating the implications of
non-IID data and significantly boosting performance.

• We evaluate FedDecomp across multiple datasets and under var-
ied non-IID conditions. Our findings underscore the efficacy of
the FedDecomp method we propose.

2 RELATEDWORK
PFL has emerged as a prevalent research direction to handle the non-
IID problem in FL. Current PFL methods can be mainly divided into
meta-learning-based methods [1, 8], fine-tuning-based methods [5,
17], clustering-based methods [3, 31], model-regularization-based
methods [23, 33], personalized-aggregation-based methods [14, 40],
and parameter-partition-based methods. Among these methods, the
parameter-partition-based method has attracted a lot of attention
due to its simplicity and effectiveness.

Parameter-partition-based method. The core idea of this
kind of method is to share part of the original model’s parameters
while personalizing the other part. Representative works include
selecting specific layers for personalization, such as FedPer [2], Fe-
dRep [7], and GPFL [38] proposing to personalize classifiers. FedBN
[24] and MTFL [29] suggest to personalize the Batch Normalization
(BN) layers. LG-FedAvg [25] and FedGH [37] propose to person-
alize feature extractor. Other works employ Deep Reinforcement
Learning (DRL) or hypernetworks technologies to automate the
selection of specific layers for personalization [27, 32]. Still, some
other research no longer selects personalized parameters based on
layers but on each individual parameter, making more fine-grained
choices to personalize parameters sensitive to non-IID data [34]. In
recent years, some studies propose another kind of personalized pa-
rameter partitioning method. Unlike the previous method, the core
idea of this method is to add additional personalized layers to the
original model. For example, ChannelFed [42] introduces a person-
alized attention layer to redistribute weights for different channels
in a personalized manner. [30] proposes to add a bottleneck module
for personalization after each feedforward layer.

Parameter-decomposition-based method. A few PFL works
also utilize parameter decomposition techniques. For instance, Fed-
para [15] decomposes the personalized model parameter matrix
into the Hadamard product of two low-rank matrices. It has been
proven that the parameter matrix after the Hadamard product still
possesses a high rank, thus not sacrificing model capacity. This way,
it only requires uploading the low-rank matrix with fewer param-
eters during training, thereby reducing communication overhead.
Factorized-FL [16] decomposes the model parameter matrix into
the product of a column vector and a row vector. During training, it
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Figure 3: Overview of one client in FedDecomp in one communication round.

personalizes the row vector while sharing the column vector. This
is essentially a low-rank decomposition technique aimed at reduc-
ing communication overhead by only uploading the column vector.
FedSLR [13], on the other hand, performs a low-rank decomposi-
tion of the parameter matrix when the server distributes the model,
thus reducing the communication overhead of the downlink.

It is evident that our approach differs significantly from the
current decomposition-based methods, from objectives to method-
ologies. The current methods mainly focus on the communication
issue in PFL by reducing the amount of communication between
clients and the server through low-rank decomposition of parame-
ters. Our paper, however, focuses on the decoupling and extraction
of knowledge in PFL. Through additive decomposition, it decouples
the learning of general knowledge and client-specific knowledge. By
constraining the personalized matrix to be low-rank, it coordinates
the relationship between general and client-specific knowledge.
3 METHOD
3.1 Overview of FedDecomp
We first give an overview of FedDecomp. As illustrated in Fig. 3,
each layer of client 𝑖’s personalized model is decomposed into the
sum of a full-rank matrix and a low-rank matrix. The training pro-
cess in each communication round can be summarized as follows:
1) each client 𝑖 freezes its full-rank matrices 𝝈𝑖 and updates the
low-rank matrices 𝝉𝑖 . 2) Then, each client 𝑖 turns to update 𝝈𝑖 and
freeze 𝝉𝑖 . After local updating, all clients upload the full-rank part
to the server while keeping the low-rank part private. 3) The server
receives clients’ full-rank matrices and aggregates them to gener-
ate a global model 𝝈 . After doing this, the server sends 𝝈 back to
all clients. 4) Each client receives the global model and uses it to
initialize the full-rank matrices.

3.2 Problem Definition of PFL
PFL, in contrast to traditional FL algorithms that train a general
model for all clients, strives to develop a personalized model for
each client 𝑖 , denoted as 𝑤𝑖 , specializing in capturing the unique
characteristics of its local data distribution 𝐷𝑖 . In recent PFL re-
search, there is a consensus that the knowledge acquired by indi-
vidual clients comprises both general knowledge and client-specific

knowledge. In non-IID scenarios, since different clients have dis-
tinct data distributions (i.e., 𝐷𝑖 ≠ 𝐷 𝑗 , 𝑖 ≠ 𝑗 ), it is difficult to extract
general knowledge and thus brings challenges to client collabora-
tion. To address this problem, PFL decouples𝑤𝑖 into a shared part
𝜎 and a personalized part 𝜏𝑖 to learn general knowledge and client-
specific knowledge respectively. Formally, the training objective
can be formulated as

min
𝜎,𝜏1,𝜏2,...𝜏𝑁

𝑁∑︁
𝑖=1

𝐿𝑖 (𝜎, 𝜏𝑖 ;𝐷𝑖 ), (1)

where 𝐿𝑖 (𝜎 ;𝜏𝑖 ;𝐷𝑖 ) denotes the loss function of client 𝑖 and 𝑁 is the
total number of clients. To optimize the target function in Eq. (1),
recent studies have put forth various PFL methods to partition 𝜏𝑖
and 𝜎 . While these endeavors have shown promise, the question
of how to further refine the decomposition of these two parameter
components still presents an unresolved challenge.

3.3 Low-rank Parameter Decomposition
We observe that shared parameters responsible for extracting gen-
eral knowledge benefit from a high model capacity. In contrast,
personalized parameters are tasked with learning knowledge that
complements the general understanding for specific local tasks
(i.e., client-specific knowledge), therefore, it is sufficient to use a
low-rank matrix to represent these personalized parameters. Based
on this observation, we propose FedDecomp, an additive low-rank
decomposition technique. Details about this method are as follows.

Additive Decomposition of Personalized Models: Assume
that each personalized model has a set of weights 𝜽𝒊 = {𝜃𝑘

𝑖
}𝐿
𝑘=1,

where 𝜃𝑘
𝑖
is the weights for the 𝑘-th layer and 𝐿 is the total layer

number. Each weight matrix 𝜃𝑘
𝑖
is originally full-rank. In FedDe-

comp, we decompose 𝜃𝑘
𝑖
as

𝜃𝑘𝑖 = 𝜎𝑘𝑖 + 𝜏𝑘𝑖 , 𝑘 ∈ [1, 𝐿], (2)

where 𝜎𝑘
𝑖
, 𝑘 ∈ [1, 𝐿] is a full-rank parameter matrix that is shared

across all clients, and 𝜏𝑘
𝑖
, 𝑘 ∈ [1, 𝐿] is a personalized low-rank

parameter matrix. In the following, we employ the notation 𝜽 𝑖 , 𝝈𝑖
and 𝝉𝑖 to denote the complete model parameter set, the full-rank
parameter set, and the low-rank parameter set specific to client 𝑖 ,
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Figure 4: A toy example to illustrate the alternating training in FedDecomp.

respectively. Additionally, we use 𝜃𝑘
𝑖
, 𝜎𝑘
𝑖
, and 𝜏𝑘

𝑖
to represent the

parameter matrices for layer 𝑘 within client 𝑖 .
Next, we present the methods for imposing low-rank constraints

on 𝝉𝑖 .
Low-rank Decomposition of Fully-Connected Layers: For

fully-connected layers, the dimension of 𝜏𝑘
𝑖
is 𝐼 ×𝑂 , where 𝐼 and

𝑂 represent the input and output dimensions. We constrain 𝜏𝑘
𝑖

through a low-rank decomposition as follows:

𝜏𝑘𝑖 = 𝐵𝑘𝑖 𝐴
𝑘
𝑖 , (3)

where 𝐵𝑘𝑖 ∈ R𝐼×(𝑅𝑙 ·min(𝐼 ,𝑂 ) ) and 𝐴𝑘𝑖 ∈ R(𝑅𝑙 ·min(𝐼 ,𝑂 ) )×𝑂 .

The 𝑅𝑙 serves as a hyper-parameter designed to regulate the rank
of 𝜏𝑘

𝑖
within fully-connected layers. Its value falls within the range

of 0 < 𝑅𝑙 ≤ 1.
Low-rank Decomposition of Convolutional Layers: In con-

trast to fully-connected layers, convolutional layers involve multi-
ple kernels, resulting in 𝜏𝑘

𝑖
∈ 𝐼 ×𝑂×𝐾×𝐾 dimensions. However, we

can still apply a low-rank decomposition to constrain 𝜏𝑘
𝑖
as follows:

𝜏𝑘∗𝑖 = 𝐵𝑘𝑖 𝐴
𝑘
𝑖 ∈ R(𝐼 ·𝐾 )×(𝑂 ·𝐾 ) , (4)

𝐵𝑘𝑖 ∈ R(𝐼 ·𝐾 )×(𝑅𝑐 ·min(𝐼 ,𝑂 ) ·𝐾 ) and 𝐴𝑘𝑖 ∈ R(𝑅𝑐 ·min(𝐼 ,𝑂 ) ·𝐾 )×(𝑂 ·𝐾 ) ,

𝜏𝑘𝑖 = Reshape(𝜏𝑘∗𝑖 ) ∈ R𝐼×𝑂×𝐾×𝐾 .

The 𝑅𝑐 is a hyper-parameter used to control the rank of 𝜏𝑘
𝑖
within

convolutional layers. Its value is within the range of 0 < 𝑅𝑐 ≤ 1.
During training, both 𝐵 and 𝐴 serve as trainable parameter ma-

trices. We initialize 𝐴 with random Gaussian values and 𝐵 with
zeros, which means 𝜏𝑘

𝑖
starts as zero at the beginning of training.

The hyper-parameters 𝑅𝑙 and 𝑅𝑐 play crucial roles in controlling
the rank of parameters within fully connected and convolutional
layers, respectively. As the rank increases, the learning capacity
of personalized parameters within the model gradually improves.
However, if the rank is set too low, 𝝉𝑖 may struggle to effectively
capture client-specific knowledge, making 𝝈𝑖 highly susceptible
to non-IID data distributions. This, in turn, negatively impacts
collaboration among clients. In contrast, if the rank is too large, 𝝉𝑖
may start to absorb some of the general knowledge that should be
learned by 𝝈𝑖 , diminishing the level of collaboration among clients.
For simplicity, in the FedDecomp approach, we apply the same 𝑅𝑐
to all convolutional layers and the same 𝑅𝑙 to all fully-connected
layers. This simplification streamlines the model architecture and
hyper-parameter tuning process.

3.4 Coordinate Training Between 𝜎 and 𝜏
To better extract general knowledge, in contrast to the common
practice where personalized and shared parameters are trained
simultaneously, we find that a more effective strategy is to initially
train the low-rank parameters. This alternating approach helps
mitigate the impact of non-IID data before proceeding to train
the full-rank parameters. Formally, in each communication round
𝑡 ∈ [1,𝑇 ], we first optimize the low-rank parameters 𝝉𝑖 for 𝐸lora
epochs by

𝝉𝑡+1𝑖 = argmin
𝝉𝑖

𝐿𝑖 (𝝉𝑡𝑖 ,𝝈
𝑡
𝑖 ;𝐷𝑖 ). (5)

Then optimize the full-rank parameters 𝝈𝑖 for 𝐸global epochs by

𝝈𝑡+1𝑖 = argmin
𝝈𝑖

𝐿𝑖 (𝝉𝑡+1𝑖 ,𝝈𝑡𝑖 ;𝐷𝑖 ). (6)

We set 𝐸lora + 𝐸global = 𝐸, where 𝐸 is the total number of local
update epochs in one round. These hyper-parameters play an im-
portant role in balancing the learning dynamics between two key
components, 𝝈𝑖 and 𝝉𝑖 . When 𝐸lora is set higher, it results in 𝝈𝑖
learning less knowledge. Consequently, the degree of knowledge
sharing among clients diminishes. In contrast, if 𝐸lora is set too low,
𝝈𝑖 ends up acquiring a significant amount of client-specific knowl-
edge. This scenario increases the risk of clients sharing knowledge
that is more susceptible to non-IID data. In special cases, when
𝐸lora = 0, the FedDecomp framework degenerates into FedAvg.
Similarly, when 𝐸global = 0, FedDecomp transforms into local train-
ing with low-rank parameters, without any collaborative efforts
among clients.

After local updating, each client 𝑖 uploads 𝝈𝑡+1
𝑖

to the server
while keeping the 𝝉𝑡+1

𝑖
private. The server computes a global model

𝝈𝑡+1 by aggregating all clients’ 𝝈𝑡+1
𝑖

through

𝝈𝑡+1 =
1
𝑁

𝑁∑︁
𝑖=1

𝝈𝑡+1𝑖 , (7)

and sends it back to clients. The detailed training process is sum-
marized in the Algorithm 1.

To explain our intuition for proposing alternating training, we
employ a toy example to illustrate the local update phase of each
client’s personalized model within the parameter space. As shown
in Fig. 4, the yellow ★ and red △ denote the optimum points of the
global model on all clients’ data (global loss minimum point) and the
personalized model on the client’s data (local loss minimum point),
respectively. Under the influence of non-IID, there is a big difference
between global knowledge and local knowledge of clients. This
makes the local minimum point far away from the global minimum
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Algorithm 1 FedDecomp

Input: Each client’s initial personalized parametermatrices𝝉1
𝑖
; The global

shared parameter matrices 𝝈1; Number of clients 𝑁 ; Total communica-
tion round 𝑇 ; Global matrices update epoch number 𝐸global; Low-rank
matrices update epoch number 𝐸lora ;
Output: Personalized model parameter matrices 𝜽𝑇𝑖 for each client.
for 𝑡 = 1 to𝑇 do

Client-side:
for 𝑖 = 1 to 𝑁 in parallel do

Initializing 𝝈𝑡
𝑖
with 𝝈𝑡 .

Updating 𝝉𝑡
𝑖
by (5) for 𝐸lora epochs to obtain 𝝉𝑡+1

𝑖
.

Updating 𝝈𝑡
𝑖
by (6) for 𝐸global epochs to obtain 𝝈𝑡+1

𝑖
.

Sending 𝝈𝑡+1
𝑖

to the server.
end for
Server-side:
Aggregating a global model 𝝈𝑡+1 by (7).
Sending 𝝈𝑡+1 to each client 𝑖 .

end for

point. The client’s personalized model 𝜽 is decomposed into the
sum of a shared part 𝝈 and a personalized part 𝝉 . Since we first
train the personalized part, the client-specific knowledge is mostly
learned by 𝝉 and the shift of 𝜽 to the local minimum point is mainly
done by 𝝉 . Therefore, when training 𝝈 , it moves less towards the
local minimum point (i.e., less affected by non-IID data), so it can
better extract general knowledge. In Section 4.4, we conduct an
experiment to further validate this intuition.

3.5 Training Cost Analysis
In this section, we analyze the memory usage, computation cost,
and communication cost of FedDecomp in each client 𝑖 compared
to the baseline method FedAvg.

Memory usage: FedAvg needs to maintain a set of full-rank pa-
rameter set 𝜽𝒊 . According to Eq. (2), Eq. (3) and Eq. (4), FedDecomp
needs to maintain a full-rank parameter set 𝝈𝒊 whose number of
trainable parameters is equivalent to 𝜽𝒊 , and a low-rank parameter
set 𝝉𝒊 whose number of trainable parameters is much fewer than 𝜽𝒊 .
Therefore, the memory required by FedDecomp is slightly higher
than that of FedAvg.

Computation cost: In one round, FedAvg updates 𝜽𝒊 for 𝐸 local
epochs. According to Eq. (5) and Eq. (6), FedDecomp updates 𝝉𝑖
for 𝐸lora epochs and update 𝝈𝑖 for 𝐸 − 𝐸lora epochs. Because 𝝉𝑖
has fewer trainable parameters than 𝜽𝒊 , the computation cost of
FedDecomp is lower than that of FedAvg.

Communication cost: In one communication round, FedAvg
needs to upload 𝜽𝒊 while FedDecomp needs to upload 𝝈𝑖 . As 𝝈𝑖
has the same number of trainable parameters as 𝜽𝒊 , FedDecomp
has the same communication cost as FedAvg.

4 EXPERIMENTS
4.1 Experiment Setup
Dataset. Our main experiments are conducted on three datasets:
CIFAR-10 [19], CIFAR-100 [18], and Tiny ImageNet [21]. Experi-
ments on larger datasets involving text modalities are included in
the supplemental material. To evaluate the effectiveness of our ap-
proach in various scenarios, we adopt the Dirichlet non-IID setting,

a commonly used framework in current FL research [12, 26, 35].
In this setup, each client’s data is generated from a Dirichlet dis-
tribution represented as 𝐷𝑖𝑟 (𝛼). As the value of 𝛼 increases, the
level of class imbalance in each client’s dataset gradually decreases.
Consequently, the Dirichlet non-IID setting allows us to test the
performance of our methods across a wide range of diverse non-IID
scenarios. For a more intuitive understanding of this concept, we
offer a visualization of the data partitioning in the supplemental
material.

Baseline methods. To verify the efficacy of FedDecomp, we
compare it with eight state-of-the-art (SOTA) methods: FedAMP
[14], FedRep [7], FedBN [24], FedPer [2], FedRoD [6], pFedSD [17],
pFedGate [5], and FedCAC [34]. Among these methods, FedAMP
forces clients with similar data distributions to learn from each
other. FedBN, FedPer, FedRep, FedRoD, and FedCAC are parameter-
partition-basedmethods that partially personalize parameters. pFedSD
and pFedGate are fine-tuning-basedmethods, whose goal is to adapt
the global model to the client’s local data. These methods cover the
latest advancements in various directions of PFL.

Selection for hyper-parameters.Weutilize the hyper-parameters
specified in the respective papers for each SOTA method. For the
FL general hyper-parameters, we set the client number 𝑁 = 40,
the local update epochs 𝐸 = 5, the batch size 𝐵 = 100, and the
total communication round 𝑇 = 300. Each client is assigned 500
training samples and 100 test samples with the same data distri-
bution. We select the best mean accuracy across all clients as the
performance metric. Each experiment is repeated using three seeds,
and the mean and standard deviation are reported. We adopt the
ResNet [11] network structure. Specifically, we utilize ResNet-8
for CIFAR-10 and ResNet-10 for CIFAR-100 and Tiny ImageNet. In
FedDecomp, we adopt the SGD optimizer with learning rate equals
0.1.

4.2 Comparison with SOTA methods
In this section, we compare our FedDecomp with several SOTA
methods. To ensure a comprehensive evaluation, we consider three
different non-IID degrees (i.e., 𝛼 ∈ {0.1, 0.5, 1.0}) on CIFAR-10,
CIFAR-100, and Tiny Imagenet.

The results in Table 1 demonstrate that the performance of
FedAMP is comparable to other SOTA methods on the CIFAR-
10 dataset, but experiences a notable decline on CIFAR-100 and
Tiny Imagenet. This is primarily because of its limited capacity
to leverage collaboration among clients with diverse data distri-
butions. In contrast, mainstream model partition methods such
as FedRep, FedBN, FedPer, FedRoD, and FedCAC enhance collab-
oration among clients by personalizing parameters sensitive to
non-IID data while sharing others. Among these methods, FedRoD
distinguishes itself by introducing a balanced global classifier to
facilitate comprehensive knowledge exchange, underscoring the
potential for improvements in client collaboration within current
model partition strategies. On the other hand, fine-tuning-based
approaches like pFedSD and pFedGate enable all clients to collabora-
tively train a global model, fostering extensive knowledge exchange.
However, this approach can lead to performance degradation in
certain non-IID scenarios due to mutual interference during joint
training.
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Table 1: Comparison results under Dirichlet non-IID on CIFAR-10, CIFAR-100, and Tiny Imagenet.

CIFAR-10 CIFAR-100 Tiny Imagenet

Methods 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0

FedAvg 60.39±1.46 60.41±1.36 60.91±0.72 34.91±0.86 32.78±0.23 33.94±0.39 21.26±1.28 20.32±0.91 17.20±0.54
Local 81.91±3.09 60.15±0.86 52.24±0.41 47.61±0.96 22.65±0.51 18.76±0.63 24.07±0.62 8.75±0.30 6.87±0.28

FedAMP 84.99±1.82 68.26±0.79 64.87±0.95 46.68±1.06 24.74±0.58 18.22±0.41 27.85±0.71 10.70±0.32 7.13±0.21
FedRep 84.59±1.58 67.69±0.86 60.52±0.72 51.25±1.37 26.97±0.33 20.63±0.42 30.83±1.05 12.14±0.28 8.37±0.25
FedPer 84.43±0.47 68.80±0.49 64.92±0.66 51.38±0.94 28.25±1.03 21.53±0.50 32.33±0.31 12.69±0.42 8.67±0.40
FedBN 83.55±2.32 66.79±1.08 62.20±0.67 54.35±0.63 36.94±0.94 33.67±0.12 33.34±0.71 19.61±0.35 16.57±0.44
FedRoD 86.23±2.12 72.34±1.77 68.45±1.94 60.17±0.48 39.88±1.18 36.80±0.56 41.06±0.77 25.63±1.11 22.32±1.13
pFedSD 86.34±2.61 71.97±2.07 67.21±1.89 54.14±0.77 41.06±0.83 38.27±0.20 39.31±0.19 19.25±1.80 15.91±0.33
pFedGate 87.25±1.91 71.98±1.61 67.85±0.87 48.54±0.39 27.47±0.79 22.98±0.03 37.59±0.39 24.09±0.67 19.69±0.14
FedCAC 86.82±1.18 69.83±0.46 65.39±0.51 57.22±1.52 38.64±0.63 32.59±0.32 40.19±1.20 23.70±0.28 18.58±0.62

FedDecomp 85.47±2.06 72.78±1.23 69.09±1.14 63.65±0.53 45.96±1.19 42.98±0.64 44.22±0.55 28.25±1.24 25.55±0.13

Notably, FedDecomp significantly outperforms all baseline meth-
ods in the majority of scenarios, particularly as 𝛼 increases. Fed-
Decomp achieves this by effectively decoupling general and client-
specific knowledge through parameter decomposition and mitigat-
ing the impact of non-IID through alternating training of full-rank
and low-rank matrices.

4.3 Ablation Studies
Effect of 𝑅𝑙 and 𝑅𝑐 . As we discuss in Section 3.3, 𝑅𝑙 and 𝑅𝑐 in-
dividually denote the ratio of the low-rank matrix’s rank to the
full-rank matrix’s rank in convolutional and fully-connected layers,
respectively. They are two important hyper-parameters to control
the learning ability of the low-rank matrices. In this section, we
evaluate the effect of 𝑅𝑙 and 𝑅𝑐 on model accuracy. We choose 𝑅𝑙
and 𝑅𝑐 from {20%, 40%, 60%, 80%, 100%}.

The experimental results are presented in Table 2. Firstly, we
observe that the optimal combinations of (𝑅𝑐 , 𝑅𝑙 ) are (60%, 60%)
for CIFAR-10, (80%, 40%) for CIFAR-100, (80%, 40%) for Tiny Ima-
genet. This underscores the importance of setting the personalized
parameter matrices to low rank. Secondly, regarding the optimal
combination as the focal point, model accuracy gradually decreases
as the rank increases. This occurs because, after this point, the per-
sonalized matrices gain more learning capacity and begin to acquire
some of the general knowledge. As a result, collaboration among
clients on the shared matrices diminishes. As the rank decreases,
model accuracy also gradually declines. This is because the person-
alized matrices fail to capture sufficient client-specific knowledge.
This aligns with our expectations. Thirdly, experimental results
highlight that model accuracy is more sensitive to changes in 𝑅𝑙
than 𝑅𝑐 . This suggests that the acquisition of client-specific knowl-
edge has a stronger correlation with the classifier than the feature
extractor, consistent with prior research such as FedPer, FedRep,
and FedRoD.

Effect of 𝐸lora and 𝐸global. In this section, we verify the effect of
𝐸lora and 𝐸global on model accuracy. For simplicity, we set 𝐸global =
𝐸−𝐸lora and only adjust the value of 𝐸lora. We conduct experiments
on three datasets under Dirichlet non-IID with 𝛼 = 0.1 and sample
𝐸lora ∈ [0, 𝐸].
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Figure 5: Effect of 𝐸lora in Dirichlet non-IID scenario with
𝛼 = 0.1.

The experimental results are depicted in Fig. 5. When the 𝐸lora =
0, FedDecomp essentially degenerates to FedAvg, and the accuracy
closely resembles the FedAvg accuracy presented in Table 1, as
expected. As 𝐸lora increases, the accuracy initially rises and then
declines. When 𝐸lora = 5, FedDecomp degenerates to local training
with low-rank parameter matrices. However, due to the constraints
imposed by these low-rank matrices on the model’s learning capac-
ity, FedDecomp performs less effectively compared to the Local as
shown in Table 1.

Effect of Alternating training. As we discussed in Section 3.4,
different from previous work that trains personalized and shared
components simultaneously, we propose to train the personalized
part first and then the global part to reduce the impact of non-IID
and better extract general knowledge. To evaluate this idea, in this
experiment, we compare the performance of two training methods.

The experimental results on three datasets are shown in Ta-
ble 3. We can see that when the learning task is simple (e.g., a
10-classification task on CIFAR-10), the performance of alternating
training and simultaneous training of two matrices is similar. As
the learning task becomes increasingly difficult, the performance
improvement brought about by alternating training becomes more
apparent. This is because, in the case of a simple learning task, the
variations in tasks among clients are relatively minor, which facili-
tates the extraction of general knowledge. However, as the learning
task complexity increases, the differences in tasks among clients
gradually expand, rendering the extraction of general knowledge
more susceptible to non-IID effects. In such scenarios, the utilization
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Table 2: The effect of 𝑅𝑙 and 𝑅𝑐 on CIFAR-10, CIFAR-100, and
Tiny Imagenet under Dirichlet non-IID with 𝛼 = 0.1.

Dataset
𝑅𝑙

𝑅𝑐 20% 40% 60% 80% 100%

CI
FA

R-
10

20% 84.72
± 2.07

84.97
± 1.74

84.73
± 2.33

84.80
± 2.03

84.99
± 2.19

40% 84.84
± 2.19

84.96
± 1.87

85.27
± 2.04

84.97
± 1.86

85.39
± 2.01

60% 84.92
± 1.90

85.35
± 1.96

85.47
± 2.06

85.07
± 2.26

85.38
± 1.76

80% 84.70
± 1.98

85.05
± 1.66

85.25
± 2.00

85.01
± 1.90

85.13
± 1.95

100% 85.09
± 1.95

85.23
± 1.89

85.15
± 1.66

84.88
± 1.77

85.21
± 1.62

CI
FA

R-
10
0

20% 62.00
± 0.60

62.66
± 0.37

61.99
± 0.97

62.48
± 0.30

62.70
± 0.83

40% 61.70
± 0.28

62.49
± 0.77

62.70
± 0.59

63.65
± 0.53

62.73
± 0.60

60% 61.71
± 0.30

62.88
± 0.33

62.46
± 0.53

63.12
± 0.38

63.24
± 0.66

80% 60.76
± 0.14

62.54
± 0.56

62.74
± 0.54

62.15
± 0.38

62.70
± 0.57

100% 59.54
± 0.98

60.97
± 0.35

61.86
± 0.74

61.96
± 0.55

62.58
± 0.51

Ti
ny

Im
ag
en
et

20% 40.77
± 0.10

42.71
± 0.59

43.27
± 0.43

43.78
± 0.70

43.88
± 0.16

40% 40.14
± 0.36

42.74
± 0.46

43.82
± 0.46

44.22
± 0.55

43.72
± 0.24

60% 39.39
± 0.26

42.75
± 0.46

43.44
± 0.43

43.85
± 0.90

44.16
± 0.48

80% 36.90
± 0.30

41.94
± 0.29

42.75
± 0.49

43.21
± 0.41

43.28
± 0.36

100% 33.90
± 0.91

40.55
± 0.15

41.75
± 0.81

42.16
± 0.41

42.75
± 0.31

Table 3: The effect of alternating training in FedDecomp on
three datasets.

Methods CIFAR-10 CIFAR-100 Tiny

Simultaneously 85.45±1.83 61.18±1.05 35.37±0.71
Alternatingly 85.47±2.06 63.65±0.53 44.22±0.55

of our proposed alternating training method becomes increasingly
crucial.

Effect of Model Capacity. In FedDecomp, we employ an ad-
ditive decomposition technique on the model. In theory, this ap-
proach does not change the model’s capacity. However, in practical
implementation, the decomposed model introduces low-rank ma-
trices, thereby increasing the number of trainable parameters. This
raises questions about whether the decomposed model genuinely
enhances the model’s capacity and whether the observed perfor-
mance improvement is primarily a result of the increased number

Table 4: The effect of low-rank matrices on model capacity.

Methods CIFAR-10
& ResNet-8

CIFAR-100
& ResNet-10

Local 81.91 ± 3.09 47.61 ± 0.96
Local w/ Low-Rank 81.97 ± 2.62 47.64 ± 0.79

FedAvg 60.39 ± 1.46 34.91 ± 0.86
FedAvg w/ Low-Rank 60.91 ± 0.53 35.91 ± 0.70

Table 5: The effect of personalizing low-rank matrices while
sharing full-rank matrices on CIFAR-100.

Methods 𝛼 = 0.1 𝛼 = 0.5 𝛼 = 1.0

FedDecomp 63.65±0.53 45.96±1.19 42.98±0.64
FedDecomp_Reverse 48.80±0.88 23.85±0.99 18.52±0.86

of trainable parameters. To address these concerns, we conducted
an experiment to assess the impact on model capacity.

We conduct experiments using two configurations: CIFAR-10
with the ResNet-8 model and CIFAR-100 with the ResNet-10 model.
We established two controlled scenarios: 1) ‘Local’ and ‘Local w/
Low-Rank’ indicate models without and with low-rank matrices
that are exclusively trained locally. 2) ‘FedAvg’ and ‘FedAvg w/ Low-
Rank’ indicate models without and with low-rank matrices trained
using the FedAvg algorithm. The experimental results are shown
in Table 4. Notably, we observe that, in comparison to the original
model, the model enhanced with low-rank matrices exhibits only
minimal performance improvement. This outcome underscores
that our utilization of parameter decomposition does not bring
about significant alterations to the model’s capacity. Hence, the
performance gains achieved by FedDecomp are not solely attributed
to modifications in the model itself.

Effect of Personalize Low-rank Matrices and Sharing Full-
rank Matrices. As discussed in section 3.3, the shared parameters
require a high capacity to maintain general knowledge among
clients, while personalized parameters only need to preserve client-
specific knowledge as a supplement to the general knowledge. To
validate this intuition, we evaluate ‘FedDecomp_Reverse’ which
shares low-rank matrices and personalizes full-rank matrices. Other
training strategy is the same as FedDecomp and the comparison
results on CIFAR-100 are shown in Table 5.

We can see that the performance of ‘FedDecomp_Reverse’ is not
as good as FedDecomp. Moreover, combining the results in Table 1,
we can see that the performance of ‘FedDecomp_Reverse’ is similar
to local training. This indicates that in ‘FedDecomp_Reverse’, the
knowledge is mainly preserved in personalized parameters and the
knowledge sharing among clients is very limited. This supports our
intuition of personalizing low-rank matrices and sharing full-rank
matrices.

4.4 The Effect of Alternating Training on Model
Difference

As we discussed in Section 3.4 and Fig. 4, the primary objective of al-
ternating training is to mitigate the impact of data heterogeneity on
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Figure 6: Effect of training logic on average model difference
of 𝝈𝑖 , 1 ≤ 𝑖 ≤ 𝑁 and 𝝈 in Dirichlet non-IID scenario with
𝛼 = 0.1.

Table 6: The relationship between Δ𝝈 and Δ𝝉 when the 𝝈 is
initialized by pre-trained weights.

𝐸lora 0 1 2 3 4

Accuracy 39.35 50.37 71.47 72.00 72.42
Δ𝝈 37.99 31.59 22.12 16.16 10.57
Δ𝝉 0.00 26.48 89.68 98.26 99.63

the shared parameters, essentially reducing the deviation of shared
parameters to the local minimum point of the client. Consequently,
employing alternating training should lead to a reduction in the
discrepancies among shared parameters across clients during their
local training phases. To validate the effectiveness of alternating
training in achieving this goal, we carry out additional experiments
to compare the disparities in shared parameters among clients when
using alternating training as opposed to not using it. Specifically,
we calculate the average model distance between 𝝈𝑖 , 1 ≤ 𝑖 ≤ 𝑁

and 𝝈 by 1
𝑁

∑𝑁
𝑖 | |𝝈𝑡

𝑖
−𝝈𝑡 | |2 in each round 𝑡 . The results are shown

in Fig. 6. It is evident from the data that, across both datasets, the
utilization of alternating training significantly diminishes the dif-
ferences in the shared parameters among clients. This is consistent
with our intuition and analysis.

4.5 Experiments with pre-trained model
In FedDecomp, we suppose that the client-specific knowledge is
learned by the low-rank matrices. To validate this assumption,
we initialize 𝝈 with pre-trained weights. In this case, the general
knowledge is well extracted. If our idea holds, then the 𝝉 should be
trained more to learn client-specific knowledge and 𝝈 should be
trained less (i.e., Δ𝝈 should be much smaller than Δ𝝉 ).

Specifically, We initialize the 𝝈𝑖 , 𝑖 ∈ [1, 𝑁 ] with ImageNet pre-
trained weights and conduct an experiment on the CIFAR-100
dataset in the Dirichlet non-IID scenario with 𝛼 = 0.1. We cal-
culate the Δ𝝈 by | |𝝈𝑇 − 𝝈1 | |2 and the Δ𝝉 by 1

𝑁

∑𝑁
𝑖=1 | |𝝉𝑇𝑖 − 𝝉1

𝑖
| |2.

We control the value of 𝐸lora at different levels (higher 𝐸lora means
update 𝝉 more often, and results in larger Δ𝝉 ), the results are sum-
marized in the Table 6.

From the table, we can conclude that when Δ𝝉 is larger than Δ𝝈 ,
FedDecomp achieves better results. This indicates that with the
pre-trained weights, the 𝝉 should be updated more often than 𝝈 to
learn client-specific knowledge. This aligns with our expectations.

Table 7: PSNR (dB, ↓) values for privacy evaluation on CI-
FAR10 in Dirichlet non-IID setting with 𝛼 = 0.1.

Methods FedAvg FedPer FedRoD FedDecomp

PSNR_Avg 13.91 12.43 12.00 11.34
PSNR_Max 17.11 19.52 16.99 13.55

4.6 Privacy Analysis
In this section, we analyze the privacy protection capability of the
FedDecomp. To this end, we adopt the Deep Leakage from Gradient
(DLG) method [9, 43] as the attack scheme. DLG is a common
attack against FL, and its main idea is: 1) The attacker steals the
gradients calculated by each client using local data; 2) The attacker
finds the optimal input through iterative optimization, such that
the gradient computed with this input is as close as possible to the
actual gradient.

In our specific experimental setup, we choose the CIFAR-10
dataset with 20 clients, and the data distribution of each client fol-
lows a Dirichlet distribution with 𝛼 = 0.1. For each algorithm, we as-
sume that the gradients of shared parameters can be obtained by the
attacker. At training rounds 10, 20, 30, 40, and 50, we attempt to re-
cover each client’s 5 training images using the DLGmethod. Tomea-
sure the quality of image recovery, we use the Peak Signal-to-Noise
Ratio (PSNR), which is defined as 𝑃𝑆𝑁𝑅 = −10 · log10 (

| |𝑥−𝑥∗ | |22
𝑚 ·𝑛 ),

where 𝑥∗ is the target image to be recovered, 𝑥 is the image being
optimized for recovery, and𝑚,𝑛 are the width and height of the im-
age, respectively. A higher PSNR indicates that the recovered image
is closer to the original image, which in turn implies weaker privacy
protection by the algorithm. Table 7 shows our experimental results,
including the average PSNR and the maximum PSNR of the attack
results. The results show that our proposed FedDecomp method
achieved lower PSNR compared to FedAvg and other personalized
methods. This means that using the FedDecomp method, both on
average and in the most extreme cases, better privacy protection
can be achieved compared to previous methods. We believe that this
is because our method can effectively decouple general knowledge
from personalized knowledge and keep personalized knowledge
well-preserved in the local low-rank branch. As such, it becomes
difficult for the DLG method to recover the original image using
only the shared part of the gradients.

5 CONCLUSION
In this paper, we propose a new PFL method named FedDecomp.
FedDecomp decomposes eachmodel parameter matrix into a shared
full-rank matrix and a personalized low-rank matrix. To further
enhance the acquisition of general knowledge, we devise a train-
ing strategy that prioritizes the training of the low-rank matrix to
absorb the influence of non-IID during local training. Our exten-
sive experimental evaluations, conducted across multiple datasets
characterized by varying degrees of non-IID, unequivocally demon-
strate the superior performance of our FedDecomp method when
compared to SOTA methods.
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