Under review as a conference paper at ICLR 2021

A CODE AND DATA AVAILABILITY

Anonymized code and datasets available at:
https://drive.google.com/drive/folders/1UKgVvz9Ae35PThygB7unlZNb2bT8d7407
usp=sharing

Final versions will be released on GitHub and made available on a dedicated website, respectively.

B TipPS AND TRICKS FOR WORKING WITH 3D ATOMIC DATA

In order to facilitate the entry of new practitioners to the nascent field of 3D molecular learning, we
provide some high-level guidelines for working with the datasets we provide and for curating new
ones. For many of the tasks mentioned, we provide computational tools on our GitHub repository.

B.1 ASSEMBLING NEW DATASETS

Data sources and repositories. The success of deep learning methods strongly depends on the
availability of sufficient training data. Unless they have a laboratory that can produce the necessary
data, most scientists will probably have to use public databases. The go-to repository for protein
structures is the Protein Data Bank (PDB)E] RNA structures can be found at the RNA 3D hub of
Bowling Green State University An exhaustive repository for small molecules is ChEMBL The
3D structures of small molecules are mostly not directly deposited. They can be generated by
quantum-chemical methods (expensive) or in good approximation by cheminformatics tools such as
RDKit. Many more specific databases are out there and worth being explored. We provide methods
to mine and convert data from many common formats in the field on our GitHub repository.

Scope and limitations of the data. Even the most extensive databases cannot capture the large
diversity of biological macromolecules or the space of potential drug molecules. It is thus necessary
to think about the scientific problem at hand and whether the available data adequately represents
the range of structures that are responsible for the studied effects. An important general limitation of
structural data is that molecules change conformation fluidly in real life due to thermal fluctuations.
Additionally, interactions with other molecules, disordered regions, or environmental factors like
pH can result in significant differences from their experimentally determined forms.

Incomplete or corrupted data. Structural data is rarely perfect. Experimental uncertainties are
mostly caused by limited resolution of the involved techniques such as X-ray crystallography or
electron cryo-microscopy. Computationally generated structures are also prone to flaws in molec-
ular force fields or basis sets for wave functions. These limitations can lead to problems such as
unrealistic conformations, missing or duplicate atoms, non-resolved amino acid side chains, and
more. One has to decide whether to keep those structures or to sanitize them using computational
tools. Additionally, hydrogen atoms are often not included in the data and, if needed for the task,
have to be added when assembling the dataset. The most important guideline here is to be consis-
tent and clear in the way these issues are treated. Sometimes it can be necessary to assemble two
different datasets with different treatments of missing data.

B.2 DEVELOPING AND BENCHMARKING NEW ALGORITHMS

Reading and preprocessing. Algorithms represent data in various ways and a given dataset is not
always compatible with the representation needed for the algorithm. For example, certain structures,
residues, or atoms may need to be filtered out. Ideally, these steps are considered as dataset prepa-
ration and are separated from the algorithm itself, i.e. not hard-coded into the dataloader. This has
two main advantages: (1) it saves time upon multiple reruns of the algorithm as structural data can
be large and expensive to process, and (2) saving the preprocessed input dataset separately increases
reproducibility, because small differences in preprocessing are often not recorded. We provide our

https://www.rcsb.org/
Zhttp://rna.bgsu.edu/rna3dhub/nrlist/
Shttps://www.ebi.ac.uk/chembl/

15

https://drive.google.com/drive/folders/1UKqVvz9Ae35PThyqB7unlZNb2bT8d740?usp=sharing
https://drive.google.com/drive/folders/1UKqVvz9Ae35PThyqB7unlZNb2bT8d740?usp=sharing
https://www.rcsb.org/
http://rna.bgsu.edu/rna3dhub/nrlist/
https://www.ebi.ac.uk/chembl/

Under review as a conference paper at ICLR 2021

benchmarking datasets in a format that is easy to read for many Python-based algorithms and provide
the necessary tools on GitHub.

Comparing algorithms. Predictions can be tested with various metrics. Depending on the pre-
diction problem, some of the metrics grasp the scientific aims of the training better than others. It
is usually recommended to stick to the metrics that are common in the field and are given in the
benchmarks. As science develops, new metrics for a specific problem might come up. These should
be well justified and the old metrics should still be reported alongside them to allow for a compari-
son. Ideally, the new metrics are calculated for older models, too. To facilitate this in advance, when
benchmarking an algorithm, specific predictions should be stored and not only metrics.

Interpretation of results. When judging the performance of an algorithm, one should take into
account the experimental uncertainties both in the structures but also in the label data. While small
molecules can be investigated in much detail, it will rarely be possible to get near perfect perfor-
mance for tasks involving complex biological macromolecules. Over time, even held-out test sets
become part of the selection process for new methods as only those methods that perform better on
the test set will prevail. A measured improvement can thus be caused by minor specifics of the test
set. As the field matures and performance becomes saturated, the benchmark sets will still be valid
as sanity checks for new methods, but harder tasks will be the ones driving new development.

C METHODOLOGICAL DETAILS

C.1 DATASET PREPARATION

We present a set of methods to mine task-specific atomic datasets from several large databases (e.g.
PDB) as well as to filter them, split them, and convert them to a format suitable for standard machine
learning libraries (esp. PyTorch and TensorFlow). We store these datasets in HDF5 format, where
each atom is stored as a row in a standardized data frame. This data format accurately captures the
natural hierarchy of atom subgroups in biomolecules, especially proteins, and enables data loading
and processing to be consistent across datasets, tasks, and computational environments.

To capture hierarchical information in a way that is task-specific but standardized, we define an
“ensemble” to be the highest-level of structure for each example, e.g. the PDB entry for the protein.
Within each ensemble, we define “subunits”, which represent the specific units of structure used for
that task. For example, for the paired tasks (PIP, LEP, MSP), there is one subunit corresponding to
each structure in the pair; for RES, there is one subunit for each residue microenvironment, and for
structure ranking (PSR, RSR), there is one subunit for each candidate 3D structure. In this way, it is
simple to iterate over each dataset and extract each atomistic structure, which can then be augmented
and processed into any desired format (e.g. voxelized for the 3DCNN, converted to graphs for the
GNN).

In the following sections, we describe the specific steps used to mine and process each dataset.

Small Molecule Properties The QM9 dataset (Ruddigkeit et al.,[2012; Ramakrishnan et al.,[2014)
contains the results of quantum-chemical calculations for 134,000 stable small organic molecules
made up of maximally nine atoms of C, O, N, and F. For each molecule, it contains the geometry
of a molecule’s conformation in its ground state as well as calculated energetic, electronic, and
thermodynamic properties. In particular, these properties are:

* 4 - Dipole moment (unit: D)

* « - Isotropic polarizability (unit: bohr®)

* egomMmo - Highest occupied molecular orbital energy (unit: Ha, reported in eV)

* eumo - Lowest unoccupied molecular orbital energy (unit: Ha, reported in eV)

* €gap - Gap between HOMO and LUMO (unit: Ha, reported in eV)

R? - Electronic spatial extent (unit: bohr?)

* ZPVE - Zero point vibrational energy (unit: Ha, reported in meV)

16

Under review as a conference paper at ICLR 2021

* Up - Internal energy at 0 K (unit: Ha)

* Uygg - Internal energy at 298.15 K (unit: Ha)
* Hogg - Enthalpy at 298.15 K (unit: Ha)

* (G99s - Free energy at 298.15 K (unit: Ha)

e (), - Heat capacity at 298.15 K (unit: mc(f}lK)

It is common to subtract the reference thermochemical energy from Uy, Usgs, Hags, G29s to obtain:

kcal
mol’

o U2' - Atomization energy at OK (unit: reported in eV)
kcal
mol’

e Usls - Atomization energy at 298.15K (unit:

reported in eV)
kcal
mol’

kcal :
ol » Teported in eV)

¢ Hak, - Atomization enthalpy at 298.15K (unit: reported in eV)

» (G35 - Atomization free energy at 298.15K (unit:

We report metrics for these quantities in the benchmark.

The QM9 dataset is processed from the one provided in MoleculeNet (Wu et al., 2018)). As rec-
ommended by the authors of the original dataset, we exclude 3,054 molecules that do not pass
a geometrical consistency test (Ramakrishnan et al.l 2014). Additionally, we excluded all 1,398
molecules that RDKit is unable to process - as in former GNN work (Fey & Lenssen, 2019)). In this
way, we ensure that all models in this work can be trained on the same data. Following previous
work (Wu et al.| 2018; |Gilmer et al., 2017 Schiitt et al., [201°7; |Anderson et al., [2019), we split the
remaining dataset randomly in training, validation, and test set - containing 103547, 12943, and
12943 molecules, respectively.

Protein Interface Prediction For our test set, we download the cleaned PDB files from the DB5
dataset as provided in (Townshend et al.,[2019), and convert to our standardized format. Each com-
plex is an ensemble, with the bound/unbound ligand/receptor structures forming 4 distinct subunits
of said ensemble. We use the bound forms of each complex to define neighboring amino acids (those
with any heavy atoms within 6 A of one another), and then map those onto the corresponding amino
acids in the unbound forms of the complex (removing those that do not map). These neighbors are
then included as the positive examples, with all other pairs being defined as negatives. At prediction
time, we attempt to re-predict which possible pairings are positive or negative, downsampling neg-
atives to achieve a 1:1 positive to negative split. We use the unbound subunits as our pair of input
structures for testing. We use AUROC of these predictions as our metric to evaluate performance.

For our training set, we reproduce the Database of Interacting Protein Structures (DIPS) (Town-
shend et al.,|2019). Specifically, we take the snapshot of all structures in the PDB from November
20, 2015. We apply a number of filtering operations, removing structures with no protein present,
structures with less than 50 amino acids, structures with worse than 3.5 A resolution, and structures
not solved by X-ray crystallography or Cryo-EM. We then split the dataset into all pairs of interact-
ing chains. These pairs form our ensembles, with each of the two chains being one subunit. We then
remove pairs with less than 500 A? buried surface area as measured by the FreeSASA Python li-
brary (Mitternacht, 2016) (using total area computed the naccess classifier, including hydrogens and
skipping unknown residues). Furthermore, to ensure there is no train/test contamination, we prune
this set against the DBS5 set defined above, removing any pairs that have a chain with more than 30%
sequence identity, using the software BLASTP (Altschul et al.,{1990)). We also prune the set based
on structural similarity, removing any pairs in DIPS that map to corresponding SCOP (Andreeva
et al.,|2014) pairs of superfamilies that are also present across a pair in DB5 (i.e., we remove a DIPS
pair if the first subunit in that pair has a chain with a SCOP superfamily that is present in an unbound
subunit of a DBS pair, and the second subunit in that DIPS pair also has a SCOP superfamily that
is present in the other unbound subunit of that same DB5 pair). Once this pruning is done, we split
the DIPS set into a training, validation, and (internal) testing set based on PDB sequence clustering
at a 30% identity level, to ensure little contamination between them. We perform a 80%, 10%, 10%
split for training, validation, and testing, respectively. Note this internal testing set is not used for
performance reporting.

17

Under review as a conference paper at ICLR 2021

Residue Identity Environments are extracted from a non-redundant subset of high-resolution
structures from the PDB. Specifically, we use only X-ray structures with resolution <3.0 A, and
enforce a 60% sequence identity threshold. We then split the dataset by structure based on domain-
level CATH 4.2 topology classes (Dawson et al. [2017), as described in (Anand et al., 2020). This
resulted in a total of 21147, 964, and 3319 PDB structures for the train, validation, and test sets, re-
spectively. Rather than train on every residue for each of these structures, we balance the classes in
the train set by downsampling to the frequency of the least-common amino acid (cysteine). The orig-
inal class balance is preserved in the test set. In total, the train, validation, and test sets comprised
3733710, 188530, and 1261342 environments, respectively. We ignore all non-standard residues.
We represent the physico-chemical environment around each residue using all C, O, N, S, and P
atoms in the protein and any co-crystallized ligands or ions. All non-backbone atoms of the target
residue are removed, and each environment is centered around a “virtual” C[position of the target
residue defined using the average Cf position over the training set.

Mutation Stability Prediction Mutation data are extracted from the SKEMPI 2.0 database
(Jankauskaite et al., 2019). Non-point mutations or mutants that cause non-binding of the complex
are screened out. Additionally, mutations involving a disulfide bond and mutants from the PDBs
1KBH or 1JCK are ignored due to processing difficulties. A label of 1 is assigned to a mutant if the
K4 of the mutant protein is less than that of the wild-type protein, indicating better binding, and 0
otherwise. Atoms from the twenty canonical amino acids were extracted from the PDBs provided
in SKEMPI using PyMOL (Schrodinger, LLC| 2015), and in silico mutagenesis is accomplished
using PyRosetta (Chaudhury et al., 2010), where dihedrals within 10 A of the mutated residue are
repacked. This protocol produces 893 positive examples and 3255 negative examples. For ENN
training, we use structures that are reduced to a size that is tractable for Cormorant. To this end,
we only selected the regions within a radius of 6 A around the Ca-atom of the mutated residue. For
3DCNNs, we analogously used a radius of 25 A. GNNs are trained on complete structures. This
dataset is split by sequence identity at 30%.

Ligand Binding Affinity PDBBind contains X-ray structures of proteins bound to small molecule
and peptide ligands. We use the “refined set” (v.2019) consisting of 4,852 complexes filtered for
various quality metrics, including resolution < 2.5 A, R-factor < 0.25, lack of steric clashes or
covalent bonding, and more (Li et al 2014). We further exclude complexes with invalid ligand
bonding information. The binding affinity provided in PDBBind is experimentally determined and
expressed in terms of inhibition constant (K;) or dissociation constant (K ;), both in Molar units.
As in previous works (Ballester & Mitchell, 2010} [Zilian & Sotriffer, 2013} Ragoza et all 2017}
Jiménez et al., 2018), we do not make the distinction between K; and K4, and instead predict the
negative log-transformed binding affinity, or p K. The majority of prior scoring functions have used
the “core set” provided by the Critical Assessment of Scoring Functions (CASF) (Su et al., 2019)
as a test set for evaluating prediction performance. However, by construction every protein in this
test set is at least 90% identical to several proteins in the training set. Thus, performance on this test
set does not accurately represent the generalizability of a scoring function, and has been shown to
overestimate the performance of machine learning models in particular (Kramer & Gedeck, 2010;
Gabel et al., [2014; L1 & Yang, [2017). Therefore, to prevent overfitting to specific protein families,
we create a new split in training, validation and test set, based on a 30% sequence identity threshold
to limit homologous proteins appearing in both train and test sets. Specifically, for the creation of
each of validation and test set, we extract a single protein at random and all other proteins with which
it shares > 30% sequence identity, as calculated by BLASTP. We perform this procedure iteratively
until each of the training and test sets are 10% as large as the overall dataset. We additionally
enforce that no single sequence identity cluster represents more than 20% of the overall split to
prevent overrepresentation of any single protein family. Splitting using this procedure resulted in
training, validation, and test sets of size 3507, 466, and 490, respectively.

For comparison, we provide an additional, less restrictive, split based on a 60% sequence identity
threshold (results in Table @) This leads to training, validation, and test sets of size 3678, 460, and
460, respectively.

For Cormorant, we use a reduced dataset without hydrogens and only the most abundant heavy
elements in the full dataset (C, N, O, S, Zn, Cl, F, P, Mg) as well as only structures with 500 or
fewer atoms. The Cormorant implementation requires that training, validation, and test set contain

18

Under review as a conference paper at ICLR 2021

the same set of atom types. To achieve this, we removed all structures containing elements that are
very rare in PDBBind (Br, I, Ca, Na, K, Mn, Fe, Co, Ni, Cu, Cs, Sr, Cd, Ni). The limitation of atom
numbers is purely technical. The Kronecker products involved in the covariant neurons are very
memory intensive and training Cormorant on larger structures was limited by the memory of the
GPUs available to us. For the 30% identity split, the reduced training, validation, and test datasets
contain 3274, 421, and 457 structures, respectively, and for the 60% identity split, they contain 3314,
415, and 423 structures, respectively.

Ligand Efficacy Prediction Each input consists of a ligand bound to both the active and inactive
conformation of a specific protein. The goal is to predict the label for this drug/ligand, either an
“activator” or “inactivator” of the protein function. Why include these protein conformations in the
input? From a biochemical perspective, if the drug binds much more favorably to the active protein
conformation, it will act as an activator of the protein function. The model may then learn this
differential binding strength to improve predictions of ligand function.

Pairs of structures for 27 proteins are obtained through manual curation of the Protein Data Bank
structures where “active” and “inactive” conformational states are both available. For example, for
ion channels, this means a channel in an open vs. closed state. 527 ligands with known protein
binding and labeled function are selected from the [IUPHAR database. We label ligands as activators
if they are listed as “agonists” or “activators” and label ligands as inactivators if they are listed as
“inhibitors” or “antagonists”. We select up to 15 of both activating and inactivating ligands for each
protein.

We model the drugs bound to the relevant protein. To prepare protein structures for use in docking,
we first prepare structures using the Schrodinger suite. All waters are removed, the tautomeric state
of the ligand present in the experimentally determined structure is assigned using Epik at pH 7.0
+/-2.0, hydrogen bonds are optimized, and energy minimization is performed with non-hydrogen
atoms constrained to an RMSD of less than 0.3 A from the initial structure. For ligands to be docked,
the tautomeric state is assigned using Epik tool at target pH 7.0. Ligands are docked using default
Glide SP. This results in 527 pairs of complexes. These are split into training, validation, and tests
sets by protein target to ensure generalizability across proteins.

For ENN training, we have to reduce the structures to a size that is tractable for Cormorant. To
this end, we only use the regions within a radius of 5.5 A around the ligand. For 3D-CNNs, we
analogously use a radius of 25 A. GNNs were trained on complete structures.

Protein Structure Ranking The Critical Assessment of Structure Prediction (CASP)
(Kryshtafovych et al., |2019) is a long-running international competition held biennially, of which
CASP13 is the most recent, that addresses the protein structure prediction problem by withholding
newly solved experimental structures (called fargets) and allowing computational groups to make
predictions (called decoys), which are then evaluated for their closeness to their targets after sub-
mission. Those submissions are then carefully curated and released as decoy sets in two stages (20
decoys per target for Stage 1, 150 decoys per target for Stage 2) for the Model Quality Assessment
(MQA), one of the categories in CASP which aims to score a set of decoys of a target based on
how closely they are to the target. For the PSR dataset, we compiled those decoys sets released in
CASP5-13, then relaxed those structures with the SCWRL4 software (G. G. Krivov & Dunbrack,
2009) to improve side-chain conformations. For all decoys in the dataset, we computed the RMSD,
TM-score, GDT_TS, and GDT_HA scores using the TM-score software (Zhang & Skolnick, [2007).

Mirroring the setup of the competition, we split the decoy sets based on target and released year.
More specifically, we randomly split the targets in CASP5-10 and randomly sample 50 decoys for
each target to generate the training and validation sets (508 targets for training, 56 targets for val-
idation), and use the whole CASP11 Stage 2 as test set (85 targets total, with 150 decoys for each
target). We chose CASP11 as test set, as the targets in CASP12-13 are not fully released yet.

RNA Structure Ranking The RNA Puzzles competition (Cruz et al.,|2012) is a rolling interna-
tional competition dealing with the RNA structure prediction problem. Similarly to CASP, newly
solved experimental structures, referred to as natives, are withheld until computational groups make
prediction, referred to as candidates. These candidates are then evaluated by their RMSD from the
native. For this task, we use candidate structures created by the state-of-the-art structure generation

19

Under review as a conference paper at ICLR 2021

method, FARFAR2 (Watkins & Das, [2019)), for each of the 21 first RNA Puzzles. These are made
available as part of the FARFAR2 publication. There are an average of 21303 (standard deviation
of 13973) candidates generated per puzzles, with a large range of RMSDs. For the RSR dataset we
randomly sample 1000 candidates per puzzle. We split temporally, by puzzle, using RNA Puzzles
1-13 for training, 14-17 for validation, and 18-21 for testing.

C.2 TASK-SPECIFIC EXPERIMENTAL DETAILS

3DCNNs Our base 3DCNN architecture consists of four 3D-convolutional layers with increasing
filter size (32, 64, 128, and 256) — each followed by max-pooling, dropout, and ReL.U activation
— and one fully-connected layer of size 512, followed by dropout and ReLU activation. For single
model task (PSR, RSR, LBA, SMP), we add an additional fully-connected layer to transform to the
required output dimension size. For paired tasks (PIP, LEP, MSP), we adapt this base architecture
into a Siamese network, add an additional fully-connected layer followed by dropout and ReLU
activation to combine the output of each member of the pair, and finally add a final fully-connected
layer to transform to the required output dimension size, as in (Townshend et al., 2019).

For input to the 3DCNNSs, we represent our data as cube in 3D space of certain radius (50 A for
PSR, RSR; 17 A for PIP; 20 A for LBA; 7.5 A for SMP; 25 A for LEP, MSP; 10 A for RES) that
are discretized into voxels with resolution of 1 A to form a grid. For paired tasks (PSR, RSR, and
PIP), we form a separate voxel grid for each member of the pair. For most tasks, we use the centroid
of each input structure as center of the grid, excluding LBA where we use the centroid of the ligand
as center and MSP where we use the mutation point as center. Each grid voxel is associated with
a binary feature vector which encodes the presence or absence of each specified atom type in that
voxel. For PSR, RSR, PIP, and RES, we encode the presence of heavy atoms C, O, N, and S (P for
RSR since S does not exist in RNA structures). For other tasks where hydrogen bonds might play
an important role, we encode the hydrogen atom (H) in addition to C, O, N, and few other abundant
atoms (F for LBA and SMP; S, CI, F for LEP; S for MSP). To encode rotational symmetries, we
apply a data augmentation strategy in which we apply 20 random rotations to the input grid, as in
(Townshend et al., 2019), except for RES, where we instead apply the canonicalization procedure
described in (Anand et al.,[2020). During testing of LEP, we applied 35 random rotations to the each
sample, and took majority voting among those 35 predictions as the final predicted class.

For binary classification tasks, we use binary cross-entropy weighted by the class distribution (i.e.
rarer class is weighted more heavily on mistakes). To address issues with imbalanced datasets, we
randomly oversample/undersample the less/more frequent class respectively during training. For
regression tasks, we use mean-squared error loss for training. All models were trained with Adam
optimizer with default beta parameters and learning rate 0.001 for SMP; 0.0001 for PSR, RSR, PIP,
LBA, RES; and 0.00001 for LEP, MSP. We monitor the loss on the validation set at every epoch.
The weights of the best-performing are then used to evaluate on the held-out test set. The models
were all trained on 1 Titan X(p) GPU for 4-24 hours depending on the task.

GNNs Our base GNN architecture consists of five layers of graph convolutions as defined by Kipf
and Welling (Kipf & Welling, [2016), with increasing hidden dimension (64, 128, 128, 256, 256)
each followed by batch normalization and ReLU activation. For tasks with paired input structures
(PIP, LEP, MSP), we apply this convolutional architecture to each input structure separately in a
Siamese architecture with tied weights, and then concatenate the outputs before passing through
two fully-connected layers of size 256 to transform to an output dimension of one neuron for binary
classification. We regularize using dropout with a probability of 0.25 after the first fully-connected
layer. Some tasks require classification of an entire structure, and thus are well-suited to graph-level
outputs (PSR, RSR, LBA). Here, we apply global addition pooling across all nodes before applying
the final two layers. For PIP, RES, and MSP, instead of pooling we instead extract the embedding
of the node corresponding to the Car atom of the residue in question (interacting residue, deleted
residue, and mutated residue, respectively) after the final convolutional layer. For SMP, we use the
previously-developed architecture presented in|Gilmer et al.|(2017)), which is publicly available.

We use a very simple featurization scheme for atomic systems. We define edges between all atoms
separated by less than 4.5 A. Edges are weighted by the distance between the atoms, and nodes
are featurized by one-hot-encoding all heavy (non-hydrogen) atoms. The only exceptions are LBA,
where we include hydrogens due to the importance of polar interactions and hydrogen bonding in

20

Under review as a conference paper at ICLR 2021

determining binding affinity, and SMP, where we adopt the established featurization scheme used
in MoleculeNet (Wu et al., 2018). All GNNs were implemented in PyTorch Geometric (Fey &
Lenssenl 2019).

For binary tasks, we use a binary cross-entropy loss criterion weighted by the class distribution (e.g.
a 1:4 positive:negative ratio would result in positive examples being up-weighted four-fold). For
regression tasks, we use a mean-squared error criterion. For all models, we train with the Adam
optimizer with learning rate 0.0001 (except for PIP, which uses a learning rate of 0.001) and monitor
the relevant metrics (see Table [8) on the validation set after every epoch. The weights of the best-
performing are then used to evaluate on the held-out test set. Models were all trained using 1 Tesla
V100 GPU for 4-48 hours depending on the task.

ENNs For the core of all Cormorant architectures in this work, we use a network of four layers of
covariant neurons that use the Clebsch—Gordan transform as nonlinearity, with L = 3 as the largest
index in the SO(3) representation and 16 channels, followed by a single SO(3)-vector layer with
L = 0. An input featurization network encodes the atom types as one-hot vectors. For SMP, in-
put and output are passed through multi-layer perceptrons (MLP) as in |Anderson et al.|(2019). For
the input, a weighted adjacency matrix with a learnable cut-off radius is constructed. This mask is
passed alongside the input vector through a MLP with a single hidden layer with 256 neurons and
ReLU activation. The output network is constructed from a set of scalar invariants that are passed
through a network of two MLPs. Each of these MLPs has a single hidden layer of size 256, and the
intermediate representation has 96 neurons. For all other tasks, input and output layers are a single
learnable mixing matrix, as used in the original Cormorant implementation for MD-17(Anderson
et al.,2019). The Siamese architecture required for MSP and LEP was constructed by training two
ENNSs that are then connected by passing on the squared difference of the single-network outputs:
For MSP, the two structures corresponded to the wild-type structure and the mutated one; for LEP
to the active and inactive one. We extend the original Cormorant implementation to handle classifi-
cation problems (binary and multi-class) and the Siamese network architecture.

We use MSE loss for regression tasks and cross-entropy loss for classification tasks. For all tasks,
we used the AMSgrad optimizer with an initial learning rate of 0.001 and a final learning rate of
0.00001, decaying in a cosine function over the training process. We trained SMP for 255 epochs,
LBA for 150 epochs, RES for 30 epochs, and MSP for 50 epochs. We monitor the loss for the
validation set after every epoch. The weights of the best-performing are then used to evaluate on the
held-out test set. The models were all trained on 1 Titan X(p) GPU for 1-5 days depending on the
task.

C.3 1D AND 2D BASELINES

For each task, we select a baseline that fulfills the following criteria: (1) represents the current
state-of-the-art (SOTA) for that task—or as close as possible—using only 1D (sequence only) or
2D (sequence and/or bond connectivity) molecular representations, and (2) either has a publicly
available implementation or has reported results for the same task and splitting criteria. For PSR and
RSR, which are inherently 3D tasks and have no appropriate 1D or 2D representation, we compare
to the state-of-the-art 3D methods instead. Below we describe the choice and implementation of
baseline models for each task.

SMP As a 2D method for predicting molecular properties, we choose molecular GNNs (Tsubaki
et al., 2019) which are based on learning representations of subgraphs in molecules. We use an
implementation that only uses the SMILES representation of the molecular graphE] As an additional
2D baseline, we compare to N-Gram Graph XGB (Liu et al.l [2019). This method is based on an
unsupervised representation called N-gram graph which first embeds the vertices in the molecule
graph and then assembles the vertex embeddings in short walks in the graph. This representation is
combined with the XGBoost learning method (Chen & Guestrin, 2016)E]

‘nttps://github.com/masashitsubaki/molecularGNN_smiles
*https://github.com/chaol224/n_gram_graph

21

https://github.com/masashitsubaki/molecularGNN_smiles
https://github.com/chao1224/n_gram_graph

Under review as a conference paper at ICLR 2021

PIP For the PIP task, our non-3D method is the BIPSPI (Sanchez-Garcia et al.l 2018) model, a
gradient-boosted decision tree. We compare to their model that uses only sequence and sequence
conservation features and is evaluated on DBS5.

RES As a 1D sequence-based model for predicting residue identity, we choose the transformer
architecture TAPE, introduced by Rao et al.| (2019). We use their reported accuracy on heldout
families for language modeling, as that corresponds to a sequence-only version of our RES tasks,
with similar stringency in terms of splitting criteria.

MSP We use the publicly provided implementation of TAPE (Rao et al., 2019ﬂ We modify their
sequence-to-sequence head to predict the effect of mutations at specific positions, using the original
unmutated protein as the input sequence and writing the output sequence as a one-hot-encoded 20-
dimensional vector, indicating if a given mutation would be beneficial or detrimental. Note that the
vast majority of positions would be unlabeled and therefore not included in the learning task.

LBA As a 1D method for predicting ligand binding affinity, we choose DeepDTA (Oxztiirk et al.,
20181?]> a IDCNN based model that takes in pairs of ligand SMILES string and protein sequence as
input. We use the same hyperparameters as in the original paper for the baseline.

We also compare our results against DeepAffinity (Karimi et al.} 2019ﬂ We compare to their unified
RNN/GCNN-CNN model that takes in pairs of ligand SMILES string and their novel representations
of structurally-annotated protein sequences (SPS/Structure Property-annotated Sequence) as input.
Per the authors’ recommendation, we use the DSSP software (Joosten et al.,[2010; | Kabsch & Sander,
1983)) to generate the protein secondary structure and the protein relative solvent accessibility used
in the SPS representation directly from the protein 3D structure, rather than the predicted ones by
the SSpro/ACCpro software (Magnan & Baldi, 2014;|Cheng et al.,2005) as done in the DeepAffin-
ity paper. We use the same hyperparameters as in the original paper for the baseline, except for the
maximum compound and protein sizes which we increase to 160 and 168, respectively, to accom-
modate for larger compounds/proteins in the PDBBind dataset. We trained the DeepAffinity models
for 1000 epochs.

LEP We also train DeepDTA (Oztiirk et al., [2018)2 (with the same hyperparameters as in the
original paper) on the LEP dataset as baseline. As the inherent protein sequences and ligand SMILES
strings are the same for both the inactive and active structures, the problem is reduced to binary
classification task given a pair of protein sequence and the ligand SMILES string, and does not
require modifying the DeepDTA architecture to make the Siamese network as in the GNN, ENN, or
3DCNN case.

PSR We compare our results against the state-of-the-art single-model methods as reported in|Pages
et al| (2019). These include 3DCNN (Hou et al., [2019) and Ornate (Pages et al., 2019), 3DCNN
voxel-based methods trained on structural information, and Proq3D (Uziela et al., [2017), a deep-
learning based method which employs structural information, Rosetta energy terms (Leaver-Fay
et al.l [2011)), and evolutionary information derived from the amino acid sequence. We exclude
ProteinGCN (Sanyal et al.l 2020), a recent GNN-based method, from comparison as they do not
provide results on CASP11 dataset.

RSR For RNA structure ranking, we compare our results against the Rosetta scoring function
(Alford et al.,2017). In past RNA Puzzles competitions, methods using the Rosetta scoring function
have been found to most consistently produce the lowest RMSD candidates. This is a physical- and
knowledge-based potential specifically tuned for biomolecular structure.

C.4 STATE-OF-THE-ART METHODS

When possible, for tasks in Table [D] we choose 3D methods that fulfill the following criteria: (1)
they represent the current state-of-the-art for that task, or as close as possible, and (2) they either have

®https://github.com/songlab-cal/tape
Thttps://github.com/hkmztrk/DeepDTA
$https://github.com/Shen-Lab/DeepAffinity

22

https://github.com/songlab-cal/tape
https://github.com/hkmztrk/DeepDTA
https://github.com/Shen-Lab/DeepAffinity

Under review as a conference paper at ICLR 2021

a publicly available implementation or has reported results for the same task and splitting criteria.
Here our choice of methods is described in more detail if not already discussed in the section above.

SMP We compare to the state of the art, i.e., the best achieved prediction on each task, as reported
in |Anderson et al.| (2019). Many methods have been tested on QM9 and have reached excellent
performance which makes them comparably hard to beat for new methods. In general, the best
methods for QM9 so far are message passing neural networks |Gilmer et al.| (2017), continuous-
filter convolutional neural networks [Schiitt et al.| (2017), and Cormorant |Anderson et al.| (2019).
Differences in performance between earlier Cormorant studies and this work can be attributed to the
different (random) split.

PIP We compare our results against the BIPSPI |Sanchez-Garcia et al.| (2018)) model, a gradient-
boosted decision tree. In contrast to the 1D/2D baseline comparison to BIPSPI, in this case we
compare against their model that employs both structural- and sequence-based amino acid features.

RES Since there have been no standardized datasets for this task to date, it is difficult to perform
a direct comparison of methods. The closest comparison for a CNN trained on a balanced dataset
of residue environments is 0.425, as reported in|{Torng & Altman|(2017). While higher performance
was reported by |Anand et al.| (2020) (accuracy 0.572), this model was trained on an unbalanced
dataset comprising every standard residue environment in all training set PDBs. Similar perfor-
mance has also been reported with other deep learning architectures Weiler et al.[(2018)); Boomsma
& Frellsen| (2017), but these do not describe their training/evaluation data or splitting criteria. In
contrast, we restrict our training and evaluation to a balanced subset, downsampled to the frequency
of the rarest class, which limits performance slightly. Additionally, to enable fair comparison over
three replicates between 3DCNN and GNN, we then trained on only half of these down-sampled
environments. The discrepancy in performance we observe on this subset is indicative of the fact
that the differences in residue environment are subtle and complex, so simply increasing training
data can result in higher performance. This is especially true for common classes such as leucine
and glycine, which are over five times as frequent than the least common class, cysteine. Within
these common classes, accuracy exceeds 80%, which increases the average accuracy when classes
are imbalanced.

LEP Because this was a novel dataset, we computed initial results a non-deep learning method,
Schrodinger’s Glide, to score each protein-ligand complex. Glide is state-of-the-art for scoring
protein-ligand complexes and determining how “good” a pose is. This resulted in 2 scores per
ligand; the score to the inactive protein structure and the score to the active protein structure. We
then performed a binary classification by training an SVM on these two features to predict the ligand
activity class. This approach is reasonable from a physical basis: if the ligand binds much better
to the active protein structure than the inactive protein structure, then it will be an activator of the
protein’s function.

LBA Many methods have been developed for the prediction of ligand binding affinity using the
PDBBind dataset. However, the standard has been to evaluate performance on the so-called “core
set”, as described in Section|C.1] after training and validating on the remainder of the refined set. The
state-of-the-art reported on this core set has been achieved by the 3DCNN-based KDEEP Jiménez
et al.| (2018), followed closely by the popular random forest—based method RF-score Ballester &
Mitchelll (2010). However, because the core set contains only proteins that are also present in the
training set, this only measures in-distribution performance, not generalizable scoring ability. Thus,
the most comparable baseline for our dataset, which was split at 30% sequence identity, is the
performance of the empirical linear regression—based scoring function X-score fitted to complexes
with less than 30% identity to the core set, as reported in|Li & Yang (2017). We note that this is not
a perfect comparison, since the procedure used in|Li & Yang (2017) reduces the size of the training
set significantly; however, as an empirical scoring function the performance of X-score is not very
sensitive to training set size, compared to RF-score, which was significantly affected.

23

Under review as a conference paper at ICLR 2021

D COMPARISON TO STATE-OF-THE-ART METHODS

Table 7: Comparison of performance against state-of-the-art methods, where
available. The 3DCNN, GNN, and ENN networks achieve state-of-the-art in sev-
eral tasks; for those where they do not (SMP, PIP, LBA), we note that the compet-
ing methods also use the 3D geometry of molecules. Asterisks (*) indicate that

the exact training data differed (though splitting criteria were the same).

Task Metric 3D SOTA
3DCNN GNN ENN

SMP (D] 0.572 0.068 0.046 *0.030 (Gilmer et al.l, 2017)
cwap V] 0.589 0091 0065 *0.061 (Anderson et al; 2019)
U3'leV] 1615 0070 0023 *0.014 (Schiitt et al}, 2017)

PIP AUROC 0.844 *0.669 — 0.919 (Sanchez-Garcia et al., [2018)

RES accuracy 0.451 0.082 *0.072 *0.425 (Torng & Altmanl, 2017)

MSP AUROC 0.520 0.637 0.678 —

LBA RMSD 1.520 1.936 *1.429 *1.838 (Li & Yang,[2017
glob. Rp 0.558 0.581 *0.541 *0.645 (Li & Yang|[2017
glob. Rs 0.556 0.647 *0.532 *0.697 (Li & Yang, 2017

LEP AUROC 0.824 0.678 0.569 0.770 (Friesner et al.|[2004)

PSR mean Rg 0.177 0.327 — 0.432 (Pages et al., 2019
glob. Rg 0.837 0.716 — 0.796 (Pages et al.,|2019

RSR mean Rs 0.414 0.195 — 0.173 (Alford et al., 2017
glob. Rs 0.656 0.309 — 0.304 (Alford et al., 2017

24

Under review as a conference paper at ICLR 2021

E COMPLETE BENCHMARKING RESULTS

Table 8: Complete benchmarking results from Tables [3H6] with additional metrics and standard
deviations reported over three replicates. R is Kendall correlation and AUPRC is area under the
precision-recall curve. SMP metrics are all mean absolute error (MAE). Asterisks (*) indicate that

the exact training data differed (though splitting criteria were the same).

Task Metric 3DCNN GNN ENN SOTA Baseline

(Pages et al.,[2019)

PSR mean Rp 0.191 £ 0.017 0.388 4 0.022 — 0.444

mean Ry 0.122 £ 0.008 0.227 4 0.005 — 0.304

mean Rg 0.177 £0.012 0.327 4 0.327 — 0.432

global Rp 0.836 + 0.019 0.703 4 0.020 — 0.772

global Ry 0.668 + 0.024 0.515 £ 0.015 — 0.594

global Rg 0.837 £+ 0.023 0.716 = 0.013 — 0.796

SOTA Baseline

(Alford et al.,[2017)

RSR mean Rp 0.428 + 0.018 0.219 4 0.284 — 0.129

mean Ry 0.287 + 0.014 0.136 4+ 0.183 — 0.119

mean Rg 0.414 £+ 0.018 0.195 £+ 0.265 — 0.173

global Rp 0.613 + 0.007 0.203 4+ 0.023 — 0.161

global Rx 0.462 + 0.006 0.195 £ 0.022 — 0.206

global Rs 0.656 + 0.007 0.309 £ 0.041 — 0.304

Non-3D Baseline

(Sanchez-Garcia et al., [2018))

PIP AUROC 0.844 +0.002 *0.669 + 0.001 — 0.841

Non-3D Baseline

(Rao et al.,[2019)

RES accuracy 0.451 £+ 0.002 0.082 +0.002 *0.072 £ 0.005 *0.30

MSP AUROC 0.520 £+ 0.015 0.637 4+ 0.020 0.678 + 0.092 0.554
AUPRC 0.269 £ 0.009 0.258 +0.017 0.304 £ 0.137

Non-3D Baseline

(Tsubaki et al.,|2019)

SMP u[D] 0.572 £ 0.005 0.068 £ 0.001 0.046 £+ 0.008 0.496 £ 0.002

Egap [€V] 0.589 £ 0.012 0.091 £ 0.003 0.065 £+ 0.001 0.154 £+ 0.001

U [eV] 1.615 £ 0.040 0.070 4+ 0.009 0.023 + 0.002 0.182 4+ 0.004

«@ [bohr?’] 2.090 £ 0.240 0.207 £ 0.010 0.183 £+ 0.090 0.392 £+ 0.004

enomo [eV] 0.295 £ 0.009 0.060 £ 0.002 0.038 = 0.002 0.107 £ 0.001

eLumo [eV] 0.499 £ 0.008 0.056 £ 0.001 0.081 £0.014 0.115 £ 0.001

R? [bohr2] 65.653 4+ 2.064 0.629 + 0.113 1.139 £+ 0.071 27.976 + 0.212

ZPVE [meV] 71.410 £+4.328 4.677 +0.097 1.727 + 0.029 10.614 £ 0.270

Usss [eV] 1.700 £ 0.123 0.070 £ 0.005 0.023 £+ 0.000 0.181 £ 0.001

H3és [eV] 1.744 £+ 0.049 0.070 £ 0.005 0.023 £+ 0.001 0.180 £ 0.004

A [eV] 1.633 4+ 0.053 0.067 £ 0.009 0.022 £ 0.000 0.173 £ 0.000

Cy [H]c;lK} 1.218 £+ 0.145 0.074 4 0.003 0.040 + 0.010 0.187 4 0.004

Non-3D Baseline

(Oztiirk et al.l[2018)

LBA RMSD 1.520 £ 0.009 1.936 +0.120 *1.429 + 0.042 1.565 £ 0.018

(30%) global Rp 0.558 £ 0.005 0.581 +0.039 *0.541 £ 0.029 0.573 4+ 0.022

global Rg 0.556 £+ 0.004 0.647 + 0.071 *0.532 £ 0.033 0.574 £ 0.010

LBA RMSD 1.517 £ 0.032 1.493 £ 0.010 *1.450 + 0.024 1.760 £ 0.415

(60%) global Rp 0.669 £ 0.015 0.669 +0.013 *0.716 + 0.008 0.713 £ 0.013

global Rg 0.656 £+ 0.012 0.691 +0.010 *0.714 + 0.009 0.702 4+ 0.013

LEP AUROC 0.824 + 0.034 0.678 4 0.034 0.569 £ 0.030 0.696 £ 0.021

AUPRC 0.714 £+ 0.031 0.525 4+ 0.051 0.519 4+ 0.034 0.550 4 0.024

25

