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A Proofs1

A.1 Proof of Proposition 12

Lemma 1 (Interval Arithmetic, restated from Section 4.1 in [1].). For any matrix multiplication3

A · x : Rn → Rm, if x is entry-wisely bounded as x ≤ x ≤ x, i.e. ,xi ≤ xi ≤ xi,∀i = 1 . . . n, the4

following inequalities hold for each entry of Ax,5

[A]+x+ [A]−x ≤ Ax ≤ [A]−x+ [A]+x (1)
where [·]+ := max{0, ·}, [·]− := min{0, ·}.6

Proof. For the lower bound [A]+x + [A]−x, consider the j-th entry of [Ax]j =
∑n

i=1 Aj,ixi.
With the entry-wise bounds xi ≤ xi ≤ xi,∀i = 1 . . . n, if Aj,i ≥ 0, it holds that Aj,ixi ≤ Aj,ixi;
similarly, if Aj,i < 0, it holds that Aj,ixi ≤ Aj,ixi. Writing it compactly, we have

[Aj,i]+xi + [Aj,i]−xi = max{0,Aj,i}xi +min{0,Aj,i}xi ≤ Aj,ixi

. By summing the inequality above over i = 1, . . . , n, it holds that

[[A]+x]j + [[A]−x]j =

n∑
i=1

[Aj,i]+xi +

n∑
i=1

[Aj,i]−xi ≤ [Ax]j =

n∑
i=1

Aj,ixi

, which indicates [A]+x + [A]−x ≤ Ax holds for each entry j. Similarly, the upper bound Ax ≤7

[A]−x+ [A]+x can be derived in the same way, concluding the proof the interval arithmetic.8

Proposition 1. (restated of Proposition 1 in the main text.) When u is within a hyper-rectangle9

U = [u,u] = {u ∈ Rm | u ≤ u ≤ u}, given x ∈ X , the minimum value of ϕ̇(x,u) over u ∈ U10

can be found explicitly as,11

min
u∈U

ϕ̇(x,u) = ∇xϕ
⊤f(x) + [∇xϕ

⊤g(x)]+u+ [∇xϕ
⊤g(x)]−u = ϕ̇(x,uv(x)), (2)

where [∗]+ = max{0, ∗}, [∗]− = min{0, ∗} and the optimal control input uv(x) =12

argminu∈V (U) ϕ̇(x,u) lies among the vertices V (U) of hyper-rectangle U given state x.13

Proof. Based on the chain rule, it holds that
ϕ̇(x,u) = ∇xϕ

⊤ẋ = ∇xϕ
⊤f(x) +∇xϕ

⊤g(x)u.

With u ≤ u ≤ u, based on Lemma 1, it holds that
[∇xϕ

⊤g(x)]+u+ [∇xϕ
⊤g(x)]−u ≤ ∇xϕ

⊤g(x)u.

Besides, consider the vertices V (U) := {uv | [uv]i ∈ {ui,ui},∀i = 1, . . . ,m}, we can find the
equivalent expression for the lower bounds,

[∇xϕ
⊤g(x)]+u+ [∇xϕ

⊤g(x)]−u = ∇xϕ
⊤g(x)uv(x),

where [uv(x)]i = ui if [∇xϕ
⊤g(x)]i ≥ 0 and [uv(x)]i = ui if [∇xϕ

⊤g(x)]i < 0, showing that14

there exists uv ∈ V (U) s.t. the lower bound [∇xϕ
⊤g(x)]+u + [∇xϕ

⊤g(x)]−u can be achieved15

equivalently, which concludes that proof.16
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A.2 Proof of Theorem 217

Theorem 1. (restated of Theorem 2 in the main text.) For any control-affine system h(x,u) =18

f(x) + g(x)u with bounded control input u ∈ U , given a learned neural CBF ϕ(x) with ReLU19

activation functions, suppose the boundary state set ∂Xϕ is the union of K hyper-rectangles ∆X as20

∂Xϕ ⊂ ∆Xϕ := ∪K
k=1∆X (k), then the following inequality maxx∈∂Xϕ

minu∈U ϕ̇(x,u)+αϕ(x) ≤21

0 is satisfied if as a sound upper bound of ∇xϕ
⊤h(x,uv) + αϕ(x), the following inequality holds22

for any x in each hyper-rectangle state set ∆X ∈ ∆Xϕ,23

[d
⊤
]+[h(x,uv)]+ + [d⊤]+[h(x,uv)]− + [d

⊤
]−[h(x,uv)]+ + [d⊤]−[h(x,uv)]− + αϕ(x) ≤ 0,

where [∗]+ = max{0, ∗} = ReLU(∗), [∗]− = min{0, ∗} = −ReLU(−∗), and d,d and24

h(x,uv), h(x,uv) are the lower and upper bounds of ∇xϕ and h(x,uv), respectively.25

Proof. Based on Proposition 1, we have the following inequality hold for any ∆X ∈ ∆Xϕ,26

max
x∈∆X

min
u∈U

ϕ̇(x,u) + αϕ(x) = max
x∈∆X

ϕ̇(x,uv(x)) + αϕ(x) ≤ max
x∈∆X

ϕ̇(x,uv) + αϕ(x), (3)

where uv is an approximated constant vertex of optimal control input uv(x) for a sound upper bound
of ϕ̇(x,uv(x)) over x ∈ ∆X . Now with the bounded dynamics h(x,uv) ≤ h(x,uv) ≤ h(x,uv),
by Lemma 1, for any x ∈ ∆X we have

ϕ̇(x,uv) + αϕ(x) = ∇⊤
x ϕh(x,uv) + αϕ(x) ≤ [∇⊤

x ϕ]−h(x,uv) + [∇⊤
x ϕ]+h(x,uv) + αϕ(x).

Besides, with the bounded gradient d ≤ ∇xϕ ≤ d, the following inequalities hold

[d]+ ≤ [∇xϕ]+ ≤ [d]+, [d]− ≤ [∇xϕ]− ≤ [d]−.

Then applying Lemma 1 for [∇⊤
x ϕ]−h(x,uv) and [∇⊤

x ϕ]+h(x,uv), we further have the following
inequality hold for any x ∈ ∆X ,

ϕ̇(x,uv) ≤ [d
⊤
]+[h(x,uv)]+ + [d⊤]+[h(x,uv)]− + [d

⊤
]−[h(x,uv)]+ + [d⊤]−[h(x,uv)]−.

Therefore, if for any x in each hyper-rectangle state set ∆X ∈ ∆Xϕ, it holds that27

[d
⊤
]+[h(x,uv)]+ + [d⊤]+[h(x,uv)]− + [d

⊤
]−[h(x,uv)]+ + [d⊤]−[h(x,uv)]− + αϕ(x) ≤ 0,

and then we have ϕ̇(x,uv) + αϕ(x) ≤ 0 for any x ∈ ∆X . Combining Equation (3), we have

max
x∈∆X

min
u∈U

ϕ̇(x,u) + αϕ(x) ≤ max
x∈∆X

ϕ̇(x,uv) + αϕ(x) ≤ 0,∀∆X ∈ ∆Xϕ.

Since the exact boundary of ϕ(x) = 0 is the subset of all ∆X , i.e. , ∂Xϕ ⊂ ∆Xϕ := ∪K
k=1∆X (k),

it holds that

max
x∈∂Xϕ

min
u∈U

ϕ̇(x,u) + αϕ(x) ≤ max
∆X∈∆Xϕ

max
x∈∆X

min
u∈U

ϕ̇(x,u) + αϕ(x) ≤ 0,

which concludes the proof.28

Remark 1 (linearly bounded dynamics.). We remark that although the linear bounds of dynamics29

h(x,uv), h(x,uv) can be found through 1-order Taylor models [2, 3, 4] in practice, we can give a30

generally valid lower and upper bounds by assuming bounded ℓ2 operator norm of Hessian matrix31

following [5]. For the control-affine system with fixed control input u0, ẋ = h(x,u0) with bounded32

state x ≤ x ≤ x, suppose the ℓ2 operator norm of Hessian matrix of i-th entry of h(x,u0) is33

bounded as ∥∇2
xh

(i)(x,u0)∥2 ≤ M (i), then at x0 ∈ [x,x] the following linear bounds can be34

found as35

h(x,u0) = W0x+ b0 ≤ h(x,u0) ≤ W0x+ b0 = h(x,u0) where W0 = W0 = ∇⊤
x h(x0,u0),

b
(i)
0 = h(i)(x0,u0)−∇⊤

x h
(i)(x0,u0)x0 −

1

2
∥x− x∥22M (i), for i-th entry of b0,

b
(i)

0 = h(i)(x0,u0)−∇⊤
x h

(i)(x0,u0)x0 +
1

2
∥x− x∥22M (i), for i-th entry of b0.

Specifically, if the control-affine system is linear and time-invariant, i.e. , f(x) = Ax and g(x) = B36

with constant A,B, where the lower and upper bounds will trivially be W0 = W0 = A,b0 =37

b0 = Bu0.38
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Figure 1: Verified rate with different α in the neural CBF verification condition using different grid
sizes (different number of boundary hyper-rectangles) for Dubins Car.

B Experiments39

The code can be found in the supplementary material zip file.40

B.1 Experiment Environments and Dynamics41

All the robot dynamic models are based on the open-sourced package RobotZoo.jl, where Point42

Robot is modified based on DoubleIntegrator(D=2) with zero gravity, Dubins Car is mod-43

ified based on DubinsCar with radius=0.175, and Planar Quadrotor is modified based on44

PlanarQuadrotor with mass=1.0kg, gravity=9.81m/s² and tip-to-tip distance=0.3m.45

Moreover, for the state space, all robots move on a 2D plane within (0,4m)*(0,4m) (hori-46

zontal for Point Robot and Dubins Car but vertical for Planar Quadrotor) with a static rect-47

angle obstacle located at the center coordinate (2m,1m) with sizes of 1m*2m. More specif-48

ically, the states of Dubins Car are 2D positions and orientation angle within the 3-dim49

hyper-rectangle (0,4)*(0,4)*(0,π) and the unsafe states are within 3-dim hyper-rectangle50

(1.5,2.5)*(0,2)*(0,π). The states of Point Robot are 2D positions and 2D velocities within51

the 4-dim hyper-rectangle (0,4)*(0,4)*(-1, 1)*(-1, 1) and the unsafe states are within 4-52

dim hyper-rectangle (1.5,2.5)*(0,2)*(-1, 1)*(-1, 1). The states of Planar Quadrotor are53

2D positions, orientation angle, 2D velocities and angular velocity within the 6-dim hyper-rectangle54

(0,4)*(0,4)*(-0.1,0.1)*(-1,1)*(-1, 1)*(-1, 1) and the unsafe states are within 6-dim55

hyper-rectangle (1.5,2.5)*(0,2)*(-0.1,0.1)*(-1,1)*(-1, 1)*(-1, 1). For the control56

inputs, Dubins Car adopts speed and angular speed within the 2D rectangle (-1,1)*(-1,1). Point57

Robot adopts 2D accelerations as control input within the 2D rectangle (-1,1)*(-1,1). Planar58

Quadrotor adopts the thrust forces exerted by the two motors as control input within the 2D rectan-59

gle (4,6)*(4,6) to overcome its gravity and move on the vertical plane.60

B.2 Implementation Details61

Data collection. As shown in the main text, we adopt supervised learning to train the neural CBFs.62

The data is collected from random trajectories from the safe state space and control input space63

through the dynamics. To empirically ensure the forward invariance, we discard the second half64

states and control inputs to avoid the unsafe region of attraction, and only collect the other states65

and control inputs with the safe labels. To collect unsafe data, we collect random states from the66
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Number of grids per dimension 10 20 50 100

Regular training Ours w/o BaB 0.329 0.437 0.875 0.953
Ours w/ BaB 0.507 0.729 0.926 0.963

Adversarial training Ours w/o BaB 0.247 0.592 0.837 0.910
Ours w/ BaB 0.519 0.730 0.899 0.941

Table 1: The ablation study of the branch-and-bound (BaB) in our proposed method under different
grid densities with α = 0.5 for Dubins Car.

unsafe state space with a similar amount of safe data for balance. To be more detailed, the time of67

random trajectory is 10s with the time step of 0.1s and the states in the last 5s are omitted. Also,68

the trajectories that are less than 5s (e.g. when the robot collides with obstacles or goes beyond69

the feasible states) are discarded as well. By repeatedly initializing random states and collecting70

trajectories with random control inputs through dynamics, we collect 2.5M total pairs of state and71

control input with 1.4M safe ones for Point Robot, 4.5M total pairs with 2.5M safe ones for Dubins72

Car and 1.2M total pairs with 0.7M safe ones for Planar Quadrotor as dataset. Then, we randomly73

choose 10k data as a validation set and use the rest for model training for each robotic dynamics.74

Model training. During the model training, we adopt the empirical mean of the positive model75

predictions as the safe set loss [6] and use the projected gradient descent to find the best-case control76

input to construct the forward invariance condition loss. To enhance the training efficiency, we only77

consider the training data along the empirical boundary of |ϕ(x)| < 0.1 for forward invariance78

condition loss with α = 0. For adversarial training, we adopt project gradient descent over an79

adjacent cube of each state data to maximize the forward invariance loss, then the gradient descent80

is based on the worst-case projected states. The size of the adjacent cube in the adversarial training81

is 1/20 of each dimension. All the models are trained with Adam for 20 epochs with an initial82

learning rate of 0.01 and a decay rate of 0.2 every 4 epochs. The neural CBFs for Planar Quadrotor83

are trained with the weight decay of 0.001.84

Verification procedure. The first step of verifying neural CBFs is to find the hyper-rectangles85

to over-approximate the boundary, i.e. , find the superset of all the roots ϕ(x) = 0. Assuming86

the hyper-rectangles are small enough such that the CBF is continuous and monotonic for each87

dimension of the state, we check all the gridded hyper-rectangles to find if all the vertices give88

positive or negative CBF values. Based on the mean value theorem and the assumption above,89

the roots exist in the hyper-rectangles whose vertices give CBF values with opposite signs. Once90

the hyper-rectangles are obtained along the boundary, we verify the forward invariance condition91

based on off-the-shelf neural network verification toolboxes [7, 8, 9]. More specifically, given the92

state specification, we first approximate the optimal control input using one vertex and then find93

the linear bounds based on TaylorModels.jl [3]. Then with the Jacobian bounds [10], the condition94

in Theorem 1 is found to verify if it is no larger than 0. If it does not hold, we adopt branch-and-95

bound by half-splitting the state specification along each dimension, and conduct the breath-first96

search to verify Theorem 1 recursively until reaching maximum iteration of 1000. By maintaining97

all verified sub-specifications, we approximate the optimal control input for other vertex traversals98

to verify if the union set of all verified sub-specifications equals the whole state specification. All99

the baselines are conducted in a similar way but with concretized bounds instead of the symbolic100

one in Theorem 1. We remark that although the procedure may not be the most efficient due to101

approximating optimal control input, the verification result is sound and the scalability is satisfactory102

for current robot dynamics. It is marked as future work to make the procedure more efficient for103

robot dynamics with higher dimensions.104
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Figure 2: Visualization of branch-and-bound for both baseline BBV [11] (first row) and ours (second
row) for Dubins Car with regular-training CBF and uv = [1, 1]. For each branch after splitting, the
green boxes indicate verified specifications while the red ones indicate unknown specifications.

B.3 Additional Results and Analysis105

Comparison with different α in the verification condition. As shown in Figure 1, we compare106

our results and the branch-and-bound based baseline BBV [11] with different α in the verification107

condition with different grid numbers per dimension. The upper bound indicates how challenging108

the verification will be with different α. It can be seen that with larger α, the performance of BBV109

decreases more than ours due to larger over-approximation errors. The reason why our results can get110

better when α goes up lies in that the approximation errors of gradient bounds through ReLU [10]111

become less dominant and the symbolic property becomes more significant. Besides, with more112

fine-grained state specifications, the influence of α becomes less because of fewer approximation113

errors of both interval arithmetic and ReLU gradient. Adversarial training can also help boost the114

verification performance of BBV when the grid size is large, while it can hurt our performance with115

small grid sizes due to more training noise during projected gradient descent.116

Influence of Branch-and-Bound (BaB) on the proposed method. Here we conduct an experi-117

ment as an ablation study to show the influence of branch-and-bound in the proposed method. As118

shown in Table 1, we can find that without branch-and-bound, the performance is significantly re-119

duced, especially with fewer boundary hyper-rectangles (larger sizes of grids), showing that branch-120

and-bound scheme is essential to the proposed method to alleviate the extra approximation error121

caused by finding gradient bounds through ReLU [10].122

Visulizaton of branch-and-bound scheme. From Figure 2, we can see that after each splitting for123

the previous unknown specifications, branches will be doubled and the branch-and-bound follows124

breadth-first search. With fewer split branches, it can be seen that the coarse specifications cannot125

be verified for both base BBV [11] and ours. However, with more splitting, ours can successfully126

verify all branches after 5 splits while BBV can only verify some of the finer specifications, leaving127

lots of unknown branches to be further split due to looser bounds and larger over-approximation.128

The visualization shows that even though with the same approximated optimal control input uv ,129

ours can give tighter bounds for neural CBF verification with much fewer split times, resulting in a130

higher verified rate and shorter verification time.131
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