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StealthDiffusion: Towards Evading Diffusion Forensic Detection
through Diffusion Model
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ABSTRACT
The rapid progress in generative models has given rise to the

critical task of AI-Generated Content Stealth (AIGC-S), which aims
to create AI-generated images that can evade both forensic detec-
tors and human inspection. This task is crucial for understanding
the vulnerabilities of existing detection methods and developing
more robust techniques. However, current adversarial attacks often
introduce visible noise, have poor transferability, and fail to address
spectral differences between AI-generated and genuine images. To
address this, we propose StealthDiffusion, a framework based on sta-
ble diffusion that modifies AI-generated images into high-quality,
imperceptible adversarial examples capable of evading state-of-
the-art forensic detectors. StealthDiffusion comprises two main
components: Latent Adversarial Optimization, which generates ad-
versarial perturbations in the latent space of stable diffusion, and
Control-VAE, a module that reduces spectral differences between
the generated adversarial images and genuine images without af-
fecting the original diffusion model’s generation process. Extensive
experiments demonstrate the effectiveness of StealthDiffusion in
both white-box and black-box settings, transforming AI-generated
images into higher-quality adversarial forgeries with frequency
spectra resembling genuine images. These images are classified as
genuine by state-of-the-art forensic classifiers and are difficult for
humans to distinguish.

CCS CONCEPTS
• Security and privacy→ Social aspects of security and pri-
vacy; • Computing methodologies→ Computer vision;

KEYWORDS
Computer vision, AI-Generated image, Adversarial attacks

1 INTRODUCTION
In recent years, generative models, particularly diffusion-based

image synthesis techniques [18], have made significant progress
in deep learning and excelled at generating highly realistic images.
As these generative technologies become increasingly widespread,
it is crucial to develop techniques that can create AI-generated
images indistinguishable from genuine ones by both human eyes
and AI-based detectors. This will help identify the limitations and
weaknesses of current detection methods and contribute to the
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Figure 1: Quantitative and qualitative comparison analysis:(a)
Visual examples of spectral images comparing baselinemeth-
ods and our method. The result of the baseline still contains
visible artifacts, whereas the spectral images produced by our
proposed method are most similar to the genuine images.(b)
Visualization of adversarial examples generated by baseline
methods and our method.Our method achieves higher image
quality.(c) Quantitative performance comparison of baseline
methods and our method on GenImage [49].

development of more robust detection models. We refer to this as
the AI-Generated Content Stealth (AIGC-S) task, which aims to
generate AI-generated images that can evade detection by both
human perception and AI-based algorithms. The goal of this task
is to apply carefully crafted perturbations to existing AI-generated
images, making them indistinguishable from genuine images while
maintaining their visual quality. By achieving this, we can gain valu-
able insights into the vulnerabilities of current detection methods
and develop more robust and reliable detection algorithms.

Recent approaches to improving image stealth against detec-
tion have primarily focused on adding adversarial noise directly
at the image level. For example, the Fast Gradient Sign Method
(FGSM) [15] creates noise by perturbing the image in the direc-
tion of the gradient of the loss with respect to the input image.
Projected Gradient Descent (PGD) [30] iteratively applies small
perturbations, making it a more powerful, though computation-
ally expensive, approach. AutoAttack [7] is an ensemble of attacks
that optimizes adversarial perturbations to test model robustness
effectively. However, we argue that traditional attack methods have
three main limitations when applied to the AIGC-S task: (1) These
methods often introduce visible noise to diffusion-generated im-
ages, as shown in Fig. 1 (a), compromising the visual quality and
failing to evade human perception. (2) Despite high success rates
in white-box scenarios, their transferability to black-box settings
is poor, with attack success rates of only 35.38% and 31.63% for
PGD and FGSM, respectively, as illustrated in Fig. 1 (b). (3) These

https://doi.org/XXXXXXX.XXXXXXX
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methods only add noise in the spatial domain, ignoring the spec-
tral differences between genuine and generated images. Previous
studies [10, 13, 19–21, 23, 24, 26, 27, 29, 34, 43] have shown that
spectral features are crucial for detection models to distinguish
between genuine and generated images. Fig. 1 (c) demonstrates that
the spectra of adversarial images generated by traditional FGSM
and PGD methods differ significantly from those of genuine images,
leading to suboptimal attack performance.

To address these limitations, we propose a novel approach called
StealthDiffusion, which enhances the stealth of AI-generated im-
ages against detection by optimizing in the latent space and reduc-
ing spectral differences between generated and genuine images.
Specifically, StealthDiffusion consists of two key components. The
first component is Latent Adversarial Optimization (LAO), which
harnesses the powerful generative and representational capabilities
of Stable Diffusion to perform adversarial optimization in its latent
space. By optimizing in this latent space, LAO enables more detailed
and comprehensive image optimization, resulting in higher-quality
stealth images. The second component is the Control-VAE module,
which aims to minimize the spectral differences between gener-
ated and genuine images. It achieves this by reconstructing both
genuine and generated images using a VAE model and then inte-
grating this knowledge into the Stable Diffusion decoder through a
control-net-like skip-connection method. This innovative approach
effectively reduces spectral aliasing, making the generated images
more indistinguishable from genuine ones in the spectral domain.

The effectiveness of StealthDiffusion is evident in Fig. 1, which
showcases its advantages over traditional attack methods. From
a visual perspective, Fig. 1 (a) demonstrates that StealthDiffusion
generates higher-quality images without the perceptible noise arti-
facts that plague traditional methods. Moreover, Fig. 1 (b) highlights
StealthDiffusion’s superior transferability, as it outperforms tradi-
tional methods by 27.63% in challenging black-box transfer attacks.
Lastly, Fig. 1 (c) reveals that the spectra of images processed by
StealthDiffusion closely resemble those of genuine images, elim-
inating the telltale spectral forgery patterns. This is a testament
to the Control-VAE module’s effectiveness in bridging the spectral
gap between generated and genuine images.

Our contributions can be summarized as follows:
• We are the first to focus on the detectability in diffusion-
generated forged images, leading to a foundational basis for
enhancing the robustness of diffusion detectors.

• We introduce a novel framework named the StealthDiffusion,
which consists of Latent Adversarial Optimization strategy
and Control-VAE module to refine image authenticity and
reduce the spectral discrepancy.

• Extensive qualitative and quantitative experiments on large-
scale diffusion datasets demonstrate the superiority of our
approach in producing more indistinguishable and high-
quality generated images.

2 RELATEDWORKS
2.1 AI-Generated Content Stealth

The goal of AI-Generated Content Stealth (AIGC-S) task is to
transform AI-generated images into forms that can evade detection
algorithms without introducing visible adversarial noise. Using

traditional adversarial algorithms capable of generating adversarial
perturbations can misleading the target model [7, 15, 30]. However,
these adversarial noises do not meet our stealth criteria.

With the advent of diffusion methods, new adversarial attack
techniques have been developed that use diffusion models to create
more natural-looking perturbations than traditional gradient-based
methods [4, 45]. Chen et al. [4] manipulate the latent space of
diffusion models with semantic labels to produce adversarial exam-
ples targeting the Imagenet database [8]. Similarly, Xue et al. [45]
employ a method that iteratively adds adversarial perturbations, re-
constructing them through a diffusion model at each step to create
more realistic adversarial images. However, since diffusion is an
AI-generated method, it might increase the chance of these images
being detected by forensics detectors.

The key differences between high-quality AI-Generated Images
and genuine images predominantly lie in their spectral characteris-
tics [3, 11–13, 37]. Therefore, traditional adversarial attack methods
in forgery detection have focused on reducing the spectral discrep-
ancies between AI-generated and genuine images [10, 19, 21, 23,
26, 43]. Methods such as those proposed by [10, 19, 21] focus on
the statistical differences in frequency information between AI-
generated and genuine images, designing attacks based on these
observations. Liu et al. [26] use the SRM filter [14] to extract fea-
tures from AI-Generated and genuine images—features that are
primarily sources of spectral differences—and train a U-Net archi-
tecture to transform the AI-Generated image features into those
of genuine images. Lee et al. [23] employ a GAN-like architecture
with a spectral discriminator to reconstruct AI-Generated images
with reduced spectral discrepancies. Wu et al. [43] decompose AI-
Generated images into high and low frequency components, adding
perturbations to mislead detection methods.

To achieve more generalizable and transferable natural attacks,
we explore techniques on Stable Diffusion to add adversarial pertur-
bations while reducing spectral discrepancies with genuine images,
thereby evading various image forensics detectors.

2.2 Image Forensics Detection
Image Forensics Detection has gained considerable attention

from researchers in order to prevent the misuse of AI-generated
images. Wang et al. [41] addressed it as a binary classification prob-
lem, training deep learning networks with fake images generated
by [22] and genuine images from the LSUN dataset [46]. Recent
approaches, such as [13, 38], have focused on improving detection’s
generalization and accuracy by extracting features from images
instead of using the images themselves as the training dataset.
Frank et al. [13] utilized the discrete Fourier transform of images
for forgery detection, while Tan et al. [38] employed a GAN-based
discriminator to convert images into gradient maps for detection.
Specialized methods also exist for detecting GAN-generated fake
faces [2, 29]. These studies demonstrate the effectiveness of simple
supervised image forensics classifiers in detecting GAN-generated
images. However, as diffusion-based generation techniques con-
tinue to advance, previous GAN-based detection methods can not
adequately generalize to diffusion images. Consequently, there is
growing research interest in detecting generated images produced
by diffusion [33, 42], which has shown promising results in effective
detection.
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Figure 2: Overview of our method. We introduce a small adversarial noise to the raw image using the PGD [30] method, then
proceed to the Adversarially Optimizing on Latent Space step in Stable Diffusion, and the final output image is obtained by
combining the outputs from the Control-VAE. This refined image will be recognized as a genuine image by the forensic detector.

3 METHOD
3.1 Overview Framework

This section presents the overall framework of our proposed
StealthDiffusion. The workflow begins by applying a Projected Gra-
dient Descent (PGD) adversarial attack to an input image, followed
by processing through a Variational Autoencoder (VAE) to extract
its latent representation. Within the diffusion framework, the latent
image is refined through noise addition and strategic denoising
using a UNet. An adversarial loss function optimizes these features
to evade detection by a surrogate classifier. To minimize spectral
artifacts and reduce detectability, a Control-VAE module, trained
to align the spectral frequency of the reconstructed image with
genuine images, is integrated during the decoding phase via skip
connections.

3.2 Preliminaries
Our optimization framework commences with a preprocessing

phase designed to streamline the optimization challenges encoun-
tered in subsequent stages. This is particularly crucial for operations
within the latent space during the stable diffusion process, which
may amplify the likelihood of generated image detection. Drawing
inspiration from [19], we implement the Projected Gradient De-
scent (PGD) technique to inject nuanced and effective adversarial
perturbations into the initially generated images 𝑥0. This strategic
enhancement bolsters the images’ ability to evade detection in the
later stages of our framework. The application of these perturba-
tions is guided by a surrogate forensic model, which is explicated
in the equation that follows:

𝑥𝑡+1 = Clip(𝑥𝑡 + 𝜂 · sign(∇𝑥L(𝑆 (𝑥𝑡 ), 𝑦𝑡𝑟𝑢𝑒 ))), (1)

where 𝑥0 is the initial adversarial image and 𝑥𝑡+1 represents its
evolution after iteration 𝑡 . The clipping function Clip ensures that

the perturbations do not exceed the imperceptibility threshold de-
termined by 𝜖 . ∇𝑥L signifies the gradient of the loss function 𝐿,
considering the true label 𝑦𝑡𝑟𝑢𝑒 and the surrogate forensic classifier
𝑆 . This PGD preprocessing not only primes the images for robust-
ness but also reduces the complexity of subsequent optimization
within the diffusion process, thereby enhancing the model’s ability
to evade forensic detection with greater efficiency.

3.3 Latent Adversarial Optimization
Building on the robust foundation provided by the preprocess-

ing stage, the adversarially perturbed image 𝑥𝑡+1 is transformed
into a latent representation through the encoding capabilities of a
Variational Autoencoder (VAE) encoder, denoted by 𝐸. This crucial
step compresses the perturbed image into a latent format within a
lower-dimensional space, optimally preparing it for the sophisti-
cated denoising and refinement processes of the Denoising Diffu-
sion Probabilistic Models (DDPM). The VAE encoder plays a pivotal
role in this phase, distilling the essential features of the image and
setting the stage for the complex operations characteristic of the
subsequent DDPM-based adversarial optimization.

We then proceed to a meticulous adversarial optimization pro-
cess within the latent space. This phase is vital as it exploits the
inherent structural properties of the latent space to enable precise
and controlled refinement of the image. Employing the strengths
of Stable Diffusion Models, we conduct a series of forward and
backward operations that systematically enhance the latent vari-
ables. This detailed manipulation allows us to carefully craft the
adversarial features into configurations that are more resistant to
forensic detection, all while maintaining the image’s integrity.

the Denoising Diffusion Probabilistic Models (DDPM) employ
a series of forward and reverse operations to iteratively refine
the latent variables. The forward process can be mathematically
represented as follows, where 𝑧𝑡 denotes the noisy latent variable at
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step 𝑡 , and 𝛼1, ..., 𝛼𝑁 define a predetermined noise schedule across
𝑁 steps:

𝑞(𝑧𝑡 |𝑧𝑡−1) = N(𝑧𝑡 ;
√︂

𝛼𝑡

𝛼𝑡−1
𝑧𝑡−1, (1 −

𝛼𝑡

𝛼𝑡−1
)I) (2)

This can be succinctly expressed as:

𝑞(𝑧𝑡 |𝑧0) = N(𝑧𝑡 ;
√
𝛼𝑡𝑧0, (1 − 𝛼𝑡 )I), (3)

The reverse process, crucial for refining the adversarial charac-
teristics, is defined as:

𝑝𝜃 (𝑧𝑡−1 |𝑧𝑡 ) = N(𝑧𝑡−1; 𝜇𝜃 (𝑧𝑡 , 𝑡), 𝜎𝜃 (𝑧𝑡 , 𝑡)) (4)

Through 𝑁 iterations of these steps, the refined latent variable 𝑧
is then reconstructed into the final image 𝑥 ′ using the VAE Decoder
𝐷 . To optimize the adversarial qualities of 𝑥 ′, an adversarial loss is
computed using a surrogate forensic classifier 𝑆 , with the objective
of optimizing 𝑧𝑁 as shown:

argmin
𝑧𝑁

−𝐿(𝑆 (𝐷 (𝑧′)), 𝑦𝑡𝑟𝑢𝑒 ), (5)

We set the number of optimization iterations to 𝑇 , ensuring
the production of high-quality images that not only leverage the
capabilities of Stable Diffusion but also remain undetectable by
forensic classifiers. This strategic use of DDPMwithin our workflow
overcomes common detection challenges, rendering the optimized
images forensically robust.

3.4 Control-VAE Module
Motivation Analysis.While Latent Adversarial Optimization

enhances the resistance of diffusion-generated images to detection
techniques by optimizing latent variables, we identified that this
optimization fails to alter the distinctive spectral signatures intrin-
sic to generated images. However, numerous studies [3, 12, 13, 33,
37, 41, 49] have observed significant differences between the spec-
tral signatures of generated images and those of genuine images.
These studies have identified that the spectral discrepancies primar-
ily originate from the high-frequency components. Consequently,
some research [5, 6, 35] has employed specifically designed filters to
remove the content of generated images, effectively isolating most
of the low-frequency components. This process yields the noise
residuals of generated images, thereby providing a more intuitive
demonstration of the differences in the spectral signatures between
generated and genuine images. Eliminating these spectral patterns
in forged images has been proven to be an important method to
evade detection by recognition models [3, 10, 19, 21, 23, 26, 43]. To
address and further analyze these spectral disparities, we investi-
gated the frequency spectra produced by various diffusion methods.
Specifically, for three generative methods including ADM [9] for
Denoising Diffusion Probabilistic Model(DDPM), BigGAN [1] for
Generative Adversarial Network(GAN), Stable_Diffusion versions
1.4 and 1.5 [36] for Latent Diffusion Model (LDM), we selected a
random set of one thousand images {𝑥𝑖 }. we employ a commonly
used denoising network [47] as our filter, which is also the filter
utilized in [5, 6], to extract these noise residuals:

𝑟𝑖 = 𝑥𝑖 − 𝑓 (𝑥𝑖 ), (6)

We calculated the average Fourier amplitude spectra of these resid-
uals, as visualized in Fig. 3. Our analysis indicated that images
generated by the Denoising Diffusion Probabilistic Model (DDPM)
tend to display spectra that closely mimic those of genuine images,
with minimal detectable flaws. In contrast, the Latent Diffusion
Model (LDM) spectra still exhibit a subtle grid-like pattern, char-
acterized by high frequencies that are akin to those observed in
GAN-generated images. This phenomenon could be ascribed to the
decoder module’s repetitive upsampling process in LDM, which
inadvertently introduces high-frequency artifacts as a result of spec-
trum replication [3, 11, 27]. Unlike Latent Diffusion Models (LDM),
traditional Denoising Diffusion Probabilistic Models (DDPM) solely
utilize a Unet architecture with residual connections and do not
employ a Variational Autoencoder (VAE) architecture to embed im-
ages into the latent space. Although the Unet architecture includes
upsampling mechanisms, the integration of downsampling maps
from the encoder with upsampling maps in the decoder through
residual connections effectively mitigates artifacts introduced by
upsampling. This process, as discussed in [25], robustly reduces the
occurrence of such artifacts through convolutional operations that
combine these features.

Module Design. Consequently, to mitigate the spectral discrep-
ancies identified in the LDM-generated images, we introduce an
enhanced VAE architecture embedded with residual connections
and trainable convolutional layers. This innovative design not only
preserves the essential characteristics of the original images but
also fine-tunes the reconstruction process to produce images whose
noise distributions are closely aligned with those of genuine images,
as demonstrated in Fig. 4.

In pursuit of our objective, we have meticulously formulated a
loss function to synchronize the noise residuals of the geneuine
images with those reproduced by our model. Utilizing the DnCNN
filter 𝑓 , we calculate the noise residuals 𝑅 = {𝑟𝑖 }𝑖=1,2,...,𝑀 from a
dataset containing 𝑀 genuine images 𝑋 = {𝑥𝑖 }𝑖=1,2,...,𝑀 , as pre-
scribed by the method delineated in Eq. 6. Applying the Discrete
Two-Dimensional Fourier Transform F as described in Eq. 7 to
these averaged residuals results in the "Noise Prototype", symbol-
ized as 𝑁𝑝 .

𝐼 [𝑘, 𝑙, :] = F (𝐼 ) = 1
𝐻𝑊

𝐻−1∑︁
𝑥=0

𝑊 −1∑︁
𝑦=0

exp−2𝜋𝑖
𝑥 ·𝑘
𝐻 exp−2𝜋𝑖

𝑦 ·𝑙
𝑊 ·𝐼 [𝑥,𝑦, :],

(7)
This prototype encapsulates the aggregate noise footprint of

genuine images, as corroborated by both prior research [5, 6, 35]
and our spectral analysis. The calculation of 𝑁𝑝 is formalized as:

𝑁𝑝 = F (
𝑀∑︁
𝑖=1

𝑟𝑖 ), (8)

Subsequently, our Control-VAE module processes a batch of
genuine images to yield a set of reconstructed counterparts, denoted
as {𝑥𝑟

𝑏𝑖
}, where 𝑏𝑠 signifies the batch size. We then compute the

noise residuals for this batch and apply a Fourier transform to obtain
{𝑁𝑏𝑖 }. Our aim is to minimize the Noise Prototype Loss (NPL),
which quantifies the discrepancy between the noise prototype and
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Figure 3: Fourier transform (amplitude) of the artificial fin-
gerprint estimated from 1000 image noise residuals. First col-
umn: genuine Images from imagenet [8]. Second column: The
method BigGAN [1] from Generative Adversarial Network
(GAN). Third column: ADM [9] from Denoising Diffusion
Probabilistic Models (DDPM). Fourth columns: Stable Diffu-
sion (1.4 and 1.5) [36] from Latent Diffusion Model (LDM).

the batch noise spectra, as described in Eq. 9:

L𝑁𝑃𝐿 =

𝑏𝑠∑︁
𝑖=1

∥𝑁𝑝 − 𝑁𝑏𝑖 ∥2, (9)

Inspired by [48], we configure the Convolution Fusion module
with zero initialization to maintain the integrity of the original Sta-
ble Diffusion architecture. Subsequently, the meticulously trained
VAE Encoder and Convolution Fusion module are integrated as
independent elements within the decoder. Specifically, we denote
the downscaled feature maps from the original VAE encoder at
resolutions 1/2, 1/4, and 1/8 as 𝑓1, 𝑓2, and 𝑓3, respectively, and the
corresponding resolution feature maps from the original VAE de-
coder as 𝑔1, 𝑔2, and 𝑔3. Through Eq. 10, we fuse the feature maps
from the encoder into the decoder’s feature maps to obtain new
feature maps 𝑔1, 𝑔2, and 𝑔3, as illustrated in Fig. 2, guiding the syn-
thesis of the final adversarial samples. This Control-VAE process is
crucial for diminishing any discernible artifacts introduced by the
VAE in the Stable Diffusion process. The success and efficacy of this
module are corroborated by the results of our empirical evaluations.

𝑔𝑖 = 𝑔𝑖 + zero_conv(𝑓𝑖 ) 𝑖 = 1, 2, 3 (10)

To holistically optimize our module, we amalgamate the NPL
with the VAE’s intrinsic loss function, culminating in the composite
loss equation presented in Eq. 11. Here, 𝛼, 𝛽, and 𝛾 represent the
respective weighting coefficients for each loss component:

L = 𝛼L1 + 𝛽L𝐿𝑃𝐼𝑃𝑆 + 𝛾L𝑁𝑃𝐿, (11)

4 EXPERIMENTS
4.1 Experimental Setups
Dataset.We evaluated our method on the GenImage dataset [49],
which consists of 1.35 million generated images and 1.33 million
genuine images from ImageNet [8]. The dataset encompasses sub-
datasets generated by seven diffusionmethods (ADM [9], Glide [32],
Midjourney [31], Stable Diffusion 1.4 & 1.5 [36], VQDM [16],
Wukong [44]), and one GAN method (BigGAN [1]). The dataset’s
large quantity of images and diverse generation methods allow
for comprehensive analysis, making it a suitable choice for our
experiments.
Surrogate Forensic Detector. We employed the classification evi-
dence method proposed in [41], using EfficientNet-B0 [39], ResNet-
50 [17], DeiT(Base) [40], and Swin-T(Base) [28] as backbone models.
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Figure 4: The proposed Control-VAE framework extends the
traditional VAE structure by incorporating a residual struc-
ture with trainable convolutions to pass the feature maps
from the encoder to the decoder. While preserving the opti-
mization loss of the traditional VAE, we additionally intro-
duce our designed NPL loss to optimize the convolutional
layers in the encoder and residual structure. This aims to
reduce the distance between the noise residuals in the re-
constructed images and those in the genuine images. (See
Section 3.4 for more details.)

In subsequent tables, we will abbreviate these models using their
capital initials. Unlike [41], which trained only on genuine images
and images generated by ProGAN [22], we trained our backbones
on both generated and genuine images from GenImage, resizing all
images to 224×224 and applying ImageNet normalization. We used
the Adam optimizer with a learning rate of 2× 10−4, a batch size of
48, and trained the models for 10 epochs. The optimal weights were
chosen based on the best performance on the GenImage validation
set, where all backbones achieved over 98% accuracy.
Universal Forensic Detector. To assess the adversarial robust-
ness of our method, we tested it against several state-of-the-art
detection methods: Lgrad [38] for GAN image detection, GFF [29]
and RECCE [2] for face forgery detection, and UniDetection [33]
and DIRE [42] for detecting diffusion-generated images. These de-
tection models were fine-tuned on GenImage using their original
pretrained weights and achieved over 98% accuracy on its validation
set.
Baseline Attack Methods. We compared our method with three
gradient-based attack methods: FGSM [15], PGD [30], and AutoAt-
tack (AA) [7], setting a maximum perturbation of 𝜖 = 8/255, a pixel
range of [0,1], and performing 30 iterations. We also evaluated two
diffusion-based attacks, Diff-PGD [45] with 3 diffusion steps, and
DiffAttack [4], which classified generated images as "AI-generated
Image" and genuine ones as "Nature Image," running 10 iterations
with 10 diffusion steps.
Evaluation Metrics. In order to comprehensively evaluate both
the baseline methods and our own method, we utilized several
evaluation metrics including the Attack Success Rate (ASR) as well
as the image quality evaluation metrics PSNR and SSIM.
Implementation Details. To evaluate our attack, we resized all
input images to 224 × 224 and randomly selected 100 images from
each generation method’s validation set, creating an 800-image
dataset. We initiated adversarial perturbations using half the base-
line value, 𝜖 = 4/255, and set the number of iterations to 10. We
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Table 1: The performance of attack methods evaluated using the Attack Success Rate, with the first column representing
the methods EfficientNet-B0(E) [39], ResNet-50(R) [17], DeiT(D) [40] used to detect adversarial samples. The second column
represents different baseline attack methods FGSM [15], PGD [30], AutoAttack(AA) [7], Diff-PGD [45], DiffAttack [4], and our
method. The first row represents different datasets, covering 8 sub-datasets in the GenImage dataset [49]: ADM [9], BigGAN [1],
Glide [32], Midjourney [31], Stable Diffusion 1.4&1.5 [36], VQDM [16], Wukong [44]. Higher metric values indicate better
performance, with the best results highlighted in bold.

ADM BigGAN Glide Midjourney SDv14 SDv15 VQDM Wukong Average

E

FGSM 32.00 38.00 62.00 89.00 59.00 64.00 22.00 46.00 51.50
PGD 45.00 50.00 53.00 84.00 51.00 52.00 30.00 43.00 51.00
AA 38.00 39.00 43.00 77.00 54.00 53.00 27.00 39.00 46.25

DiffAttack 7.00 30.00 17.00 26.00 14.00 23.00 53.00 24.00 24.25
DiffPGD 34.00 56.00 12.00 39.00 44.00 44.00 29.00 45.00 37.88
Ours 59.00 82.00 81.00 97.00 87.00 86.00 45.00 79.00 77.00

R

FGSM 12.00 5.00 33.00 80.00 57.00 50.00 33.00 43.00 39.13
PGD 14.00 29.00 52.00 89.00 77.00 75.00 38.00 62.00 54.50
AA 10.00 23.00 55.00 91.00 81.00 79.00 39.00 61.00 54.88

DiffAttack 11.00 15.00 18.00 28.00 40.00 31.00 66.00 31.00 30.00
DiffPGD 32.00 65.00 22.00 43.00 65.00 60.00 85.00 63.00 54.38
Ours 22.00 41.00 54.00 95.00 94.00 97.00 93.00 90.00 73.25

D

FGSM 18.00 11.00 35.00 83.00 32.00 36.00 12.00 26.00 31.63
PGD 35.00 26.00 55.00 87.00 33.00 32.00 20.00 25.00 39.13
AA 37.00 30.00 54.00 86.00 41.00 41.00 24.00 33.00 43.25

DiffAttack 33.00 25.00 22.00 30.00 23.00 22.00 51.00 21.00 28.38
DiffPGD 42.00 42.00 17.00 29.00 24.00 24.00 67.00 20.00 33.13
Ours 56.00 50.00 72.00 97.00 66.00 61.00 51.00 51.00 63.00

trained the Control-VAE model using genuine images from the
GenImage dataset and used Stable Diffusion v2.1. The coefficients
𝛼 , 𝛽 , and 𝛾 were set at 1, 1, and 10, respectively. In the adversarial
optimization phase, we applied 2 diffusion steps in the latent space
with 5 iterations. To improve the diffusion algorithm’s sampling
speed, DDIM20 was utilized as the sampler for all diffusion methods.

4.2 Attack on Surrogate Forensic Detector
We conducted experiments to evaluate the effectiveness of our

proposed attack method on four detectors with different backbones
trained based on [41], under both white-box and black-box set-
tings. Due to the length of the article, we only present the transfer
attack success rates of Swin-T(S) [28] against other backbones:
EfficientNet-B0(E) [39], ResNet-50(R) [17], and DeiT(D) [40] in
Tab. 1 in the main body. Our method outperformed all other base-
lines in terms of average attack success rate across all datasets,
demonstrating commendable transfer attack performance against
various detection methods and generalization across different AI-
generated methodologies. It is also noteworthy that our approach
achieved an attack success rate of over 90% against the widely-used
commercial AI content generation algorithm Midjourney, high-
lighting the advantages of our method. The complete table will be
provided in the supplementary materials.

4.3 Attack on Universal Forensic Detector
To further demonstrate the attack capability of our method, we

evaluate the transferability of attacks from the Surrogate Forensic

Table 2: The performance of transfer attacks on Universal
Forensic Detector. The first column represents the methods
E [39], R [17], D [40], S [28] used to generate adversarial
samples.

FGSM PGD AA DiffAttack DiffPGD Ours

E

DIRE 74.00 88.50 86.00 54.00 72.50 88.50
GFF 77.00 77.50 79.00 37.50 84.00 92.13
Lgrad 74.75 85.00 86.38 23.75 49.38 89.13
RECCE 70.50 85.50 85.00 72.50 83.25 86.00

UniDetection 19.25 16.13 15.38 13.75 37.00 46.38

R

DIRE 85.00 92.00 90.00 58.50 72.00 96.50
GFF 69.50 95.50 97.50 59.38 76.63 97.50
Lgrad 76.50 87.25 84.88 21.88 52.63 87.25
RECCE 64.25 81.00 81.50 75.00 87.50 88.00

UniDetection 16.25 36.63 39.63 15.50 23.38 61.13

D

DIRE 77.50 90.00 89.00 53.00 61.00 79.00
GFF 48.00 52.00 60.25 50.25 92.13 93.00
Lgrad 79.38 90.13 91.00 21.50 66.13 91.63
RECCE 70.25 86.50 87.88 77.88 82.50 90.75

UniDetection 1.75 4.63 3.13 11.00 24.63 18.63

S

DIRE 79.50 98.50 97.50 58.00 59.50 95.50
GFF 98.00 98.50 98.50 46.00 91.50 99.00
Lgrad 73.38 87.13 81.25 20.25 30.75 90.13
RECCE 71.50 78.50 79.50 80.13 87.75 92.13

UniDetection 6.75 27.13 24.25 15.13 25.38 27.75

Detector to the Universal Forensic Detector, specifically targeting
two forensic classifiers capable of detecting images generated using
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Figure 5: Qualitative assessment of adversarial examples generated by FGSM [15], PGD [30], AutoAttack(AA) [7], DiffAttack [4],
Diff-PGD [45], and our method on the GenImage dataset [49]. These samples were generated from different backbones, namely
EfficientNet-B0(E) [39], ResNet-50(R) [17], DeiT(D) [40] and Swin-T(S) [28]. Although all adversarial samples successfully
deceived the detectors, the adversarial samples crafted by our method exhibited a higher level of image quality.

Table 3: The mean of PSNR and SSIM of adversarial sam-
ples generated by different attack methods. The first column
represents the methods E [39], R [17], D [40], S [28] used to
generate adversarial samples.

FGSM PGD AA DiffAttack Diff-PGD Ours

E
PSNR 30.72 34.28 36.05 26.52 32.07 33.58
SSIM 0.73 0.87 0.87 0.73 0.88 0.88

R
PSNR 30.72 33.82 37.36 26.21 32.14 33.31
SSIM 0.74 0.86 0.87 0.74 0.88 0.87

D
PSNR 30.73 33.70 34.29 26.00 31.45 33.35
SSIM 0.76 0.87 0.87 0.75 0.87 0.89

S
PSNR 30.88 34.23 33.98 26.26 32.67 35.10
SSIM 0.70 0.86 0.85 0.75 0.90 0.91

Table 4: The L2 distance of adversarial samples generated by
different attack methods.

Method LDM FGSM PGD AA DiffAttack Diff-PGD Ours

L2 Distance 0.0281 0.0263 0.0253 0.0257 0.0249 0.0233 0.0212

Diffusion methods [33, 42]. The results are shown in Tab. 2. Even
in the black-box attack scenario, our method maintains a strong
attack performance, achieving a top-two success rate compared to
baseline attack methods. In particular, when utilizing ResNet50 [17],
our method surpasses the second-ranked baseline attack method
by 21.5% and 4.5% in terms of performance for the two detection
methods.

4.4 Analysis
Image Quality Analysis.To further demonstrate the image quality
of our adversarial generation method, we conducted both qualita-
tive and quantitative analyses of the adversarial samples produced

FGSM PGD AutoAttackGenuine

DiffAttack Diff-PGD OursLDM

Figure 6: Qualitative assessment of the spectral characteris-
tics of adversarial examples generated by baseline method
and ourmethod was conducted on the GenImage dataset [49].
The term "Genuine" refers to the spectral representation of
genuine images from the GenImage dataset, while "LDM"
denotes the spectral representation of images generated by
stable diffusion in GenImage dataset.

by the baseline attack method and our proposed method. Fig. 5
presents the generated adversarial samples. It is evident that tradi-
tional gradient-based transfer attack methods [7, 15, 30] introduce
visible noise patterns, whereas our diffusion model-based attack
method produces images without noticeable noise patterns. To em-
phasize this observation, we extracted and enlarged a section of
the image to showcase the attack results. Tab. 3 reports quantita-
tive results for various generation methods, including the mean of
PSNR and SSIM. It is evident that our method outperforms other
diffusion-based attack methods in terms of image quality, achieving
the highest SSIM metric score.
Image Spectral Analysis. To further analyze the spectral charac-
teristics of different attack methods, we conducted both qualitative
and quantitative analyses of the spectral properties of adversarial
samples produced by baseline attack methods and our proposed
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Figure 7: Fourier transform (amplitude) of the artificial fin-
gerprint estimated from 1000 image noise residuals recon-
structed using different architectures.

method. It can be clearly observed in Fig. 6 that among the many at-
tack strategies, our method most closely approximates the spectral
signature of genuine images. In contrast, attacks based on diffusion
typically carry distinctive spectral traces of the diffusion process,
while gradient-based attacks introduce excessive perturbations re-
sulting in unnatural spectral features. In Tab. 4, we quantitatively
demonstrate the spectral discrepancies between adversarial sam-
ples and genuine images using the L2 distance metric. Our method
outperforms the others, achieving the smallest L2 distance.

4.5 Ablation Study
In this section, we will conduct a series of ablation experiments

on the proposed attack method.
Core Component Analysis. Here, we only generate attacks us-
ing Swin-T [28], while the results of the remaining backbones will
be presented in the supplementary materials. Tab. 5 presents the
results of different variants of our method. For the baseline method,
the Control-VAE and Latent Adversarial Optimization(LAO) meth-
ods are not used. Using either Control-VAE or LAOmethods yields a
positive effect on the ASR metrics for both backbones, and combin-
ing the two modules can bring more performance gains. Taking the
attacks generated by ResNet50 [17] as an example, the adoption of
Control-VAE and LAO achieved success rate improvements of 42.5%,
11.12%, and 10.57% on Efficientnet-B0 [39], DeiT [40], and Swin-
T [28] detection models, respectively. Moreover, the preprocessing
stage achieves a degree of adversarial robustness by introducing
minuscule adversarial noise. Our approach can further augment
the success rate of transfer attacks, while the omission of this ini-
tialization phase results in a discernible performance degradation.
This outcome aligns with our initial rationale for implementing
such an initialization.
Table 5: Ablation study for core components of our method.
The horizontal E [39], R [17], D [40], S [28] are used to detect
adversarial samples.

Preprocess C-VAE LAO E R D S

! % % 46.63 52.50 39.25 100.00
! ! % 67.25 62.75 51.50 97.13
! % ! 75.25 70.50 59.50 100.00
% ! ! 63.25 68.63 57.13 100.00
! ! ! 77.00 73.25 63.00 98.13

Effect of Noise Prototype Loss in Control-VAE. In Tab. 6, we
compared the use of NP Loss and non-use of NP Loss in the Control-
VAE module in ASR. Adding NPL to the Control-VAE achieves
better performance with respect to all the metrics. Additionally, we
further studied the impact of VAE on the reconstruction of genuine

Table 6: Ablation study for NPL in Control-VAE. The first
column represents the methods E [39], R [17], D [40], S [28]
used to generate adversarial samples and the first row repre-
sents the methods E [39], R [17], D [40], S [28] used to detect
adversarial samples.

E R D S

E
w/o NPL 100.00 88.13 63.63 82.25
w NPL 100.00 89.50 66.38 84.13

R
w/o NPL 94.75 100.00 66.00 92.50
w NPL 94.75 100.00 67.25 95.25

D
w/o NPL 89.13 88.25 100.00 96.38
w NPL 90.75 89.88 100.00 97.88

S
w/o NPL 76.13 72.50 62.88 98.00
w NPL 77.00 73.25 63.00 98.13

images. We extracted 1000 genuine images from the dataset and
reconstructed them using Raw VAE, Control-VAE (w/o NPL), and
Control-VAE (w NPL), then checked them using Efficient-B0 [39],
ResNet50 [17], DeiT [40], Swin-T [28]. In Tab. 7, we demonstrate
the probability of these reconstructed images being detected as
genuine. The results show that using Control-VAE and NPL can
minimize the probability of reconstructed genuine images being
detected as generated as much as possible. We show the noise
residual spectrum of these reconstructed images in Fig. 7. It also
indicates that while introducing adversarial losses and raw VAE
cannot reconstruct adversarial images with spectra close to genuine
images, the method of using Control-VAE can effectively achieve
this.
Table 7: The probability of genuine images reconstructed
using different architectures being detected as genuine by the
forensic detector. The first column represents the methods
E [39], R [17], D [40], S [28] used to detect reconstructed
samples.

E R D S

Genuine 100.00 99.40 100.00 100.00
Raw VAE 85.00 83.10 92.30 78.60
Control-VAE(w/o NPL) 89.80 87.90 94.40 81.10
Control-VAE(w NPL) 93.00 97.20 96.70 89.20

5 CONCLUSION
The paper proposes a framework called StealthDiffusion to en-

hance the robustness of diffusion model-generated images in foren-
sic detection. StealthDiffusion adds adversarial perturbations on
the latent space of stable diffusion to generate high-quality syn-
thetic images that are resistant to detection. To further reduce the
spectral differences between genuine and generated images, we
introduce the Control-VAE module to improve the effectiveness of
the attack. Experimental evaluations on different forensic detectors
demonstrate the success and superiority of the proposed attack
method compared to baseline methods.
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