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A PROOFS

A.1 PROOF OF THEOREM 4.5

We first introduce the following lemmas which are used to proof Theorem 4.5.

Lemma A.1. Suppose loss function L is upper bounded by C. For any classifier bh : X ! Y
�

and

any hypothesis mechanism cM = {bmt : X ⇥ Y ! X ⇥ Y}, the expected error of bh in an unseen

target domain DT+1 can be upper bounded:
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where K is a constant dependent on distance metric D(·, ·), bDT+1 is the domain specified by the

push-forward distribution P
X,Y

bDT+1
:= bmT+1]P

X,Y

DT
.

Lemma A.2. Suppose loss function L is upper bounded by C. Then, for any � > 0, with probability

at least 1� � over samples Sn drawn i.i.d from domain D, for all bh 2 H, the expected error of bh in

domain D can be upper bounded:
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Proof of Lemma A.1 We first show the proof for KL-divergence. Based on that, the proof for
JS-divergence is given.

Let U = (X,Y ) and L(U) = L(bh(X), Y ). We first prove
R
E

���PU=u

DT+1
� P

U=u

bDT+1

��� du =

1
2

R ���PU=u

DT+1
� P

U=u

bDT+1

��� du where E is the event that PU=u

DT+1
� P

U=u

bDT+1
(⇤) as follows:

Z

E

���PU=u

DT+1
� P

U=u

bDT+1

��� du =

Z

E

⇣
P

U=u

DT+1
� P

U=u

bDT+1

⌘
du

=

Z

E[E

⇣
P

U=u

DT+1
� P

U=u

bDT+1

⌘
du�

Z

E

⇣
P

U=u

DT+1
� P

U=u

bDT+1

⌘
du

(1)
=

Z

E

⇣
P

U=u

bDT+1
� P

U=u

DT+1

⌘
du

=

Z

E

���PU=u

DT+1
� P

U=u

bDT+1

��� du

=
1

2

Z ���PU=u

DT+1
� P

U=u

bDT+1

��� du

where E is the complement of E . We have
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(3)
 because L(u) is non-negative function

and is bounded by C;
(4)
= by using (⇤);

(5)
 by using Pinsker’s inequality between total variation norm

and KL-divergence. From (⇤⇤), we can see that when D is DKL, K =
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2

. Next, we give the proof
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Adding Eq. (4) to Eq. (5) and subtracting ✏D0
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We have
(6)
 by using Cauchy–Schwarz inequality. We can also see that K =

p
2 when D is DJS .
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Proof of Lemma A.2 We start from the Rademacher bound Koltchinskii & Panchenko (2000)
which is stated as follows.
Lemma A.3. Rademacher Bounds. Let F be a family of functions mapping from Z to [0, 1]. Then,

for any 0 < � < 1, with probability at least 1 � � over sample Sn = {z1, · · · , zn}, the following

holds for all f 2 F:
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We then apply Lemma A.3 to our setting with Z = (X,Y ), the loss function L bounded by C, and
the function class LH =

n
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o
. In particular, we scale the loss function

L to [0, 1] by dividing by C and denote the new class of scaled loss functions as LH/C. Then, for
any � > 0, with probability at least 1� �, we have:
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We have
(1)
 by using the property of Redamacher complexity that bRn(↵F) = ↵ bRn(F). We derive

Lemma A.2 by multiplying Eq. (6) by C.

Proof of Theorem 4.5 We then apply Lemmas A.1 and A.2 for the two domains DT+1 and bDT+1.
In particular, for any 0 < � < 1 and any cM = {bmt : X ⇥ Y ! X ⇥ Y}, with probability at least
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Applying Eq. (7) for M⇤, we have the following inequality with probability at least 1� �:
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According Assumption 4.3, we also have the following inequality with probability at least 1� �:
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Using union bound for Eq. (8) and Eq. (9), we also have the following inequality with probability at
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✏DT+1

⇣
bh
⌘
 b✏D⇤

T+1

⇣
bh
⌘
+ 2 bRn (LH) + 3C

r
log(2/�)

2n
+ CK

vuut
✏+

1

T � 1

TX

t=2

D

⇣
P

X,Y

Dt
, P

X,Y

D
⇤
t

⌘

(10)

Replacing � by �

2 in Eq. (10) gives us the inequality in Corollary 4.5.

A.2 PROOF OF PROPOSITION 4.6
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B MODEL DETAILS

B.1 PSEUDO CODES FOR AIRL’S LEARNING AND INFERENCE PROCESSES

Algorithm 1: Learning process for AIRL
Input: Training datasets from T source domains {Dt}

T

t=1, representation network = {Enc,
Trans}, classification network = {LSTM,bh1}, ↵, n

Output: Trained Enc,Trans,LSTM, h
⇤

1
1 Linv = 0, Lcls = 0

/* Estimate {w
t

y
}y2Y,t<T for important weighting */

2 for t = 1 : T � 1 do
3 for y 2 Y do
4 w

t

y
= P

Y=y

Dt+1
/P

Y=y

Dt

/* Learn weights for Enc,Trans,LSTM */
5 while learning is not end do
6 Sample batch B = {xt, yt}

T

t=1 ⇠ {Dt}
T

t=1 where {xt, yt} =

n
x
j

t
, y

j

t

on

j=1

7 z1 = Enc (x1)

8 for t = 1 : T � 1 do
9 zt+1 = Enc (xt+1)

10 bzt = Trans (zt)

11 {bzt(w), yt(w)} = Reweight {bzt, yt} with w
t
= {w

t

y
}y2Y

12 Calculate L
t

inv
from bzt(w), zt+1 by Eq. (3)

13 Linv = Linv + L
t

inv

14 if t > 1 then
15 ht = LSTM(h<t)

16 Calculate L
t

cls
from yt(w), yt+1,

bht (bzt(w)) ,bht (zt+1) by Eq. (2)
17 Lcls = Lcls + L

t

cls

18 Update Enc,Trans,LSTM,bh1 by optimizing Linv + ↵Lcls

Algorithm 2: Inference process for AIRL
Input: Testing dataset from domain DT+K , trained Enc,LSTM, h

⇤

1
Output: Predictions for testing dataset

1 for t = 2 : (T +K � 1) do
2 h

⇤

t
= LSTM(h

⇤

<t
)

3 while inference is not end do
4 Sample batch B = xT+K ⇠ DT+K

5 zT+K = Enc (xT+K)

6 Generate predictions h⇤

T+K�1 (zT+K)

B.2 DETAILS OF MODEL ARCHITECTURES

Our proposed model AIRL consists of three components: (i) encoder Enc that maps inputs to
representation (i.e., equivalent to bgt in our theoretical results), (ii) transformer layer Trans that
helps to enforce the invariant representation (i.e., Enc + Trans equivalent to bft in our theoretical
results), and (iii) classification network LSTM that generates classifiers mapping representations to
the output space. At each target domain, LSTM layer is used to generate the new classifier based
on the sequences of previous classifiers. The detailed architectures of these networks used in our
experiment are presented in Tables 3 and 4 below.
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Table 3: Detailed architecture of AIRL for RMNIST (n_channel = 1, n_output = 10), Yearbook
(n_channel = 3, n_output = 1), and CLEAR (n_channel = 3, n_output = 10) datasets.

Networks Layers

Representation Mapping G

Conv2d(input channel = n_channel, output channel = 32, kernel = 3, padding = 1)
BatchNorm2d
ReLU
MaxPool2d
Conv2d(input channel = 32, output channel = 32, kernel = 3, padding = 1)
BatchNorm2d
ReLU
MaxPool2d
Conv2d(input channel = 32, output channel = 32, kernel = 3, padding = 1)
BatchNorm2d
ReLU
MaxPool2d
Conv2d(input channel = 32, output channel = 32, kernel = 3, padding = 1)
BatchNorm2d
ReLU
MaxPool2d

Transformer Trans

Q: Linear(input dim = 32, output dim = 32)
K: Linear(input dim = 32, output dim = 32)
V : Linear(input dim = 32, output dim = 32)
U : Linear(input dim = 32, output dim = 32)
Linear(input dim = 32, output dim = 32)
Batchnorm1d
LeakyReLU

Classification Network LSTM

Linear(input dim = (32 * 32 + 32) + (32 * n_output + n_output), output dim = 128)
LSTM(input dim = 128, output dim = 128)
Linear(input dim = 128, output dim = (32 * 32 + 32) + (32 * n_output + n_output))

bht (Output of LSTM)
Linear(input dim = 32, output dim = 32)
ReLU
Linear(input dim = 32, output dim = n_output)
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Table 4: Detailed architecture of AIRL for Circle and Circle-Hard datasets.

Networks Layers

Encoder Enc

Linear(input dim = 2, output dim = 32)
ReLU
Linear(input dim = 32, output dim = 32)
ReLU
Linear(input dim = 32, output dim = 32)
ReLU
Linear(input dim = 32, output dim = 32)

Transformer Trans

Q: Linear(input dim = 32, output dim = 32)
K: Linear(input dim = 32, output dim = 32)
V : Linear(input dim = 32, output dim = 32)
U : Linear(input dim = 32, output dim = 32)
Linear(input dim = 32, output dim = 32)
Batchnorm1d
LeakyReLU

Classification Network LSTM

Linear(input dim = (32 * 32 + 32) + (32 * 1 + 1), output dim = 128)
LSTM(input dim = 128, output dim = 128)
Linear(input dim = 128, output dim = (32 * 32 + 32) + (32 * 1 + 1))

bht (Output of LSTM)
Linear(input dim = 32, output dim = 32)
ReLU
Linear(input dim = 32, output dim = 1)

19



Under review as a conference paper at ICLR 2024

C DETAILS OF EXPERIMENTAL SETUP AND ADDITIONAL RESULTS

C.1 EXPERIMENTAL SETUP

Datasets. Our experiments are conducted on two synthetic and two real-world datasets. The data
statistics of these datasets are presented in Table 5. For Eval-S scenario, the first half of domains in
the domain sequences are used for training and the following domains are used for testing. For Eval-D
scenario, we vary the size of the training set starting from the first half of domains by sequentially
adding new domains to this set. In both scenarios, we split the training set into smaller subsets with a
ratio 81 : 9 : 10; these subsets are used as training, validation, and in-distribution testing sets. The
data descriptions are given as follow:

• Circle (Pesaranghader & Viktor, 2016): A synthetic dataset containing 30 domains. Features
X := [X1, X2]

T in domain t are two-dimensional and Gaussian distributed with mean
X̄

t
= [r cos(⇡t/30), r sin(⇡t/30)] where r is radius of semicircle; the distributions of

different domains have the same covariance matrix but different means that uniformly evolve
from right to left on a semicircle. Binary label Y are generated based on labeling function
Y =

⇥
(X1 � x

o

1)
2
+ (X2 � x

o

2)
2
 r

⇤
, where (x

o

1, x
o

2) are center of semicircle. Models
trained on the right part are evaluated on the left part of the semicircle.

• Circle-Hard: A synthetic dataset adapted from Circle dataset, where mean X̄
t does not

uniformly evolve. Instead, X̄t
= [r cos(✓t), r sin(✓t)] where ✓t = ✓t�1+⇡(t� 1)/180 and

✓1 = 0 rad.
• RMNIST: A dataset constructed from MNIST (LeCun et al., 1998) by R-degree counter-

clockwise rotation. We evenly select 30 rotation angles R from 0
� to 180

� with step size
6
�; each angle corresponds to a domain. The domains with R  r are considered source

domains, those with R > r are the target domains used for evaluation. In this dataset, the
goal is to train a multi-class classifier on source domains that predicts the digits of images in
target.

• Yearbook (Ginosar et al., 2015): A real dataset consisting of frontal-facing American high
school yearbook photos from 1930-2013. Due to the evolution of fashion, social norms,
and population demographics, the distribution of facial images changes over time. In this
dataset, we aim to train a binary classifier using historical data to predict the genders of
images in the future.

• CLEAR (Lin et al., 2021): A real dataset built from existing large-scale image collections
(YFCC100M) which captures the natural temporal evolution of visual concepts in the real
world that spans a decade (2004-2014). In this dataset, we aim to train a multi-class classifier
using historical data to predict 10 object types in future images.

Table 5: Data statistics.

Data type Label type #instance #domain
Circle Synthetic Binary 30000 30
Circle-Hard Synthetic Binary 30000 30
RMNIST Semi-synthetic Multi 30000 30
Yearbook Real-world Binary 33431 84
CLEAR Real-world Multi 29747 10

Baseline methods. We compare the proposed AIRL with existing methods from related areas,
including the followings:

• Empirical risk minimization (ERM): A simple method that considers all source domains as
one domain.

• Last domain (LD): A method that only trains model using the most recent source domain.
• Fine tuning (FT): The baseline trained on all source domains in a sequential manner.
• Domain invariant representation learning: Methods that learn the invariant representations

across source domains and train a model based on the representations. We experiment with
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G2DM (Albuquerque et al., 2019), DANN (Ganin et al., 2016), CDANN (Li et al., 2018b),
CORAL (Sun & Saenko, 2016), IRM (Arjovsky et al., 2019).

• Data augmentation: We experiment with MIXUP (Zhang et al., 2018) that generates new
data using convex combinations of source domains to enhance the generalization capability
of models.

• Continual learning: We experiment with EWC (Kirkpatrick et al., 2017), method that learns
model from data streams that overcomes catastrophic forgetting issue.

• Continuous domain adaptation: We experiment with CIDA (Wang et al., 2020), an adversar-
ial learning method designed for DA with continuous domain labels.

• Distributionally robust optimization: We experiment with GROUPDRO (Sagawa et al., 2019)
that minimizes the worst-case training loss over pre-defined groups through regularization.

• Gradient-based DG: We experiment with FISH (Shi et al., 2022) that targets domain
generalization by maximizing the inner product between gradients from different domains.

• Contrastive learning-based DG: We experiment with SELFREG (Kim et al., 2021) that
utilizes the self-supervised contrastive losses to learn domain-invariant representation by
mapping the latent representation of the same-class samples close together.

• Non-stationary environment DG: We experiment with DRAIN (Bai et al., 2022), DPNET
(Wang et al., 2022), LSSAE (Qin et al., 2022). and DDA (Zeng et al., 2023). DRAIN,
DPNET, and DDA focus on domain DT+1 only so we use the same model when making
predictions for all target domains {Dt}t>T .

Evaluation method. In the experiments, models are trained on a sequence of source domains Dsrc,
and their performance is evaluated on target domains Dtgt under two different scenarios: Eval-S and
Eval-D.

In the scenario Eval-S, models are trained one time on the first half of domain sequence Dsrc =

[D1, D2, · · · , DT ] and are then deployed to make predictions on the next K domains in the second
half of domain sequence Dtgt = [DT+1, DT+2, · · · , DT+K ] (T + 1  K  2T ). The average and
worst-case performances can be evaluated using two matrices OODAvg and OODWrt defined below.

OODAvg =
1

K

KX

k=1

accT+k; OODWrt = min
k2[K]

accT+k

where accT+k denotes the accuracy of model on target domain DT+k.

In the scenario Eval-D, source and target domains are not static but are updated periodically
as new data/domain becomes available. This allows us to update models based on new source
domains. Specifically, at time step t 2 [T, 2T � K], models are updated on source domains
Dsrc = [D1, D2, · · · , Dt] and are used to predict target domains Dtgt = [Dt+1, Dt+2, · · · , Dt+K ].
The average and worst-case performances of models in this scenario can be defined as follows.

OODAvg =
1

(T�K+1)K

P2T�K

t=T

P
K

k=1 acct+k

OODWrt = min
t2[T,2T�K]

1
K

P
K

k=1 acct+k

In our experiment, the time step t starts from the index denoting half of the domain sequence.

Implementation and training details. Data, model implementation, and training script are included
in the supplementary material. We train each model on each setting with 5 different random seeds
and report the average prediction performances. All experiments are conducted on a machine with
24-Core CPU, 4 RTX A4000 GPUs, and 128G RAM.

C.2 ADDITIONAL EXPERIMENT RESULTS

Performance gap between in-distribution and out-of-distribution predictions. This study is
motivated based on the assumption that the environment changes over time and that there exist
distribution shifts between training and test data. To verify this assumption in our datasets, we
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Table 6: Performances of DANN on RMNIST dataset.

Target Domain 0
�-rotated 15

�-rotated 30
�-rotated 45

�-rotated 60
�-rotated

Model Performance 51.2 59.1 70.0 69.2 53.9

compare the performances of ERM on in-distribution and out-of-distribution testing sets. Specifically,
we show the gaps between the performances of ERM measured on the in-distribution (i.e., IDAvg)
and out-of-distribution (i.e., OODAvg) testing sets under Eval-D scenario (i.e., K = 5) in Figure 4.

Performance of fixed invariant representation learning in conventional and non-stationary DG
settings. A key distinction from non-stationary DG is that the model evolves over the domain
sequence to capture non-stationary patterns (i.e., learn invariant representations between two con-
secutive domains but adaptive across domain sequence). This stands in contrast to the conventional
DG (Ganin et al., 2016; Phung et al., 2021) which relies on an assumption that target domains lie on
or are near the mixture of source domains, then enforcing fixed invariant representations across all
source domains can help to generalize the model to target domains. We argue that this assumption
may not hold in non-stationary DG where the target domains may be far from the mixture of source
domains resulting in the failure of the existing methods.

To verify this argument, we conduct an experiment on rotated RMNIST dataset with DANN (Ganin
et al., 2016) – a model that learns fixed invariant representations across all domains. Specifically,
we create 5 domains by rotating images by 0, 15, 30, 45, and 60 degrees, respectively, and follow
leave-one-out evaluation (i.e., one domain is target while the remaining domains are source). Clearly,
the setting where the target domain are images rotated by 0 or 60 degrees can be considered as
non-stationary domain generalization while other settings can be considered as conventional domain
generalization. The performances of DANN with different target domains are shown in Table 6. As
we can see, the accuracy drops significantly when the target domain are images rotated by 0 or 60
degrees. This result demonstrates that learning fixed invariant representations across all domains is
not suitable for non-stationary DG.

Experimental results for Eval-S scenario. The prediction performances of AIRL and baselines
on synthetic (i.e., Circle, Circle-Hard) and real-world (i.e., RMNIST, Yearbook) data under Eval-S
scenario are presented in Figure 5 below. In this scenario, the training set is fixed as the first half
of domains while the testing set is varied from the five subsequent domains to the second half of
domains in the domain sequences. We report averaged results with error bars (std) for training over 5
different random seeds.

We can see that AIRL consistently outperforms baselines in most datasets. We also observe that
the prediction performances decreases when the predictions are made for the distant target domains
(i.e., the number of testing domain increases) for all models in Circle, Circle-Hard, and RMNIST
datasets. This pattern is reasonable because domains in these datasets are generated monotonically.
For Yearbook dataset, the performance curves are U-shaped that they decrease first but increase
later. This dataset is from a real-world environment so we expect the shapes of the curves are more
complex compared to those in the other datasets.
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(a) Circle (b) Circle-Hard

(c) RMNIST (d) Yearbook

Figure 4: Gaps between the performances of ERM measured on the in-distribution and out-of-
distribution testing sets (i.e., IDAvg �OODAvg) under Eval-D scenario (i.e., K = 5). This experi-
ment is conducted on Circle, Circle-Hard, RMNIST, and Yearbook datasets.

(a) Circle (b) Circle-Hard

(c) RMNIST (d) Yearbook

Figure 5: Prediction performances (i.e., OODAvg) of AIRL and baselines under Eval-S scenario.
The training set is fixed as the first half of domains while the testing set is varied from the five
subsequent domains to the second half of domains in the domain sequences. We report average results
for training over 5 different random seeds. This experiment is conducted on Circle, Circle-Hard,
RMNIST, and Yearbook datasets.
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