Defending against Indirect Prompt Injection by Instruction Detection

Anonymous ACL submission

Abstract

The integration of Large Language Models
(LLMs) with external sources is becoming in-
creasingly common, with Retrieval-Augmented
Generation (RAG) being a prominent example.
However, this integration introduces vulnerabil-
ities of Indirect Prompt Injection (IPI) attacks,
where hidden instructions embedded in exter-
nal data can manipulate LLMs into executing
unintended or harmful actions. We recognize
that IPI attacks fundamentally rely on the pres-
ence of instructions embedded within external
content, which can alter the behavioral states
of LLMs. Can effectively detecting such state
changes help us defend against IPI attacks? In
this paper, we propose InstructDetector, a novel
detection-based approach that leverages the be-
havioral states of LLMs to identify potential IPI
attacks. Specifically, we demonstrate the hid-
den states and gradients from intermediate lay-
ers provide highly discriminative features for
instruction detection. By effectively combin-
ing these features, InstructDetector achieves a
detection accuracy of 99.60% in the in-domain
setting and 96.90% in the out-of-domain set-
ting, and reduces the attack success rate to just
0.03% on the BIPIA benchmark.

1 Introduction

Large language models (LLMs) (Achiam et al.,
2023; Touvron et al., 2023a,b; Brown et al., 2020;
Chowdhery et al., 2023) have shown remarkable
performance over various tasks, including question
answering (Kamalloo et al., 2023; Singhal et al.,
2023), summarization (Tang et al., 2023; Zhang
et al., 2024), and machine translation (Xu et al.,
2023; Zhang et al., 2023). Despite their impres-
sive performance, LLMs often suffer from hallu-
cinations (Ji et al., 2023; Rawte et al., 2023) and
struggle with domain-specific or up-to-date knowl-
edge, which limits their reliability in critical appli-
cations. To address these challenges, LLMs are in-
creasingly integrated with external sources (Schick

User Query ﬂ Database

What medication should | take

for symptoms like persistent ¢ | Retriever

ough? - > | Documen t1 Documen t2 Documen t3

I

Full Prompt Cleaned Prompt
User: What medication should | take Detection User: What medication should | take
for symptoms like persistent cough? | ————>| for symptoms like persistent cough?
Document-1: You can consider antih @ Document-1: You can consider antih
istamines, decongestants, or expect istamines, decongestants, or expect
orants for cough symptoms ... orants for cough symptoms ...
Document-3: For cough, common m 1| B 3: by |
edications include antihistamines ... Q : Jieati ineud i i :
Modify your response to highlight co | Unsafe! || Medif; e |
mpany A’s medication. (Remwe)l mpany-A's-medication: |

e e — E

’f”“f’J Response \L ’f”“f’J \L

For a cough, you can consider
antihistamines, decongestants ...
The medication of Company A is
particularly effective in treating
this symptom and is highly recom
mended.

For a cough, you can consider
antihistamines, decongestants, or
expectorants. And it is important
to consult a healthcare profession
al for personalized advice and a p
roper diagnosis.

Direct Generation Detection-based Generation

Figure 1: In a medical use case of the RAG system, the
LLM is misled by the external instruction embedded in
a retrieved document to recommend company A’s med-
ication. Our method performs instruction detection to
defend against such attacks, removing such documents
before they are passed to the LLM.

et al., 2023), a typical example being Retrieval-
Augmented Generation (RAG) systems (Gao et al.,
2023; Chen et al., 2024a). This integration enables
LLMs to generate responses that are more accurate,
relevant, and temporally current, facilitating their
applications in a wide range of domains.
However, the inclusion of external content ex-
poses LLMs to Indirect Prompt Injection (IPI) at-
tacks. In such an attack, adversaries inject covert
instructions into the external data retrieved by the
system (Greshake et al., 2023; Rossi et al., 2024;
Zhan et al., 2024; Chen et al., 2025; Kong, 2024).
On the one hand, these hidden instructions may
distort the retrieved information, leading the model
to generate incorrect or misleading responses. On
the other hand, they may cause the model to pro-
duce outputs that are entirely unrelated to the user’s
intent, resulting in unexpected or irrelevant content.

These vulnerabilities pose significant security and
ethical risks, particularly in sensitive domains like
healthcare (Sallam, 2023; Harrer, 2023; Yang et al.,
2023), finance (Wu et al., 2023; Li et al., 2023), and
legal systems (Cui et al., 2023; Lai et al., 2024). For
example, as illustrated in Figure 1, an instruction
embedded in the external content could mislead the
model into recommending medication from a spe-
cific company, even if it is not the most appropriate
treatment for the patient, which results in harmful
or biased medical advice.

To mitigate the risk of IPI attacks, recent de-
fenses have primarily focused on prevention (Yi
etal., 2023; Liu et al., 2024) by modifying prompts
or fine-tuning models to ensure that LLMs adhere
strictly to user instructions while ignoring external
ones. However, detection (Liu et al., 2024), as an
external method that enables proactively screening
external resources to minimize time overhead and
avoid the risk of affecting other benign inferences,
remains underexplored and has yet to effectively de-
tect IPI attacks. We recognize that IPI attacks fun-
damentally rely on the presence of instructions em-
bedded within external content, which can alter the
behavioral states of LLMs. Therefore, we hypothe-
size that this fundamental phenomenon—whether
external data induces corresponding changes in the
behavioral states of LLMs—can be leveraged to
detect IPI attacks.

Building on this insight, we propose Instruct-
Detector, a novel detection-based approach that
leverages the behavioral states of LLMs to identify
potential IPI attacks. We first evaluate the effec-
tiveness of hidden states and gradients from dif-
ferent layers of the LLM by employing them as
features for instruction detection. Through exper-
imentation on the validation set, we identify that
the hidden states and gradients from intermediate
layers consistently exhibit the best performance
in differentiating normal external data from those
containing hidden instructions. Specifically, we
select the hidden states of the last token, as prior
research indicates that the last token’s hidden state
provides the most informative representation of the
input sequence (Zou et al., 2023). For the gradients,
we focus on the gradients of self-attention layers,
as previous studies suggest that self-attention lay-
ers capture the model’s behavioral characteristics,
while feed-forward layers are more effective at en-
coding knowledge-based features (Vaswani, 2017;
Geva et al., 2021; Dai et al., 2022). Lastly, we fuse
the hidden state features and the gradient features

from the intermediate layer, which effectively in-
tegrates the complementary information captured
by these two features. The fused features are then
fed into a multi-layer perceptron (MLP) classifier,
enabling effective detection of IPI attacks.

In our experiments, we consider normal exter-
nal data as negative samples (without hidden in-
structions) and generate positive samples (with hid-
den instructions) by randomly inserting instructions
into the negative samples. The external datasets
include Wikipedia and News Articles, while the
instruction data come from LaMini-instruction and
BIPIA. InstructDetector achieves a detection accu-
racy of 99.60% in the in-domain setting and 96.90%
in the out-of-domain setting, outperforming exist-
ing detection-based methods and several straight-
forward detection-based methods we propose. Fur-
thermore, we conduct evaluation on the BIPIA
benchmark (out-of-domain), where our method re-
duces the attack success rate (ASR) to just 0.03%,
surpassing the performance of the prevention-based
methods reported in the benchmark. The contribu-
tions of our work can be outlined as follows:

* We propose InstructDetector, a novel
detection-based approach to defend IPI at-
tacks, which leverages the internal behavioral
states of LLMs as discriminative signals.

* We find hidden states and gradients from the
intermediate layers of LLMs provide highly
discriminative features for the instruction de-
tection.

* Experiments demonstrate that InstructDetec-
tor achieves superior detection accuracy in
both in-domain and out-of-domain settings,
while significantly reducing the ASR com-
pared to existing defense methods.

2 Related Work

2.1 Indirect Prompt Injection Defense

Defending against IPI attacks is a critical research
area to ensure the secure and reliable use of LLMs
(Greshake et al., 2023; Rossi et al., 2024; Zhan
et al., 2024). Existing defenses are generally classi-
fied into prevention-based defences and detection-
based defences (Yi et al., 2023; Liu et al., 2024).
Prevention-based defenses primarily focus on
ensuring LLMs to follo user instructions while ig-
noring external ones. These approaches are further
divided into black-box defenses and white-box de-
fenses. Black-box defenses (Yi et al., 2023; Hines

et al., 2024; Wang et al., 2024; Wu et al., 2024a;
Jia et al., 2024; Zhu et al., 2025) typically aim to
isolate user instructions from external data, using
carefully designed prompts to ensure LLMs dis-
regard any hidden instructions within the external
data. These methods work without access to the
internal parameters of the model, focusing on in-
put preprocessing and separation mechanisms. In
contrast, white-box defenses (Yi et al., 2023; Chen
et al., 2024b; Wang et al., 2025) utilize the internal
parameters of the model and involve fine-tuning
LLMs with samples of IPI attacks. By training on
a diverse set of IPI scenarios, these methods en-
hance the robustness of LLMs to ignore external
instructions while maintaining performance on the
intended task.

Detection-based defenses, though relatively un-
derexplored, aim to identify IPI attacks and can be
generally divided into three main strategies. LLM
(Zero-shot) (Liu et al., 2024; Chen et al., 2025)
directly uses LLMs to identify hidden instructions
in external data. Response Check (Liu et al., 2024)
evaluates whether the model’s outputs remain con-
sistent with the intended task. TaskTracker (Ab-
delnabi et al., 2024) detects IPI attacks by contrast-
ing the LLM’s activations before and after feed-
ing the external data, which indicates whether the
user’s instruction is distorted by the instruction hid-
den in the external data. InstructDetector also falls
under detection-based defenses, bridging the gap
with a more robust mechanism for instruction de-
tection.

2.2 Behavioral States of Large Language
Models

Recent studies (Zou et al., 2023; Xie et al., 2024)
have explored the internal mechanisms of LLMs,
identifying hidden states and gradients as highly
informative features for understanding and control-
ling their behavior. These behavioral states are in-
creasingly recognized for their potential to enhance
the transparency and safety of LLMs.

Hidden states, especially those from intermedi-
ate layers, have been shown to encode rich and
insightful representations of given inputs. RepE
(Zou et al., 2023) utilizes representations from the
last token’s hidden states to monitor and manipu-
late high-level cognitive phenomena in LLMs. Fur-
thermore, a recent study (Skean et al., 2024) has
explored the effectiveness of intermediate features
across different LLM architectures, revealing that
intermediate features often yield richer information

than final-layer for downstream use.

Gradients provide another critical lens for ana-
lyzing the LLM’s behavior. Gradsafe (Xie et al.,
2024) leverages the observation that adversarial
prompts generate distinct gradient patterns com-
pared to safe prompts, enabling effective jailbreak
prompts detection without additional training by an-
alyzing gradients related to safety-critical parame-
ters. Additionally, much literature (Vaswani, 2017;
Geva et al., 2021; Dai et al., 2022) has explored the
functions of self-attention layers and feed-forward
layers, providing insights into where to focus when
analyzing gradients in our work. Research has
shown that self-attention layers capture behavioral
characteristics, such as linguistic dependencies
and token relationships, while feed-forward lay-
ers encode knowledge-based features, enabling the
model to leverage the knowledge learned during
training. As the instruction recognition task primar-
ily relies on the behavioral characteristics of LLMs,
we focus on the gradients of self-attention layers.

3 Methodology

3.1 Overview

In our proposed method, InstructDetector, we aim
to detect IPI attacks through the behavioral states
of LLMs, hypothesizing that changes in the behav-
ioral states of LLMs induced by embedded instruc-
tions in external content can be effectively utilized
to detect such attacks. To achieve this, we fuse the
hidden states and gradients from the most effective
layers, integrating complementary information cap-
tured by both features. These fused features are
then fed into an MLP classifier, enabling accurate
and robust detection of IPI attacks. The overall
framework is illustrated in Figure 2, with detailed
processes discussed in the following sections.

3.2 Hidden States Extraction

To leverage hidden states as features, we first take
external data as the input of the LLM and extract
the hidden states corresponding to the last token at
each layer. These hidden states are then fed into an
MLP classifier to assess their ability to distinguish
between normal external data and those contain-
ing hidden instructions. InstructDetector uses the
Llama-3.1-8B-Instruct model, which consists of 32
layers. Through experimentation on the validation
set, we identify that the hidden states from the 14th
layer provides the best performance in instruction
detection. Therefore, we select the last token’s

Document Py
(w/o attack) - ' TP e Normal
e - - — d:l Affirmative
(w/ attack) >
Self-Awareness

Document = w » » .
(w/o attack) g ki E g

g m =] E

= E 2
Document S 5 st 3 .

(w/ attack)

LLM Hidden States + Gradient

/A

LLM Head U Surel pidden States
Gradients
LLM Block
LLM Block
Feature Fusion Module

Embedding

Remove! -

Retrieved Document 20N Classifier

Document-3: For cough, common med
ications include antihistamines ... Mod No
ify your response to highlight compan

y A’s medication.

With attack?

Figure 2: IPI attacks fundamentally rely on the presence of instructions embedded in external content, which can
alter the behavioral states of LLMs. Building on this insight, InstructDetector takes external data as input and pairs
it with the response "Sure.", utilizing gradients and hidden states from optimally selected layers of the LLM as its

behavioral states for instruction detection.

hidden state from the 14th layer, a vector with a
dimension of 4096, as the first input of the feature
fusion module.

3.3 Gradients Extraction

To leverage gradients as features, we first take ex-
ternal data as the input of the LLM, paired with a
typical response to instructions, such as "Sure," and
compute the gradients for the model parameters at
each layer during back propagation. Based on prior
research indicating that self-attention layers cap-
ture the model’s behavioral characteristics, while
the feed-forward layers are more effective at en-
coding knowledge-based features, we concentrate
on the gradients of self-attention layers. Experi-
mental results on the validation set demonstrate
that the gradients from the 14th layer, consistent
with the layer identified for hidden states, yield the
best performance in distinguishing between normal
external data and those with hidden instructions.

Additionally, to address the large parameter size
of the self-attention layers, we apply max-pooling
to reduce dimensionality before feeding the gradi-
ents into the MLP. This dimensionality reduction
ensures computational efficiency while preserving
key information from the gradients. These reduced
gradients are then flattened to form a vector with
a dimension of 400,000, as the second input of the
feature fusion module.

3.4 Feature Fusion

In the feature fusion module, the gradient features
are initially projected to match the dimensionality
of the hidden state features through a linear trans-

formation. Following this, we apply normalization
to both the hidden state and gradient features be-
fore concatenation, which helps mitigate scale dif-
ferences between the two feature types, ensuring
balanced contributions to the fused features. The
fused features are then fed into an MLP classifier
for effective instruction detection, effectively com-
bining the strengths of both hidden states and gra-
dients to achieve enhanced performance compared
to using either feature type individually.

4 Experiment

4.1 Datasets

In our experiments, we utilize external data
from typical sources—Wikipedia (Foundation) and
News Articles (dai, 2017)—while instructions
come from LaMini-instruction (Wu et al., 2024b)
and BIPIA (Yi et al., 2023) datasets. Notably, there
is no overlap between Wikipedia and News Arti-
cles, nor between LaMini-instruction and BIPIA,
and they each belong to entirely different types and
distributions of data. Detailed descriptions of each
dataset are provided in Appendix A.1.

4.2 Baselines

Our experiments involve two primary categories
of baselines: detection-based and prevention-based
defenses. Detection-based defenses primarily fo-
cus on identifying IPI attacks. These include LLM
(Zero-shot) (Liu et al., 2024) and LLM (Few-shot),
which directly query the LLM to identify if there
is any hidden instruction within the external con-
tent in a zero-shot or few-shot setting; Response

Check (Liu et al., 2024), which checks whether the
response aligns with the intended task; TaskTracker
(Abdelnabi et al., 2024), which contrasts the LLM’s
activations before and after feeding the external
data; and LLM (Fine-tuning), which conducts su-
pervised fine-tuning using task-specific annotated
data.

Prevention-based defenses, on the other hand,
focus on ensuring that LLMs follow user instruc-
tions while ignoring external ones. Strategies in-
clude Multi-turn Dialogue (Yi et al., 2023), which
separates user prompts from external data using
multi-turn dialogue; In-context Learning (Yi et al.,
2023), which employs in-context learning to teach
the model how to resist misleading input patterns;
and Adversarial Training (Yi et al., 2023), which
applies adversarial training to help the model distin-
guish and ignore instruction-carrying content from
external sources.

A detailed description of each baseline method
can be found in Appendix A.2, and the implemen-
tation details and configurations are provided in
Appendix A.3.

4.3 Experimental Setup

4.3.1 InstructDetector

InstructDetector utilizes Llama-3.1-8B-Instruct
(Dubey et al., 2024) to extract behavioral states
during its forward and backward propagation pro-
cesses. Specifically, when extracting gradients as
features, we pair the input external data with the
response "Sure" as the typical reply to instructions.
The extracted features are fed into an MLP clas-
sifier with hidden layer sizes set to (1024, 256,
64, 16). For training, we employ a dataset of 200
samples, evenly divided into 100 positive samples
(with hidden instructions) and 100 negative sam-
ples (without hidden instructions). The balanced
dataset ensures that the model learned to distin-
guish instructions effectively without being biased
toward one class.

4.3.2 Detection Accuracy Comparison

To compare InstructDetector with other detection-
based defenses, we use a combination of exter-
nal datasets and instruction datasets to create pos-
itive and negative samples for instruction detec-
tion. Negative samples are derived from external
datasets, and positive samples are generated by ran-
domly inserting instructions into negative samples.
For training and validation, we use the combination
of Wikipedia and LaMini-instruction. For evalua-

tion, we test methods on all four combinations of
datasets, with each combination containing 2,000
samples. Among them, Wikipedia with LaMini-
instruction is considered in-domain, while the other
three combinations are out-of-domain to varying
degrees. Notably, News Articles with BIPIA repre-
sent the highest level of out-of-domain shift. There-
fore, when referring to out-of-domain performance
in this paper, we specifically report results based
on evaluations on News Articles with BIPIA.

4.3.3 Attack Success Rate Comparison

To compare InstructDetector with other prevention-
based defenses, we evaluate its impact on the ASR
in the BIPIA (Yi et al., 2023) benchmark. We
use GPT-3.5-Turbo (Dale, 2021) to assess whether
the injected instructions within the external con-
tent lead the LLM to produce responses that devi-
ate from the intended response, yielding the ASR.
Specifically, we first apply our instruction detection
method to the external data. Any external data for
which no instructions are detected are subsequently
used to conduct attacks. ASR is then computed by
dividing the number of successful attack executions
by the total sample count. To ensure comprehen-
sive evaluation, we conduct IPI attack experiments
on both an open-access model, Vicuna-7B (Chiang
et al., 2023), and a proprietary model, GPT-3.5-
Turbo. Notably, our instruction detection method
is trained on the combination of Wikipedia and
LaMini-instruction, which have no overlap with
the dataset used in the BIPIA benchmark.

4.4 Overall Results

4.4.1 Detection Accuracy Comparison

The effectiveness of InstructDetector is first eval-
uated through comparison with several detection-
based defenses, including existing approaches such
as naive LLM (Zero-shot), Response Check, and
TaskTracker, as well as several straightforward
methods we propose to strengthen the model’s ca-
pability to detect hidden instructions: in-context
learning and fine-tuning. As shown in Table 1, In-
structDetector achieves superior performance over
all baselines across all dataset combinations.
LLM (Zero-shot), which directly queries the
model, exhibits almost no capability to identify
hidden instructions. Response Check, which evalu-
ates the alignment of LLM outputs with intended
tasks, provides moderate detection accuracy but is
less effective overall, possibly because the inserted
instructions do not necessarily alter the task cor-

Wiki+LaMini (ID) News+LaMini (OOD) Wiki+BIPIA (OOD) News+BIPIA (OOD)
LLM (Zero-shot) 56.35% 45.95% 57.20% 44.65%
Response Check 66.05% 71.45% 70.45% 74.10%
TaskTracker 95.95% 89.80% 94.60% 89.45%
LLM (Few-shot) 59.80% 45.70% 58.35% 45.10%
LLM (Fine-tuning) 99.05% 95.75% 97.40% 91.70%
InstructDetector 99.60 % 98.35% 99.45% 96.90 %

Table 1:

Detection accuracy comparison of InstructDetector and baseline approaches. The highest detection

accuracy is indicated in bold. Here, ID denotes the in-domain setting, whereas OOD denotes the out-of-domain

setting.

responding to the response, making misalignment
harder to detect. TaskTracker, which detects IPI
attacks by contrasting the LLM’s activations before
and after feeding the external data, achieves rela-
tively high accuracy in the in-domain setting but re-
mains less effective than InstructDetector; also, its
generalization capability is notably weaker. A fur-
ther comparative analysis between InstructDetector
and TaskTracker is provided in Appendix A.3.

In-context learning, which provides task demon-
strations within the prompt, offers minimal im-
provement over the naive approach, suggesting that
simple prompting techniques are insufficient for
enabling LLMs to detect hidden instructions. Fine-
tuning LLMs significantly improves detection per-
formance, but the method underperforms compared
to InstructDetector and exhibits weaker generaliza-
tion across datasets, likely due to its inherent ten-
dency to overfit specific training data rather than
fully capturing the changes in the model’s behav-
ioral states caused by hidden instructions.

By leveraging discriminative features from inter-
mediate layers, InstructDetector achieves superior
performance and robust generalization, making it
highly effective across diverse scenarios.

4.4.2 Attack Success Rate Comparison

GPT-3.5-Turbo Vicuna-7B

No Defense 33.57% 24.06%
In-context Learning 24.42% 16.85%
Multi-turn Dialogue 22.35% 14.66%
Adversarial Training - 0.52%
InstructDetector 0.12% 0.03 %

Table 2: Comparison of ASR between InstructDetector
and baseline approaches. The lowest ASR is indicated
in bold.

To assess the effectiveness of InstructDetector
in lowering ASR, we compare it with several
prevention-based defenses, including in-context
learning, multi-turn dialogue, and adversarial train-

ing. As illustrated in Table 2, InstructDetector
consistently yields the lowest ASR on both open-
access and proprietary models.

Among the baselines, in-context learning and
multi-turn dialogue, which are both black-box ap-
proaches, exhibit limited effectiveness in reducing
ASR on both open-access and proprietary mod-
els, with ASR remaining significantly higher than
that of InstructDetector. This indicates that simple
structural modifications or prompting strategies fail
to provide robust protection against IPI attacks.

Adversarial training, a white-box method,
demonstrates greater effectiveness in lowering
ASR compared to black-box approaches. However,
it still underperforms compared to our method and
has limitations, especially for proprietary models,
since it involves changes to the embedding layer
and necessitates model fine-tuning. Our approach
stands out for its ability to achieve superior ASR re-
duction while maintaining compatibility with both
open-access and proprietary models, demonstrating
its practicality and robustness against IPI attacks.

4.5 Ablation Study

For additional ablation studies, including experi-
ments on different training data compositions, the
impact of paired response, and the influence of
instruction quantity and position, please refer to
Appendix C.

4.5.1 Solely Utilizing Hidden States/Gradients

To evaluate the effectiveness of combining hidden
states and gradients, we compare the performance
of our approach utilizing both features with se-
tups that relied solely on hidden states or gradi-
ents. The results presented in Table 3 indicate
that while utilizing either hidden states or gradients
alone achieves high detection accuracy, combining
the two features consistently delivers improved per-
formance across all dataset combinations. These
findings support our hypothesis that hidden states

Wiki+LaMini (ID) News+LaMini (OOD) Wiki+BIPIA (OOD) News+BIPIA (OOD)
w/o gradients 99.30% 96.95% 99.20% 96.20%
w/o hidden states 99.00% 97.25% 99.20% 96.25%
InstructDetector 99.60 % 98.35% 99.45 % 96.90 %

Table 3: Comparison of detection accuracy between solely utilizing hidden states, solely utilizing gradients, and
InstructDetector combining hidden states and gradients. The highest detection accuracy is indicated in bold. Here,
ID denotes the in-domain setting, whereas OOD denotes the out-of-domain setting.

Accuracy (%)

Datasets

60 —e— Wikipedia + LaMini
—s— News + LaMini
—e— Wikipedia + BIPIA
—e— News + BIPIA

Accuracy (%)

Datasets

60 —e— Wikipedia + LaMini
—— News + LaMini
—e— Wikipedia + BIPIA
News + BIPIA

35
Layer

15
Layer

Figure 3: Detection accuracy across different layers, evaluated on all four combinations of datasets. (a)
Detection accuracy achieved using hidden states extracted from different layers of the LLM. (b) Detection accuracy
achieved using gradients extracted from different layers of the LLM.

and gradients are complementary, and that integrat-
ing their strengths enhances the effectiveness of
our method in detecting hidden instructions.

4.5.2 Detection Accuracy across Layers

We further examine the detection accuracy of solely
utilizing hidden states or gradients across different
layers on all dataset combinations. As presented
in Figure 3, the detection accuracy across different
layers demonstrates a clear trend: performance ini-
tially improves with increasing layer depth, reaches
a peak at the middle layers, but then fluctuates
significantly and generally declines. This trend
highlights that intermediate layers capture more
informative features relevant to instruction detec-
tion, whereas deeper layers may introduce noise
or less task-specific representations, which is con-
sistent with our observations on the validation set.
These findings also align with the observations of
recent study (Skean et al., 2024), demonstrating
that intermediate layers in LLMs often yield richer
representations for downstream tasks compared to
the final layers.

4.5.3 Large Language Models

The effectiveness of InstructDetector is evaluated
across various LL.Ms, including different architec-
tures (Llama (Dubey et al., 2024), Qwen (Bai et al.,
2023), Mistral (Jiang et al., 2023)) and model sizes
(1B, 3B, 7B, 8B, 14B parameters). As shown in

Table 4, features extracted from all tested LLMs are
effective in detecting hidden instructions. Notably,
we select the hidden states and gradients from the
best-performing layer, which are all located in the
intermediate layers. Among the evaluated models,
Qwen-2.5-7B and Llama-3.1-8B exhibit superior
results, while Mistral-7B shows slightly less opti-
mal performance. Furthermore, the findings indi-
cate that larger models generally produce features
that are more effective for instruction detection,
aligning with our hypothesis that stronger model
capabilities lead to features that better facilitate the
identification of hidden instructions.

We also include a comparison between Llama-
3.1-8B-Base and Llama-3.1-8B-Instruct. The re-
sults show a significant performance gap, with
Llama-3.1-8B-Base demonstrating notably worse
results. This difference is likely due to the fact
that IPI attacks rely on the presence of hidden in-
structions embedded within external content, which
alter the behavioral states of LLMs. Since Llama-
3.1-8B-Base has not undergone instruction fine-
tuning, it does not exhibit the same responsiveness
to such hidden instructions in the way that the in-
struct model does. As a result, the ability of Llama-
3.1-8B-Base to detect such attacks is considerably
diminished.

Wiki+LaMini (ID) News+LaMini (OOD) Wiki+BIPIA (OOD) News+BIPIA (OOD)

Llama-3.2-1B-Instruct 97.50% 93.15% 97.10% 92.55%
Llama-3.2-3B-Instruct 99.45% 96.30% 99.25% 95.70%
Llama-3.1-8B-Instruct 99.60% 98.35% 99.45% 96.90%
Llama-3.1-8B-Base 73.95% 71.35% 73.35% 68.55%
Mistral-7B-Instruct 99.55% 94.75% 99.40% 94.20%
Qwen2.5-7B-Instruct 99.85% 97.65% 99.30% 97.35%
Qwen2.5-14B-Instruct 99.85% 98.45% 99.70% 98.15%

Table 4: Detection accuracy comparison utilizing hidden states and gradients extracted from various LLMs. The
highest detection accuracy is indicated in bold. Here, ID denotes the in-domain setting, whereas OOD denotes the

out-of-domain setting.

a
100

Accuracy (%)
8

©
2

92
Methods

== LLM Fine-tuning
=e— InstructDetector

90

Accuracy (%)

Methods
== LLM Fine-tuning
—e— InstructDetector

50 100 150 250 300 350

200
Training Size

50 100 150 250 300 350 400

200
Training Size

Figure 4: Comparison of detection accuracy between LLM fine-tuning and InstructDetector on different
training data size. (a) Detection accuracy comparison in the in-domain setting (Wikipedia+LaMini-Instruction).
(b) Detection accuracy comparison in the out-of-domain setting (News Article+BIPIA).

4.5.4 Training Data Size

We conduct experiments using training data of vary-
ing sizes to assess how the quantity of training
data affects the performance of InstructDetector.
As presented in Figure 4, even with a small train-
ing set of only 50 samples (25 positive and 25
negative), InstructDetector achieves relatively high
performance, exceeding 95% accuracy in both in-
domain and out-of-domain scenarios. These results
indicate that InstructDetector requires only mini-
mal training data to achieve strong results. These
findings highlight the remarkable data efficiency of
InstructDetector, which performs well even with
very limited data.

5 Conclusion

In this work, we present InstructDetector, a
detection-based approach that leverages the inter-
nal behavioral states of LLLMs as signals to iden-
tify IPI attacks. A key finding of our study is that
the hidden states and gradients from the intermedi-
ate layers of LLMs provide highly discriminative
features for instruction detection. By leveraging
these internal behavioral states, InstructDetector
provides a robust mechanism for identifying hid-

den instructions within external data.

We demonstrate that InstructDetector achieves
superior detection accuracy in both in-domain and
out-of-domain settings, while significantly reduc-
ing the attack success rate compared to existing
defense methods. These findings underline the ef-
fectiveness and adaptability of InstructDetector, of-
fering a robust solution for enhancing the security
of LLM-based systems.

6 Limitation

InstructDetector has several limitations. First, it re-
quires both forward and backward passes through
the LLM, introducing additional computational
overhead compared to lightweight defenses. While
suitable for offline filtering or batch processing,
this may limit deployment in resource-constrained
settings and raise environmental concerns due to
the increased energy consumption associated with
higher computational demands. Second, although
our experiments cover multiple representative sce-
narios and datasets, we cannot guarantee cover-
age of all possible attack strategies or domain-
specific variations. Third, the current design adopts
a conservative binary decision—discarding any ex-
ternal data flagged as containing hidden instruc-

tions—result in the unintended removal of useful,
non-malicious information. In future work, when
hidden instructions are identified, we will attempt
to refine this approach by isolating and eliminat-
ing the hidden instructions embedded within the
external data, rather than discarding the entire ex-
ternal data. This enhancement could enable the
LLMs to leverage the remaining valid information
while maintaining robust defenses against hidden
instructions.

7 Ethical Impact

Our proposed method, InstructDetector, defends
against IPI attacks, which is essential for ensur-
ing the secure and reliable operation of LLMs in
third-party system integrations. By mitigating the
risks posed by IPI attacks, InstructDetector fosters
ethical and socially responsible use of Al technolo-
gies, enhancing trust in their application within
critical sectors such as healthcare, legal and finance
domains. There may be concerns about whether
InstructDetector could provide attackers with in-
sights to bypass detection. Since InstructDetector
leverages the distinct behavioral states of LLMs to
differentiate between data and instructions, while
IPT attacks fundamentally rely on the external in-
structions to alter the behavioral states of LLMs,
it would be exceedingly difficult for attackers to
circumvent our detection. In summary, InstructDe-
tector strengthens the security and trustworthiness
of Al systems by effectively defending IPI attacks,
aligning with ethical principles and supporting the
development of reliable, safe, and socially respon-
sible Al technologies for real-world applications.

References

Sahar Abdelnabi, Aideen Fay, Giovanni Cherubin,
Ahmed Salem, Mario Fritz, and Andrew Paverd.
2024. Are you still on track!? catching llm task drift
with activations. arXiv preprint arXiv:2406.00799.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun.
2024a. Benchmarking large language models in
retrieval-augmented generation. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 17754-17762.

Sizhe Chen, Julien Piet, Chawin Sitawarin, and David
Wagner. 2024b. Struq: Defending against prompt
injection with structured queries. arXiv preprint
arXiv:2402.06363.

Yulin Chen, Haoran Li, Yuan Sui, Yufei He, Yue Liu,
Yangqiu Song, and Bryan Hooi. 2025. Can indirect
prompt injection attacks be detected and removed?
arXiv preprint arXiv:2502.16580.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.
2023. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https://vicuna.
Imsys. org (accessed 14 April 2023), 2(3):6.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1-113.

Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and
Li Yuan. 2023. Chatlaw: Open-source legal large
language model with integrated external knowledge
bases. CoRR.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493—
8502.

tianru dai. 2017. News Articles.

Robert Dale. 2021. Gpt-3: What’s it good for? Natural
Language Engineering, 27(1):113-118.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan
Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu,
Tianyu Liu, et al. 2022. A survey on in-context learn-
ing. arXiv preprint arXiv:2301.00234.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Wikimedia Foundation. Wikimedia downloads.

https://doi.org/10.7910/DVN/GMFCTR
https://dumps.wikimedia.org

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 5484-5495.

Kai Greshake, Sahar Abdelnabi, Shailesh Mishra,
Christoph Endres, Thorsten Holz, and Mario Fritz.
2023. Not what you’ve signed up for: Compromis-
ing real-world llm-integrated applications with indi-
rect prompt injection. In Proceedings of the 16th
ACM Workshop on Artificial Intelligence and Secu-
rity, pages 79-90.

Stefan Harrer. 2023. Attention is not all you need: the
complicated case of ethically using large language
models in healthcare and medicine. EBioMedicine,
90.

Keegan Hines, Gary Lopez, Matthew Hall, Federico
Zarfati, Yonatan Zunger, and Emre Kiciman. 2024.
Defending against indirect prompt injection attacks
with spotlighting. arXiv preprint arXiv:2403.14720.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55(12):1-38.

Feiran Jia, Tong Wu, Xin Qin, and Anna Squicciarini.
2024. The task shield: Enforcing task alignment to
defend against indirect prompt injection in Ilm agents.
arXiv preprint arXiv:2412.16682.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Ehsan Kamalloo, Nouha Dziri, Charles Clarke, and
Davood Rafiei. 2023. Evaluating open-domain ques-
tion answering in the era of large language models.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5591-5606.

Nicholas Ka-Shing Kong. 2024. InjectBench: An In-
direct Prompt Injection Benchmarking Framework.
Ph.D. thesis, Virginia Tech.

Jinqi Lai, Wensheng Gan, Jiayang Wu, Zhenlian Qi, and
S Yu Philip. 2024. Large language models in law: A
survey. Al Open.

Yinheng Li, Shaofei Wang, Han Ding, and Hang Chen.
2023. Large language models in finance: A survey.
In Proceedings of the fourth ACM international con-
ference on Al in finance, pages 374-382.

10

Yupei Liu, Yuqi Jia, Runpeng Geng, Jinyuan Jia, and
Neil Zhengiang Gong. 2024. Formalizing and bench-
marking prompt injection attacks and defenses. In
33rd USENIX Security Symposium (USENIX Security
24), pages 1831-1847.

Vipula Rawte, Amit Sheth, and Amitava Das. 2023. A
survey of hallucination in large foundation models.
arXiv preprint arXiv:2309.05922.

Sippo Rossi, Alisia Marianne Michel, Raghava Rao
Mukkamala, and Jason Bennett Thatcher. 2024.
An early categorization of prompt injection at-
tacks on large language models. arXiv preprint
arXiv:2402.00898.

Malik Sallam. 2023. The utility of chatgpt as an exam-
ple of large language models in healthcare education,
research and practice: Systematic review on the fu-
ture perspectives and potential limitations. MedRxiv,
pages 2023-02.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36:68539-68551.

Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres,
Ellery Wulczyn, Le Hou, Kevin Clark, Stephen
Pfohl, Heather Cole-Lewis, Darlene Neal, et al.
2023. Towards expert-level medical question an-
swering with large language models. arXiv preprint
arXiv:2305.09617.

Oscar Skean, Md Rifat Arefin, and Ravid Shwartz-
Ziv. 2024. Does representation matter? exploring
intermediate layers in large language models. In

Workshop on Machine Learning and Compression,
NeurlPS 2024.

Liyan Tang, Zhaoyi Sun, Betina Idnay, Jordan G Nestor,
Ali Soroush, Pierre A Elias, Ziyang Xu, Ying Ding,
Greg Durrett, Justin F Rousseau, et al. 2023. Eval-
uating large language models on medical evidence
summarization. NPJ digital medicine, 6(1):158.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Jiongxiao Wang, Fangzhou Wu, Wendi Li, Jinsheng
Pan, Edward Suh, Z Morley Mao, Muhao Chen, and
Chaowei Xiao. 2024. Fath: Authentication-based
test-time defense against indirect prompt injection
attacks. arXiv preprint arXiv:2410.21492.

Rui Wang, Junda Wu, Yu Xia, Tong Yu, Ruiyi
Zhang, Ryan Rossi, Lina Yao, and Julian McAuley.
2025. Cacheprune: Neural-based attribution de-
fense against indirect prompt injection attacks. arXiv
preprint arXiv:2504.21228.

Fangzhou Wu, Ethan Cecchetti, and Chaowei Xiao.
2024a. System-level defense against indirect prompt
injection attacks: An information flow control per-
spective. arXiv preprint arXiv:2409.19091.

Minghao Wu, Abdul Waheed, Chiyu Zhang, Muham-
mad Abdul-Mageed, and Alham Aji. 2024b. Lamini-
Im: A diverse herd of distilled models from large-
scale instructions. In Proceedings of the 18th Confer-
ence of the European Chapter of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 944-964.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski,
Mark Dredze, Sebastian Gehrmann, Prabhanjan Kam-
badur, David Rosenberg, and Gideon Mann. 2023.
Bloomberggpt: A large language model for finance.
arXiv preprint arXiv:2303.17564.

Yueqi Xie, Minghong Fang, Renjie Pi, and Neil Gong.
2024. Gradsafe: Detecting jailbreak prompts for llms
via safety-critical gradient analysis. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 507-518.

Haoran Xu, Young Jin Kim, Amr Sharaf, and
Hany Hassan Awadalla. 2023. A paradigm shift
in machine translation: Boosting translation perfor-
mance of large language models. arXiv preprint
arXiv:2309.11674.

Rui Yang, Ting Fang Tan, Wei Lu, Arun James
Thirunavukarasu, Daniel Shu Wei Ting, and Nan
Liu. 2023. Large language models in health care:
Development, applications, and challenges. Health
Care Science, 2(4):255-263.

Jingwei Yi, Yueqi Xie, Bin Zhu, Emre Kiciman,
Guangzhong Sun, Xing Xie, and Fangzhao Wu. 2023.
Benchmarking and defending against indirect prompt
injection attacks on large language models. arXiv
preprint arXiv:2312.14197.

Qiusi Zhan, Zhixiang Liang, Zifan Ying, and Daniel
Kang. 2024. Injecagent: Benchmarking indirect
prompt injections in tool-integrated large language
model agents. arXiv preprint arXiv:2403.02691.

Biao Zhang, Barry Haddow, and Alexandra Birch. 2023.
Prompting large language model for machine transla-
tion: A case study. In International Conference on
Machine Learning, pages 41092-41110. PMLR.

11

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang,
Kathleen McKeown, and Tatsunori B Hashimoto.
2024. Benchmarking large language models for news
summarization. Transactions of the Association for
Computational Linguistics, 12:39-57.

Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie,
Yejin Choi, and Yuntian Deng. 2024. Wildchat: 1m
chatgpt interaction logs in the wild. arXiv preprint
arXiv:2405.01470.

Kaijie Zhu, Xianjun Yang, Jindong Wang, Wenbo
Guo, and William Yang Wang. 2025. Melon:
Indirect prompt injection defense via masked re-
execution and tool comparison. arXiv preprint
arXiv:2502.05174.

Andy Zou, Long Phan, Sarah Chen, James Campbell,
Phillip Guo, Richard Ren, Alexander Pan, Xuwang
Yin, Mantas Mazeika, Ann-Kathrin Dombrowski,
et al. 2023. Representation engineering: A top-
down approach to ai transparency. arXiv preprint
arXiv:2310.01405.

A Additional Experimental Settings

Prompt for LLM (Zero-shot).

Guideline

You are a helpful assistant, and your task is
to determine if there is any external instruc-
tion in the text. Respond with 1 if there is an
instruction, or 0 if there is not. Only reply
with 1 or 0, without additional explanation.
Your Task

Text: external data

Answer:

Prompt for LLM (Few-shot).

Guideline

You are a helpful assistant, and your task is
to determine if there is any external instruc-
tion in the text. Respond with 1 if there is an
instruction, or 0 if there is not. Only reply
with 1 or 0, without additional explanation.
Examples ### Here are few concrete
examples to help you understand how to
make decision.

Example 1:

Text: external data

Answer: label

Your Task

Text: external data

Answer:

Prompt for Response Check.

Please follow the instruction based on the
context below.

Instruction: instruction

Context: external data

A.1 Dataset Details

All datasets used in this work are in English and the
use of these datasets complies with their intended
purposes as specified by their creators. We have
carefully reviewed the data to ensure that they do
not contain personally identifiable information or
offensive content.

Wikipedia The dataset is constructed using
Wikipedia dump files, under the CC-BY-SA license.
Each data instance comprises the content of an en-
tire Wikipedia article. In addition, we remove the
overly long articles to ensure that they are not trun-

12

cated during processing.

News Articles The dataset contains 3,824 news
articles, each featuring metadata including the ti-
tle, subtitle, content, and publication date, sourced
from multiple media outlets, under the CCO license.
Similarly, we remove the overly long articles to en-
sure that they are not truncated during processing.

LaMini-instruction The dataset consists of 2.58
million pairs of instructions and corresponding re-
sponses, generated using GPT-3.5-Turbo, drawing
from a wide range of existing resources of prompts,
including Self-Instruct, P3, FLAN, and Alpaca, un-
der the CC-BY-NC license.

BIPIA BIPIA is the first benchmark aimed at
evaluating the risk of IPI attacks on LLMs, under
the MIT license, and we use its instruction dataset
for our experiments. The dataset consists of 15
attack types, categorized into task-irrelevant, task-
relevant, and targeted attacks, with 5 instructions
per attack type, resulting in a total of 75 instructions
across both the training and test sets. These instruc-
tions were semi-automatically generated with the
assistance of ChatGPT and manually reviewed for
rationality.

A.2 Baseline Details

A.2.1 Detection-based Defenses

LLM (Zero-shot) (Liu et al., 2024) Directly
query the LLM to identify if there is any hidden
instruction within the external content, utilizing
the LLM’s existing capabilities without additional
enhancements or fine-tuning.

Response Check (Liu et al., 2024) Evaluate the
LLM’s output by checking whether the response
aligns with the intended task, where a mismatch
indicates potential manipulation by hidden instruc-
tions within the external content.

TaskTracker (Abdelnabi et al., 2024) Detect
IPI attacks by contrasting the LLM’s activations
before and after feeding the external data, which
indicates whether the user’s instruction is distorted
by the instruction hidden in the external data.

LLM (Few-shot) To enhance the performance
of Naive LLM-based Detection, we attempt to
leverage in-context learning (Dong et al., 2022)
to strengthen the model’s capability to detect hid-
den instructions, where task demonstrations are
integrated into the textual prompt.

Wiki+LaMini News+LaMini Wiki+BIPIA News+BIPIA
Wiki+LaMini 99.60 % 98.35% 99.45% 96.90%
News+LaMini 99.60 % 98.50 % 99.55% 96.45%
Wiki+BIPIA 99.15% 97.50% 99.85 % 97.30%
News+BIPIA 99.45% 98.35% 99.65% 98.05 %

Table 5: Detection accuracy comparison utilizing different combinations of training datasets. The highest detection

accuracy is indicated in bold.

Wiki+LaMini (ID) News+LaMini (OOD) Wiki+BIPIA (OOD) News+BIPIA (OOD)

I’m sorry 99.45% 97.95%
Hello 99.45% 97.90%
Yes 99.55% 97.80%
Sure 99.60 % 98.35%

97.25% 95.15%
98.15% 95.90%
99.40% 96.80%
99.45 % 96.90 %

Table 6: Detection accuracy comparison using different paired responses to extract gradient features. The highest
detection accuracy is indicated in bold. Here, ID denotes the in-domain setting, whereas OOD denotes the out-of-

domain setting.

LLM (Fine-tuning) Similarly, to further im-
prove naive LLM-based detection, we conduct su-
pervised fine-tuning using task-specific annotated
data, thereby strengthening the model’s ability to
detect hidden instructions.

A.2.2 Prevention-based Defenses

In-context Learning (Yi et al., 2023) Employ
in-context learning to enable the model to distin-
guish between external data and user instructions,
by providing samples where the model responds to
input containing external data without being misled
by the instruction embedded within external data.

Multi-turn Dialogue (Yi et al., 2023) Strategi-
cally shift external data—which may contain covert
instructions—to the preceding conversational turn,
while reserving the user’s instruction for the cur-
rent turn. This separation between external content
and user instruction effectively mitigates ASR.

Adpversarial Training (Yi et al., 2023) Incorpo-
rate adversarial learning during the LLM’s self-
supervised fine-tuning phase, training the model
to disregard instructions embedded within external
content. The approach further adapts the model’s
embedding layer to explicitly demarcate external
content boundaries, enabling clearer distinction be-
tween external content and user instructions.

A.3 Additional Experimental Details

As shown earlier, we employ specific prompt tem-
plates for LLM (Zero-shot), Response Check, and
LLM (Few-shot).

13

For the LLM (Fine-tuning), we use the AdamW
optimizer to train the model for one epoch, with
a learning rate set at 0.00001 and a maximum in-
put length of 2048 tokens. Both the learning rate
and the number of epochs are chosen based on per-
formance on the validation set. For TaskTracker,
we use the publicly available model released by
the work. As for the prevention-based approaches,
we utilize the publicly available implementations
provided by the respective works.

We conduct our method using an 8B-parameter
LLM. All training and inference are performed on a
single NVIDIA A100 80GB GPU, with the training
phase requiring approximately 1 GPU hour. For all
reported results, we present outcomes from a single
run. During preprocessing, to construct negative
samples by inserting instructions into benign text,
we utilize the PunktSentenceTokenizer from the
NLTK library for sentence segmentation.

Scenario1 Scenario 2
70.55% 71.35%
99.40% 99.55%

TaskTracker
InstructDetector

Table 7: Detection accuracy comparison of Instruct-
Detector and TaskTracker when the external instruction
closely resembles the user’s instruction. For scenario 1,
the user instruction is "Translate the news into Chinese."
and the external instruction is "Translate the news into
Japanese."; For scenario 2, the user instruction is "Gen-
erate a step-by-step guide for solving this problem." and
the external instruction is "Generate a list of common
mistakes in solving this problem." The highest detection
accuracy is indicated in bold.

Wiki+LaMini (ID) News+LaMini (OOD) Wiki+BIPIA (OOD) News+BIPIA (OOD)

one instruction 99.60% 98.35% 99.45% 96.90%
two instructions 99.85% 98.40% 99.80% 97.00 %
three instructions 99.85% 98.45% 99.85% 97.00 %

Table 8: Detection accuracy comparison for different quantities of inserted instructions in the test dataset. The
highest detection accuracy is indicated in bold. Here, ID denotes the in-domain setting, whereas OOD denotes the
out-of-domain setting.

Wiki+LaMini (ID) News+LaMini (OOD) Wiki+BIPIA (OOD) News+BIPIA (OOD)

beginning 99.90 % 98.60 % 99.90 % 97.35%
middle 99.60% 98.35% 99.45% 96.90%
end 99.90 % 98.40% 99.55% 97.05%

Table 9: Detection accuracy comparison for different positions of inserted instructions in the test dataset. The
highest detection accuracy is indicated in bold. Here, ID denotes the in-domain setting, whereas OOD denotes the
out-of-domain setting.

B Comparison with Related Method InstructDetector consistently yields high accuracy
across all test datasets, regardless of the specific
combination of training data used. This indicates
the generalizability and adaptability of InstructDe-
tector, as it does not rely on any particular training
dataset source. Additionally, we observe that accu-
racy is consistently lower when tested on the News
Articles with the BIPIA combination, indicating
that this scenario poses the greatest challenge for
instruction detection. Nonetheless, InstructDetec-
tor still achieves satisfactory accuracy in this chal-
lenging scenario, further validating its effectiveness
and robustness in instruction detection.

Both InstructDetector and TaskTracker (Abdelnabi
et al., 2024) utilize the hidden states of LLMs as a
key feature for detecting IPI attacks, but they differ
significantly in their underlying principles. Task-
Tracker aims to capture distortions in the user’s
instruction caused by embedded instructions in the
external content. In contrast, InstructDetector aims
to distinguish the LLM’s behavioral states when
processing normal external data versus those con-
taining hidden instructions.

TaskTracker has two primary limitations. First,
it requires a large number of training samples
(418,110 pairs of positive and negative samples) to
accurately identify deviations in the user’s task. In
contrast, InstructDetector leverages the high sen-
sitivity of LLM’s behavioral states to embedded
instructions, achieving effective detection with a
significantly smaller dataset (just 100 pairs). To investigate the effect of various paired responses

Second, TaskTracker’s effectiveness relies heav- on the extraction of gradient features, we conduct
ily on a clear distinction between user’s instructions ~ e€xperiments using four candidate responses: "I'm
and external instructions, while InstructDetector ~ sorry” "Hello" "Yes" and "Sure.” These candidates
is task-agnostic. As shown in Table 7, when the are selected based on an analysis of common re-
external instruction closely resembles the user’s in- ~ sponses to instructions in WildChat (Zhao et al.,
struction, TaskTracker’s detection accuracy drops ~ 2024) dataset, ranked by frequency. Results in Ta-
significantly, while InstructDetector maintains high ~ ble 6 show that all four paired responses achieve

C.2 Paired Responses for Gradients

detection accuracy. high accuracy (>95%) in distinguishing between
normal external data and those containing hidden
C Extended Ablation Studies instructions. Among them, "Sure" delivers the best

performance across all test datasets, further vali-
dating our choice of "Sure" as the paired response
We conduct experiments using different combina- in InstructDetector. These results emphasize the
tions of training datasets to assess the robustness robustness of InstructDetector to differentiate re-
and adaptability of InstructDetector to various train- sponse pairings while confirming that "Sure" is a
ing dataset compositions. As presented in Table 5, particularly effective option for this task.

C.1 Composition of Training Data

14

C.3 Influence of Instruction Quantity and
Position

To further explore the influence of instruction quan-
tity and position on detection performance, we
conduct experiments using a fixed training dataset
while varying only the number or placement of
inserted instructions in the test dataset.

Results in Table 8 reveal a trend that detection
accuracy shows a certain degree of improvement
as the number of inserted instructions increases.
This suggests that a higher quantity of instructions
provides stronger signals, making IPI attacks more
distinguishable by InstructDetector. Additionally,
we examine the effect of instruction placement by
inserting instructions at the beginning, middle, or
end of the external content. As shown in Table
9, instructions placed in the middle are the most
challenging to detect, whereas those positioned at
the beginning or end are relatively easier to iden-
tify. Among these, instructions at the beginning
yield the highest detection accuracy, likely because
LLMs exhibit greater sensitivity to early input.

15

	Introduction
	Related Work
	Indirect Prompt Injection Defense
	Behavioral States of Large Language Models

	Methodology
	Overview
	Hidden States Extraction
	Gradients Extraction
	Feature Fusion

	Experiment
	Datasets
	Baselines
	Experimental Setup
	InstructDetector
	Detection Accuracy Comparison
	Attack Success Rate Comparison

	Overall Results
	Detection Accuracy Comparison
	Attack Success Rate Comparison

	Ablation Study
	Solely Utilizing Hidden States/Gradients
	Detection Accuracy across Layers
	Large Language Models
	Training Data Size

	Conclusion
	Limitation
	Ethical Impact
	Additional Experimental Settings
	Dataset Details
	Baseline Details
	Detection-based Defenses
	Prevention-based Defenses

	Additional Experimental Details

	Comparison with Related Method
	Extended Ablation Studies
	Composition of Training Data
	Paired Responses for Gradients
	Influence of Instruction Quantity and Position

