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A Proofs

A.1 Proof of Proposition 1

Lemma 1 (Interval Arithmetic, restated from Section 4.1 in [1].). For any matrix multiplication
A -x:R"™ = R™, ifxis entry-wisely bounded as x < x <X, i.e. ,x; <x; <X;,Vi=1...m, the
Jfollowing inequalities hold for each entry of Ax,

(Al x + [A]_X < Ax < [A]_x + [A];% ()
where [-]+ := max{0, -}, []- := min{0, -}.

Proof. For the lower bound [A];x + [A]_X, consider the j-th entry of [Ax]; = > 1" | Aj;x;.
With the entry-wise bounds x; < x; < X;,Vi =1...n,if A;; > 0, it holds that A; ;x, < A ;x;;
similarly, if A;; < 0, it holds that A ; ;X; < A ;x;. Writing it compactly, we have

[Aj,i]%—zi + [Ajﬂ'}_ii = IHaX{O, Aj,i}zi + HliIl{O, A—Jl}iz S AjJ'Xi
. By summing the inequality above over ¢ = 1, ..., n, it holds that

[A] 1 x]; + [A]-%]; = > [Ajlix + > [Aj] % <[Ax]; =D Ajx
i=1 i=1 i=1

, which indicates [A];x 4+ [A]_X < Ax holds for each entry j. Similarly, the upper bound Ax <
[A]_x + [A]4+X can be derived in the same way, concluding the proof the interval arithmetic. [

Proposition 1. (restated of Proposition I in the main text.) When u is within a hyper-rectangle
U=t ={uecR”|u<u<u} givenx € X, the minimum value of $(x,u) over u € U
can be found explicitly as,

min ¢(x, 1) = Vi f(x) + [Vxo g(x)] 10+ [Vxd T g(x)]-T = 6(x, m(x)), (@)

where [x]; = max{0,*},[x]- = min{0,+} and the optimal control input u,(x) =
argmin, ey ) (X, u) lies among the vertices V(U) of hyper-rectangle U given state x.

Proof. Based on the chain rule, it holds that
d(x,u) = Vo "% = Vit f(x) + Vb g(x)u.
With u < u < 1, based on Lemma 1, it holds that
[V " g(x)]1u+ [Vxo ' g(x)]-T < Vo g(x)u.
Besides, consider the vertices V(i) := {u, | [u,]; € {u;,TW;},Vi = 1,...,m}, we can find the
equivalent expression for the lower bounds,

[Vxo T g(x)]1u+ [Vxo ' g(x)]-T = Vi g(x)us(x),
where [u,(x)]; = u, if [Vx¢ ' g(x)]; > 0and [u,(x)]; = U; if [Vxé  g(x)]; < 0, showing that
there exists u, € V(U) s.t. the lower bound [Vx¢ ' g(x)]+u + [Vxé ' g(x)]_1 can be achieved
equivalently, which concludes that proof. O
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A.2 Proof of Theorem 2

Theorem 1. (restated of Theorem 2 in the main text.) For any control-affine system h(x,u) =
f(x) + g(x)u with bounded control input u € U, given a learned neural CBF ¢(x) with ReLU
activation functions, suppose the boundary state set 0Xy is the union of K hyper-rectangles AX as
0Xy C AXy = Uf:lAX(k), then the following inequality maxyepx, Minuey q.S(x, u) +ag(x) <
0 is satisfied if as a sound upper bound of V¢ h(x,u,) + a¢(x), the following inequality holds
for any x in each hyper-rectangle state set AX € AXy,

[ ] [, w4+ (AT 4 (R, wo))— + [d )= [, )] + [dT]- [A(x, w,)]- + ag(x) < 0

where [x] = max{0,%x} = ReLU(x), [x]- = min{0,%x} = —ReLU(—x), and d,d and
h(x,uy), h(x, u,) are the lower and upper bounds of Vx¢ and h(x, u,), respectively.

Proof. Based on Proposition 1, we have the following inequality hold for any AX € AXy,

Jnax ming(x, u) +ad(x) = max ¢(x, uy(x)) + ad(x) < max (x,w) +ad(x), ()

where u, is an approximated constant vertex of optimal control input u, (x) for a sound upper bound
of ¢(x,u,(x)) over x € AX. Now with the bounded dynamics h(x,u,) < h(x,u,) < h(x,u,),
by Lemma 1, for any x € AX we have

$(x,u,) + ad(x) = Vidh(x,w,) + ad(x) < [Vidl-h(x,u,) + [V gl h(x,w,) + ag(x).
Besides, with the bounded gradient d < Vy¢ < d, the following inequalities hold

[d]y < [Vxols < [d, [d]- < [Vxg]- <[d]-

Then applying Lemma 1 for [V #] _h(x,u,) and [V, ¢], h(x, u,), we further have the following
inequality hold for any x € AX,

: —T, — —T
o(x,uy) < [d i [h(x,wo)]y + [d ] [Alx, o) -+ [d =[x u))4 + [d7]- [h(x, wy)]-
Therefore, if for any x in each hyper-rectangle state set AX € AXy, it holds that

[ 14 A0 w)] 4 + [T [k, wy)] - + [ d ] [h(x, w)]y + [d ] [A(x, w,)] - + ad(x) <0
and then we have ¢(x, u,) 4 ap(x) < 0 for any x € AX. Combining Equation (3), we have

< ; <
max, {lnln¢(x u) + ap(x) max, o(x,u,) + ad(x) < 0,VAX € AX,.

Since the exact boundary of ¢(x) = 0 is the subset of all AX, i.e. , 0Xy C AX,, := UK AX®)
it holds that

g, 000w + 0900 <y, gl 0 w) + a6() <0

which concludes the proof. O

Remark 1 (linearly bounded dynamics.). We remark that although the linear bounds of dynamics
h(x,u,), h(x,u,) can be found through 1-order Taylor models [2, 3, 4] in practice, we can give a
generally valid lower and upper bounds by assuming bounded {5 operator norm of Hessian matrix
Sollowing [5]. For the control-affine system with fixed control input ug,x = h(x,ug) with bounded
state x < x < X, suppose the {5 operator norm of Hessian matrix of i-th entry of h(x,up) is
bounded as |V2h) (x,uq)|la < MW, then at xo € [x,X] the following linear bounds can be
found as

h(x,19) = Wyx + by < h(x,u9) < Wox + by = h(x,ug) where W = W = V. h(x, 1),
. , 1 Y po s
Qé) = 1D (x0,u0) — V] A (x0,u0)x0 — 5”2 — x||3MY for i-th entry of by,

bé) = hD(x0,u) — V] h (x0,u0)x0 + §Hi — x|12M D for i-th entry of by.
Specifically, if the control-affine system is linear and time-invariant, i.e. , f(x) = Ax and g(x) = B
with constant A, B, where the lower and upper bounds will trivially be W, = Wo = A b, =

BO = BUQ.



39

40

41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61

62
63
64
65
66

10 grids per dimension 20 grids per dimension 50 grids per dimension

Iy
=}
=
=

1.0

0.8 0.8
o o o -
= = =
© © ©
£ 0.6 0.6 -4
° e el
2 ki \\. gos
Eoal T——u Eoa £
] —_ ] — ] 1
g BBV g BBV g BBV
0.2 Ours 0.2 Ours Ours
—=— Upper bound —=— Upper bound —— Upper bound
0.0 0.2 0.4 0.6 0.8 o 90 0.2 0.4 0.6 0.8 10 0 0.2 0.4 0.6 0.8 1.0
a in verification condition a in verification condition a in verification condition
10 10 grids per dimension 10 20 grids per dimension 1o 50 grids per dimension
- \4\‘ 08
] 9] ————— v —\-‘.\
= = =
© © ©
£ 0.6 @ 0.6 -4
° e el
@ \\\ @ 008
tos tos t
] —_ ] — ] 1
g BBV g BBV g BBV
0.2 Ours 0.2 Ours Ours
—=— Upper bound —=— Upper bound —=— Upper bound
0.0 0.2 0.4 0.6 0.8 o 0 0.2 0.4 0.6 0.8 10 0 0.2 0.4 0.6 0.8 1.0
a in verification condition a in verification condition a in verification condition

Figure 1: Verified rate with different « in the neural CBF verification condition using different grid
sizes (different number of boundary hyper-rectangles) for Dubins Car.

B Experiments
The code can be found in the supplementary material zip file.

B.1 Experiment Environments and Dynamics

All the robot dynamic models are based on the open-sourced package RobotZoo.jl, where Point
Robot is modified based on DoubleIntegrator(D=2) with zero gravity, Dubins Car is mod-
ified based on DubinsCar with radius=0.175, and Planar Quadrotor is modified based on
PlanarQuadrotor with mass=1.0kg, gravity=9.81m/s? and tip-to-tip distance=0.3m.
Moreover, for the state space, all robots move on a 2D plane within (0,4m)*(0,4m) (hori-
zontal for Point Robot and Dubins Car but vertical for Planar Quadrotor) with a static rect-
angle obstacle located at the center coordinate (2m,1m) with sizes of 1m*2m. More specif-
ically, the states of Dubins Car are 2D positions and orientation angle within the 3-dim
hyper-rectangle (0,4)*(0,4)*(0,7) and the unsafe states are within 3-dim hyper-rectangle
(1.5,2.5)%(0,2)*(0,7). The states of Point Robot are 2D positions and 2D velocities within
the 4-dim hyper-rectangle (0,4)*(0,4)* (-1, 1)*(-1, 1) and the unsafe states are within 4-
dim hyper-rectangle (1.5,2.5)*(0,2)*(-1, 1)*(-1, 1). The states of Planar Quadrotor are
2D positions, orientation angle, 2D velocities and angular velocity within the 6-dim hyper-rectangle
(0,4)%(0,4)*(-0.1,0.1)*(-1,1)*(-1, 1)*(-1, 1) and the unsafe states are within 6-dim
hyper-rectangle (1.5,2.5)*(0,2)*(-0.1,0.1)*(-1,1)*(-1, 1)*(-1, 1). For the control
inputs, Dubins Car adopts speed and angular speed within the 2D rectangle (-1,1)*(-1,1). Point
Robot adopts 2D accelerations as control input within the 2D rectangle (-1,1)*(-1,1). Planar
Quadrotor adopts the thrust forces exerted by the two motors as control input within the 2D rectan-
gle (4,6)*(4,6) to overcome its gravity and move on the vertical plane.

B.2 Implementation Details

Data collection. As shown in the main text, we adopt supervised learning to train the neural CBFs.
The data is collected from random trajectories from the safe state space and control input space
through the dynamics. To empirically ensure the forward invariance, we discard the second half
states and control inputs to avoid the unsafe region of attraction, and only collect the other states
and control inputs with the safe labels. To collect unsafe data, we collect random states from the


https://github.com/RoboticExplorationLab/RobotZoo.jl
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Number of grids per dimension 10 20 50 100

Ours w/o BaB 0.329 0.437 0.875 0.953
Oursw/BaB  0.507 0.729 0.926 0.963

Ours w/o BaB  0.247 0.592 0.837 0.910
Ours w/BaB  0.519 0.730 0.899 0.941

Regular training

Adpversarial training

Table 1: The ablation study of the branch-and-bound (BaB) in our proposed method under different
grid densities with o = 0.5 for Dubins Car.

unsafe state space with a similar amount of safe data for balance. To be more detailed, the time of
random trajectory is 10s with the time step of 0.1s and the states in the last 5s are omitted. Also,
the trajectories that are less than 5s (e.g. when the robot collides with obstacles or goes beyond
the feasible states) are discarded as well. By repeatedly initializing random states and collecting
trajectories with random control inputs through dynamics, we collect 2.5M total pairs of state and
control input with 1.4M safe ones for Point Robot, 4.5M total pairs with 2.5M safe ones for Dubins
Car and 1.2M total pairs with 0.7M safe ones for Planar Quadrotor as dataset. Then, we randomly
choose 10k data as a validation set and use the rest for model training for each robotic dynamics.

Model training. During the model training, we adopt the empirical mean of the positive model
predictions as the safe set loss [6] and use the projected gradient descent to find the best-case control
input to construct the forward invariance condition loss. To enhance the training efficiency, we only
consider the training data along the empirical boundary of |¢(x)| < 0.1 for forward invariance
condition loss with o = 0. For adversarial training, we adopt project gradient descent over an
adjacent cube of each state data to maximize the forward invariance loss, then the gradient descent
is based on the worst-case projected states. The size of the adjacent cube in the adversarial training
is 1/20 of each dimension. All the models are trained with Adam for 20 epochs with an initial
learning rate of 0.01 and a decay rate of 0.2 every 4 epochs. The neural CBFs for Planar Quadrotor
are trained with the weight decay of 0.001.

Verification procedure. The first step of verifying neural CBFs is to find the hyper-rectangles
to over-approximate the boundary, i.e. , find the superset of all the roots ¢(x) = 0. Assuming
the hyper-rectangles are small enough such that the CBF is continuous and monotonic for each
dimension of the state, we check all the gridded hyper-rectangles to find if all the vertices give
positive or negative CBF values. Based on the mean value theorem and the assumption above,
the roots exist in the hyper-rectangles whose vertices give CBF values with opposite signs. Once
the hyper-rectangles are obtained along the boundary, we verify the forward invariance condition
based on off-the-shelf neural network verification toolboxes [7, 8, 9]. More specifically, given the
state specification, we first approximate the optimal control input using one vertex and then find
the linear bounds based on TaylorModels.jl [3]. Then with the Jacobian bounds [10], the condition
in Theorem 1 is found to verify if it is no larger than 0. If it does not hold, we adopt branch-and-
bound by half-splitting the state specification along each dimension, and conduct the breath-first
search to verify Theorem 1 recursively until reaching maximum iteration of 1000. By maintaining
all verified sub-specifications, we approximate the optimal control input for other vertex traversals
to verify if the union set of all verified sub-specifications equals the whole state specification. All
the baselines are conducted in a similar way but with concretized bounds instead of the symbolic
one in Theorem 1. We remark that although the procedure may not be the most efficient due to
approximating optimal control input, the verification result is sound and the scalability is satisfactory
for current robot dynamics. It is marked as future work to make the procedure more efficient for
robot dynamics with higher dimensions.


https://github.com/JuliaIntervals/TaylorModels.jl
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Figure 2: Visualization of branch-and-bound for both baseline BBV [11] (first row) and ours (second

row) for Dubins Car with regular-training CBF and u,, = [1, 1]. For each branch after splitting, the
green boxes indicate specifications while the red ones indicate unknown specifications.

B.3 Additional Results and Analysis

Comparison with different « in the verification condition. As shown in Figure 1, we compare
our results and the branch-and-bound based baseline BBV [11] with different « in the verification
condition with different grid numbers per dimension. The upper bound indicates how challenging
the verification will be with different a. It can be seen that with larger «, the performance of BBV
decreases more than ours due to larger over-approximation errors. The reason why our results can get
better when « goes up lies in that the approximation errors of gradient bounds through ReL.U [10]
become less dominant and the symbolic property becomes more significant. Besides, with more
fine-grained state specifications, the influence of o becomes less because of fewer approximation
errors of both interval arithmetic and ReLLU gradient. Adversarial training can also help boost the
verification performance of BBV when the grid size is large, while it can hurt our performance with
small grid sizes due to more training noise during projected gradient descent.

Influence of Branch-and-Bound (BaB) on the proposed method. Here we conduct an experi-
ment as an ablation study to show the influence of branch-and-bound in the proposed method. As
shown in Table 1, we can find that without branch-and-bound, the performance is significantly re-
duced, especially with fewer boundary hyper-rectangles (larger sizes of grids), showing that branch-
and-bound scheme is essential to the proposed method to alleviate the extra approximation error
caused by finding gradient bounds through ReL.U [10].

Visulizaton of branch-and-bound scheme. From Figure 2, we can see that after each splitting for
the previous unknown specifications, branches will be doubled and the branch-and-bound follows
breadth-first search. With fewer split branches, it can be seen that the coarse specifications cannot
be verified for both base BBV [11] and ours. However, with more splitting, ours can successfully
verify all branches after 5 splits while BBV can only verify some of the finer specifications, leaving
lots of unknown branches to be further split due to looser bounds and larger over-approximation.
The visualization shows that even though with the same approximated optimal control input u,,,
ours can give tighter bounds for neural CBF verification with much fewer split times, resulting in a
higher verified rate and shorter verification time.
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