
Defending against Indirect Prompt Injection by Instruction Detection

Anonymous ACL submission

Abstract

The integration of Large Language Models001
(LLMs) with external sources is becoming in-002
creasingly common, with Retrieval-Augmented003
Generation (RAG) being a prominent example.004
However, this integration introduces vulnerabil-005
ities of Indirect Prompt Injection (IPI) attacks,006
where hidden instructions embedded in exter-007
nal data can manipulate LLMs into executing008
unintended or harmful actions. We recognize009
that IPI attacks fundamentally rely on the pres-010
ence of instructions embedded within external011
content, which can alter the behavioral states012
of LLMs. Can effectively detecting such state013
changes help us defend against IPI attacks? In014
this paper, we propose InstructDetector, a novel015
detection-based approach that leverages the be-016
havioral states of LLMs to identify potential IPI017
attacks. Specifically, we demonstrate the hid-018
den states and gradients from intermediate lay-019
ers provide highly discriminative features for020
instruction detection. By effectively combin-021
ing these features, InstructDetector achieves a022
detection accuracy of 99.60% in the in-domain023
setting and 96.90% in the out-of-domain set-024
ting, and reduces the attack success rate to just025
0.03% on the BIPIA benchmark.026

1 Introduction027

Large language models (LLMs) (Achiam et al.,028

2023; Touvron et al., 2023a,b; Brown et al., 2020;029

Chowdhery et al., 2023) have shown remarkable030

performance over various tasks, including question031

answering (Kamalloo et al., 2023; Singhal et al.,032

2023), summarization (Tang et al., 2023; Zhang033

et al., 2024), and machine translation (Xu et al.,034

2023; Zhang et al., 2023). Despite their impres-035

sive performance, LLMs often suffer from hallu-036

cinations (Ji et al., 2023; Rawte et al., 2023) and037

struggle with domain-specific or up-to-date knowl-038

edge, which limits their reliability in critical appli-039

cations. To address these challenges, LLMs are in-040

creasingly integrated with external sources (Schick041

Figure 1: In a medical use case of the RAG system, the
LLM is misled by the external instruction embedded in
a retrieved document to recommend company A’s med-
ication. Our method performs instruction detection to
defend against such attacks, removing such documents
before they are passed to the LLM.

et al., 2023), a typical example being Retrieval- 042

Augmented Generation (RAG) systems (Gao et al., 043

2023; Chen et al., 2024a). This integration enables 044

LLMs to generate responses that are more accurate, 045

relevant, and temporally current, facilitating their 046

applications in a wide range of domains. 047

However, the inclusion of external content ex- 048

poses LLMs to Indirect Prompt Injection (IPI) at- 049

tacks. In such an attack, adversaries inject covert 050

instructions into the external data retrieved by the 051

system (Greshake et al., 2023; Rossi et al., 2024; 052

Zhan et al., 2024; Chen et al., 2025; Kong, 2024). 053

On the one hand, these hidden instructions may 054

distort the retrieved information, leading the model 055

to generate incorrect or misleading responses. On 056

the other hand, they may cause the model to pro- 057

duce outputs that are entirely unrelated to the user’s 058

intent, resulting in unexpected or irrelevant content. 059

1

These vulnerabilities pose significant security and060

ethical risks, particularly in sensitive domains like061

healthcare (Sallam, 2023; Harrer, 2023; Yang et al.,062

2023), finance (Wu et al., 2023; Li et al., 2023), and063

legal systems (Cui et al., 2023; Lai et al., 2024). For064

example, as illustrated in Figure 1, an instruction065

embedded in the external content could mislead the066

model into recommending medication from a spe-067

cific company, even if it is not the most appropriate068

treatment for the patient, which results in harmful069

or biased medical advice.070

To mitigate the risk of IPI attacks, recent de-071

fenses have primarily focused on prevention (Yi072

et al., 2023; Liu et al., 2024) by modifying prompts073

or fine-tuning models to ensure that LLMs adhere074

strictly to user instructions while ignoring external075

ones. However, detection (Liu et al., 2024), as an076

external method that enables proactively screening077

external resources to minimize time overhead and078

avoid the risk of affecting other benign inferences,079

remains underexplored and has yet to effectively de-080

tect IPI attacks. We recognize that IPI attacks fun-081

damentally rely on the presence of instructions em-082

bedded within external content, which can alter the083

behavioral states of LLMs. Therefore, we hypothe-084

size that this fundamental phenomenon—whether085

external data induces corresponding changes in the086

behavioral states of LLMs—can be leveraged to087

detect IPI attacks.088

Building on this insight, we propose Instruct-089

Detector, a novel detection-based approach that090

leverages the behavioral states of LLMs to identify091

potential IPI attacks. We first evaluate the effec-092

tiveness of hidden states and gradients from dif-093

ferent layers of the LLM by employing them as094

features for instruction detection. Through exper-095

imentation on the validation set, we identify that096

the hidden states and gradients from intermediate097

layers consistently exhibit the best performance098

in differentiating normal external data from those099

containing hidden instructions. Specifically, we100

select the hidden states of the last token, as prior101

research indicates that the last token’s hidden state102

provides the most informative representation of the103

input sequence (Zou et al., 2023). For the gradients,104

we focus on the gradients of self-attention layers,105

as previous studies suggest that self-attention lay-106

ers capture the model’s behavioral characteristics,107

while feed-forward layers are more effective at en-108

coding knowledge-based features (Vaswani, 2017;109

Geva et al., 2021; Dai et al., 2022). Lastly, we fuse110

the hidden state features and the gradient features111

from the intermediate layer, which effectively in- 112

tegrates the complementary information captured 113

by these two features. The fused features are then 114

fed into a multi-layer perceptron (MLP) classifier, 115

enabling effective detection of IPI attacks. 116

In our experiments, we consider normal exter- 117

nal data as negative samples (without hidden in- 118

structions) and generate positive samples (with hid- 119

den instructions) by randomly inserting instructions 120

into the negative samples. The external datasets 121

include Wikipedia and News Articles, while the 122

instruction data come from LaMini-instruction and 123

BIPIA. InstructDetector achieves a detection accu- 124

racy of 99.60% in the in-domain setting and 96.90% 125

in the out-of-domain setting, outperforming exist- 126

ing detection-based methods and several straight- 127

forward detection-based methods we propose. Fur- 128

thermore, we conduct evaluation on the BIPIA 129

benchmark (out-of-domain), where our method re- 130

duces the attack success rate (ASR) to just 0.03%, 131

surpassing the performance of the prevention-based 132

methods reported in the benchmark. The contribu- 133

tions of our work can be outlined as follows: 134

• We propose InstructDetector, a novel 135

detection-based approach to defend IPI at- 136

tacks, which leverages the internal behavioral 137

states of LLMs as discriminative signals. 138

• We find hidden states and gradients from the 139

intermediate layers of LLMs provide highly 140

discriminative features for the instruction de- 141

tection. 142

• Experiments demonstrate that InstructDetec- 143

tor achieves superior detection accuracy in 144

both in-domain and out-of-domain settings, 145

while significantly reducing the ASR com- 146

pared to existing defense methods. 147

2 Related Work 148

2.1 Indirect Prompt Injection Defense 149

Defending against IPI attacks is a critical research 150

area to ensure the secure and reliable use of LLMs 151

(Greshake et al., 2023; Rossi et al., 2024; Zhan 152

et al., 2024). Existing defenses are generally classi- 153

fied into prevention-based defences and detection- 154

based defences (Yi et al., 2023; Liu et al., 2024). 155

Prevention-based defenses primarily focus on 156

ensuring LLMs to follo user instructions while ig- 157

noring external ones. These approaches are further 158

divided into black-box defenses and white-box de- 159

fenses. Black-box defenses (Yi et al., 2023; Hines 160

2

et al., 2024; Wang et al., 2024; Wu et al., 2024a;161

Jia et al., 2024; Zhu et al., 2025) typically aim to162

isolate user instructions from external data, using163

carefully designed prompts to ensure LLMs dis-164

regard any hidden instructions within the external165

data. These methods work without access to the166

internal parameters of the model, focusing on in-167

put preprocessing and separation mechanisms. In168

contrast, white-box defenses (Yi et al., 2023; Chen169

et al., 2024b; Wang et al., 2025) utilize the internal170

parameters of the model and involve fine-tuning171

LLMs with samples of IPI attacks. By training on172

a diverse set of IPI scenarios, these methods en-173

hance the robustness of LLMs to ignore external174

instructions while maintaining performance on the175

intended task.176

Detection-based defenses, though relatively un-177

derexplored, aim to identify IPI attacks and can be178

generally divided into three main strategies. LLM179

(Zero-shot) (Liu et al., 2024; Chen et al., 2025)180

directly uses LLMs to identify hidden instructions181

in external data. Response Check (Liu et al., 2024)182

evaluates whether the model’s outputs remain con-183

sistent with the intended task. TaskTracker (Ab-184

delnabi et al., 2024) detects IPI attacks by contrast-185

ing the LLM’s activations before and after feed-186

ing the external data, which indicates whether the187

user’s instruction is distorted by the instruction hid-188

den in the external data. InstructDetector also falls189

under detection-based defenses, bridging the gap190

with a more robust mechanism for instruction de-191

tection.192

2.2 Behavioral States of Large Language193

Models194

Recent studies (Zou et al., 2023; Xie et al., 2024)195

have explored the internal mechanisms of LLMs,196

identifying hidden states and gradients as highly197

informative features for understanding and control-198

ling their behavior. These behavioral states are in-199

creasingly recognized for their potential to enhance200

the transparency and safety of LLMs.201

Hidden states, especially those from intermedi-202

ate layers, have been shown to encode rich and203

insightful representations of given inputs. RepE204

(Zou et al., 2023) utilizes representations from the205

last token’s hidden states to monitor and manipu-206

late high-level cognitive phenomena in LLMs. Fur-207

thermore, a recent study (Skean et al., 2024) has208

explored the effectiveness of intermediate features209

across different LLM architectures, revealing that210

intermediate features often yield richer information211

than final-layer for downstream use. 212

Gradients provide another critical lens for ana- 213

lyzing the LLM’s behavior. Gradsafe (Xie et al., 214

2024) leverages the observation that adversarial 215

prompts generate distinct gradient patterns com- 216

pared to safe prompts, enabling effective jailbreak 217

prompts detection without additional training by an- 218

alyzing gradients related to safety-critical parame- 219

ters. Additionally, much literature (Vaswani, 2017; 220

Geva et al., 2021; Dai et al., 2022) has explored the 221

functions of self-attention layers and feed-forward 222

layers, providing insights into where to focus when 223

analyzing gradients in our work. Research has 224

shown that self-attention layers capture behavioral 225

characteristics, such as linguistic dependencies 226

and token relationships, while feed-forward lay- 227

ers encode knowledge-based features, enabling the 228

model to leverage the knowledge learned during 229

training. As the instruction recognition task primar- 230

ily relies on the behavioral characteristics of LLMs, 231

we focus on the gradients of self-attention layers. 232

3 Methodology 233

3.1 Overview 234

In our proposed method, InstructDetector, we aim 235

to detect IPI attacks through the behavioral states 236

of LLMs, hypothesizing that changes in the behav- 237

ioral states of LLMs induced by embedded instruc- 238

tions in external content can be effectively utilized 239

to detect such attacks. To achieve this, we fuse the 240

hidden states and gradients from the most effective 241

layers, integrating complementary information cap- 242

tured by both features. These fused features are 243

then fed into an MLP classifier, enabling accurate 244

and robust detection of IPI attacks. The overall 245

framework is illustrated in Figure 2, with detailed 246

processes discussed in the following sections. 247

3.2 Hidden States Extraction 248

To leverage hidden states as features, we first take 249

external data as the input of the LLM and extract 250

the hidden states corresponding to the last token at 251

each layer. These hidden states are then fed into an 252

MLP classifier to assess their ability to distinguish 253

between normal external data and those contain- 254

ing hidden instructions. InstructDetector uses the 255

Llama-3.1-8B-Instruct model, which consists of 32 256

layers. Through experimentation on the validation 257

set, we identify that the hidden states from the 14th 258

layer provides the best performance in instruction 259

detection. Therefore, we select the last token’s 260

3

Figure 2: IPI attacks fundamentally rely on the presence of instructions embedded in external content, which can
alter the behavioral states of LLMs. Building on this insight, InstructDetector takes external data as input and pairs
it with the response "Sure.", utilizing gradients and hidden states from optimally selected layers of the LLM as its
behavioral states for instruction detection.

hidden state from the 14th layer, a vector with a261

dimension of 4096, as the first input of the feature262

fusion module.263

3.3 Gradients Extraction264

To leverage gradients as features, we first take ex-265

ternal data as the input of the LLM, paired with a266

typical response to instructions, such as "Sure," and267

compute the gradients for the model parameters at268

each layer during back propagation. Based on prior269

research indicating that self-attention layers cap-270

ture the model’s behavioral characteristics, while271

the feed-forward layers are more effective at en-272

coding knowledge-based features, we concentrate273

on the gradients of self-attention layers. Experi-274

mental results on the validation set demonstrate275

that the gradients from the 14th layer, consistent276

with the layer identified for hidden states, yield the277

best performance in distinguishing between normal278

external data and those with hidden instructions.279

Additionally, to address the large parameter size280

of the self-attention layers, we apply max-pooling281

to reduce dimensionality before feeding the gradi-282

ents into the MLP. This dimensionality reduction283

ensures computational efficiency while preserving284

key information from the gradients. These reduced285

gradients are then flattened to form a vector with286

a dimension of 400,000, as the second input of the287

feature fusion module.288

3.4 Feature Fusion289

In the feature fusion module, the gradient features290

are initially projected to match the dimensionality291

of the hidden state features through a linear trans-292

formation. Following this, we apply normalization 293

to both the hidden state and gradient features be- 294

fore concatenation, which helps mitigate scale dif- 295

ferences between the two feature types, ensuring 296

balanced contributions to the fused features. The 297

fused features are then fed into an MLP classifier 298

for effective instruction detection, effectively com- 299

bining the strengths of both hidden states and gra- 300

dients to achieve enhanced performance compared 301

to using either feature type individually. 302

4 Experiment 303

4.1 Datasets 304

In our experiments, we utilize external data 305

from typical sources—Wikipedia (Foundation) and 306

News Articles (dai, 2017)—while instructions 307

come from LaMini-instruction (Wu et al., 2024b) 308

and BIPIA (Yi et al., 2023) datasets. Notably, there 309

is no overlap between Wikipedia and News Arti- 310

cles, nor between LaMini-instruction and BIPIA, 311

and they each belong to entirely different types and 312

distributions of data. Detailed descriptions of each 313

dataset are provided in Appendix A.1. 314

4.2 Baselines 315

Our experiments involve two primary categories 316

of baselines: detection-based and prevention-based 317

defenses. Detection-based defenses primarily fo- 318

cus on identifying IPI attacks. These include LLM 319

(Zero-shot) (Liu et al., 2024) and LLM (Few-shot), 320

which directly query the LLM to identify if there 321

is any hidden instruction within the external con- 322

tent in a zero-shot or few-shot setting; Response 323

4

Check (Liu et al., 2024), which checks whether the324

response aligns with the intended task; TaskTracker325

(Abdelnabi et al., 2024), which contrasts the LLM’s326

activations before and after feeding the external327

data; and LLM (Fine-tuning), which conducts su-328

pervised fine-tuning using task-specific annotated329

data.330

Prevention-based defenses, on the other hand,331

focus on ensuring that LLMs follow user instruc-332

tions while ignoring external ones. Strategies in-333

clude Multi-turn Dialogue (Yi et al., 2023), which334

separates user prompts from external data using335

multi-turn dialogue; In-context Learning (Yi et al.,336

2023), which employs in-context learning to teach337

the model how to resist misleading input patterns;338

and Adversarial Training (Yi et al., 2023), which339

applies adversarial training to help the model distin-340

guish and ignore instruction-carrying content from341

external sources.342

A detailed description of each baseline method343

can be found in Appendix A.2, and the implemen-344

tation details and configurations are provided in345

Appendix A.3.346

4.3 Experimental Setup347

4.3.1 InstructDetector348

InstructDetector utilizes Llama-3.1-8B-Instruct349

(Dubey et al., 2024) to extract behavioral states350

during its forward and backward propagation pro-351

cesses. Specifically, when extracting gradients as352

features, we pair the input external data with the353

response "Sure" as the typical reply to instructions.354

The extracted features are fed into an MLP clas-355

sifier with hidden layer sizes set to (1024, 256,356

64, 16). For training, we employ a dataset of 200357

samples, evenly divided into 100 positive samples358

(with hidden instructions) and 100 negative sam-359

ples (without hidden instructions). The balanced360

dataset ensures that the model learned to distin-361

guish instructions effectively without being biased362

toward one class.363

4.3.2 Detection Accuracy Comparison364

To compare InstructDetector with other detection-365

based defenses, we use a combination of exter-366

nal datasets and instruction datasets to create pos-367

itive and negative samples for instruction detec-368

tion. Negative samples are derived from external369

datasets, and positive samples are generated by ran-370

domly inserting instructions into negative samples.371

For training and validation, we use the combination372

of Wikipedia and LaMini-instruction. For evalua-373

tion, we test methods on all four combinations of 374

datasets, with each combination containing 2,000 375

samples. Among them, Wikipedia with LaMini- 376

instruction is considered in-domain, while the other 377

three combinations are out-of-domain to varying 378

degrees. Notably, News Articles with BIPIA repre- 379

sent the highest level of out-of-domain shift. There- 380

fore, when referring to out-of-domain performance 381

in this paper, we specifically report results based 382

on evaluations on News Articles with BIPIA. 383

4.3.3 Attack Success Rate Comparison 384

To compare InstructDetector with other prevention- 385

based defenses, we evaluate its impact on the ASR 386

in the BIPIA (Yi et al., 2023) benchmark. We 387

use GPT-3.5-Turbo (Dale, 2021) to assess whether 388

the injected instructions within the external con- 389

tent lead the LLM to produce responses that devi- 390

ate from the intended response, yielding the ASR. 391

Specifically, we first apply our instruction detection 392

method to the external data. Any external data for 393

which no instructions are detected are subsequently 394

used to conduct attacks. ASR is then computed by 395

dividing the number of successful attack executions 396

by the total sample count. To ensure comprehen- 397

sive evaluation, we conduct IPI attack experiments 398

on both an open-access model, Vicuna-7B (Chiang 399

et al., 2023), and a proprietary model, GPT-3.5- 400

Turbo. Notably, our instruction detection method 401

is trained on the combination of Wikipedia and 402

LaMini-instruction, which have no overlap with 403

the dataset used in the BIPIA benchmark. 404

4.4 Overall Results 405

4.4.1 Detection Accuracy Comparison 406

The effectiveness of InstructDetector is first eval- 407

uated through comparison with several detection- 408

based defenses, including existing approaches such 409

as naive LLM (Zero-shot), Response Check, and 410

TaskTracker, as well as several straightforward 411

methods we propose to strengthen the model’s ca- 412

pability to detect hidden instructions: in-context 413

learning and fine-tuning. As shown in Table 1, In- 414

structDetector achieves superior performance over 415

all baselines across all dataset combinations. 416

LLM (Zero-shot), which directly queries the 417

model, exhibits almost no capability to identify 418

hidden instructions. Response Check, which evalu- 419

ates the alignment of LLM outputs with intended 420

tasks, provides moderate detection accuracy but is 421

less effective overall, possibly because the inserted 422

instructions do not necessarily alter the task cor- 423

5

Wiki+LaMini (ID) News+LaMini (OOD) Wiki+BIPIA (OOD) News+BIPIA (OOD)
LLM (Zero-shot) 56.35% 45.95% 57.20% 44.65%
Response Check 66.05% 71.45% 70.45% 74.10%
TaskTracker 95.95% 89.80% 94.60% 89.45%
LLM (Few-shot) 59.80% 45.70% 58.35% 45.10%
LLM (Fine-tuning) 99.05% 95.75% 97.40% 91.70%
InstructDetector 99.60% 98.35% 99.45% 96.90%

Table 1: Detection accuracy comparison of InstructDetector and baseline approaches. The highest detection
accuracy is indicated in bold. Here, ID denotes the in-domain setting, whereas OOD denotes the out-of-domain
setting.

responding to the response, making misalignment424

harder to detect. TaskTracker, which detects IPI425

attacks by contrasting the LLM’s activations before426

and after feeding the external data, achieves rela-427

tively high accuracy in the in-domain setting but re-428

mains less effective than InstructDetector; also, its429

generalization capability is notably weaker. A fur-430

ther comparative analysis between InstructDetector431

and TaskTracker is provided in Appendix A.3.432

In-context learning, which provides task demon-433

strations within the prompt, offers minimal im-434

provement over the naive approach, suggesting that435

simple prompting techniques are insufficient for436

enabling LLMs to detect hidden instructions. Fine-437

tuning LLMs significantly improves detection per-438

formance, but the method underperforms compared439

to InstructDetector and exhibits weaker generaliza-440

tion across datasets, likely due to its inherent ten-441

dency to overfit specific training data rather than442

fully capturing the changes in the model’s behav-443

ioral states caused by hidden instructions.444

By leveraging discriminative features from inter-445

mediate layers, InstructDetector achieves superior446

performance and robust generalization, making it447

highly effective across diverse scenarios.448

4.4.2 Attack Success Rate Comparison449

GPT-3.5-Turbo Vicuna-7B
No Defense 33.57% 24.06%
In-context Learning 24.42% 16.85%
Multi-turn Dialogue 22.35% 14.66%
Adversarial Training - 0.52%
InstructDetector 0.12% 0.03%

Table 2: Comparison of ASR between InstructDetector
and baseline approaches. The lowest ASR is indicated
in bold.

To assess the effectiveness of InstructDetector450

in lowering ASR, we compare it with several451

prevention-based defenses, including in-context452

learning, multi-turn dialogue, and adversarial train-453

ing. As illustrated in Table 2, InstructDetector 454

consistently yields the lowest ASR on both open- 455

access and proprietary models. 456

Among the baselines, in-context learning and 457

multi-turn dialogue, which are both black-box ap- 458

proaches, exhibit limited effectiveness in reducing 459

ASR on both open-access and proprietary mod- 460

els, with ASR remaining significantly higher than 461

that of InstructDetector. This indicates that simple 462

structural modifications or prompting strategies fail 463

to provide robust protection against IPI attacks. 464

Adversarial training, a white-box method, 465

demonstrates greater effectiveness in lowering 466

ASR compared to black-box approaches. However, 467

it still underperforms compared to our method and 468

has limitations, especially for proprietary models, 469

since it involves changes to the embedding layer 470

and necessitates model fine-tuning. Our approach 471

stands out for its ability to achieve superior ASR re- 472

duction while maintaining compatibility with both 473

open-access and proprietary models, demonstrating 474

its practicality and robustness against IPI attacks. 475

4.5 Ablation Study 476

For additional ablation studies, including experi- 477

ments on different training data compositions, the 478

impact of paired response, and the influence of 479

instruction quantity and position, please refer to 480

Appendix C. 481

4.5.1 Solely Utilizing Hidden States/Gradients 482

To evaluate the effectiveness of combining hidden 483

states and gradients, we compare the performance 484

of our approach utilizing both features with se- 485

tups that relied solely on hidden states or gradi- 486

ents. The results presented in Table 3 indicate 487

that while utilizing either hidden states or gradients 488

alone achieves high detection accuracy, combining 489

the two features consistently delivers improved per- 490

formance across all dataset combinations. These 491

findings support our hypothesis that hidden states 492

6

Wiki+LaMini (ID) News+LaMini (OOD) Wiki+BIPIA (OOD) News+BIPIA (OOD)
w/o gradients 99.30% 96.95% 99.20% 96.20%
w/o hidden states 99.00% 97.25% 99.20% 96.25%
InstructDetector 99.60% 98.35% 99.45% 96.90%

Table 3: Comparison of detection accuracy between solely utilizing hidden states, solely utilizing gradients, and
InstructDetector combining hidden states and gradients. The highest detection accuracy is indicated in bold. Here,
ID denotes the in-domain setting, whereas OOD denotes the out-of-domain setting.

Figure 3: Detection accuracy across different layers, evaluated on all four combinations of datasets. (a)
Detection accuracy achieved using hidden states extracted from different layers of the LLM. (b) Detection accuracy
achieved using gradients extracted from different layers of the LLM.

and gradients are complementary, and that integrat-493

ing their strengths enhances the effectiveness of494

our method in detecting hidden instructions.495

4.5.2 Detection Accuracy across Layers496

We further examine the detection accuracy of solely497

utilizing hidden states or gradients across different498

layers on all dataset combinations. As presented499

in Figure 3, the detection accuracy across different500

layers demonstrates a clear trend: performance ini-501

tially improves with increasing layer depth, reaches502

a peak at the middle layers, but then fluctuates503

significantly and generally declines. This trend504

highlights that intermediate layers capture more505

informative features relevant to instruction detec-506

tion, whereas deeper layers may introduce noise507

or less task-specific representations, which is con-508

sistent with our observations on the validation set.509

These findings also align with the observations of510

recent study (Skean et al., 2024), demonstrating511

that intermediate layers in LLMs often yield richer512

representations for downstream tasks compared to513

the final layers.514

4.5.3 Large Language Models515

The effectiveness of InstructDetector is evaluated516

across various LLMs, including different architec-517

tures (Llama (Dubey et al., 2024), Qwen (Bai et al.,518

2023), Mistral (Jiang et al., 2023)) and model sizes519

(1B, 3B, 7B, 8B, 14B parameters). As shown in520

Table 4, features extracted from all tested LLMs are 521

effective in detecting hidden instructions. Notably, 522

we select the hidden states and gradients from the 523

best-performing layer, which are all located in the 524

intermediate layers. Among the evaluated models, 525

Qwen-2.5-7B and Llama-3.1-8B exhibit superior 526

results, while Mistral-7B shows slightly less opti- 527

mal performance. Furthermore, the findings indi- 528

cate that larger models generally produce features 529

that are more effective for instruction detection, 530

aligning with our hypothesis that stronger model 531

capabilities lead to features that better facilitate the 532

identification of hidden instructions. 533

We also include a comparison between Llama- 534

3.1-8B-Base and Llama-3.1-8B-Instruct. The re- 535

sults show a significant performance gap, with 536

Llama-3.1-8B-Base demonstrating notably worse 537

results. This difference is likely due to the fact 538

that IPI attacks rely on the presence of hidden in- 539

structions embedded within external content, which 540

alter the behavioral states of LLMs. Since Llama- 541

3.1-8B-Base has not undergone instruction fine- 542

tuning, it does not exhibit the same responsiveness 543

to such hidden instructions in the way that the in- 544

struct model does. As a result, the ability of Llama- 545

3.1-8B-Base to detect such attacks is considerably 546

diminished. 547

7

Wiki+LaMini (ID) News+LaMini (OOD) Wiki+BIPIA (OOD) News+BIPIA (OOD)
Llama-3.2-1B-Instruct 97.50% 93.15% 97.10% 92.55%
Llama-3.2-3B-Instruct 99.45% 96.30% 99.25% 95.70%
Llama-3.1-8B-Instruct 99.60% 98.35% 99.45% 96.90%
Llama-3.1-8B-Base 73.95% 71.35% 73.35% 68.55%
Mistral-7B-Instruct 99.55% 94.75% 99.40% 94.20%
Qwen2.5-7B-Instruct 99.85% 97.65% 99.30% 97.35%
Qwen2.5-14B-Instruct 99.85% 98.45% 99.70% 98.15%

Table 4: Detection accuracy comparison utilizing hidden states and gradients extracted from various LLMs. The
highest detection accuracy is indicated in bold. Here, ID denotes the in-domain setting, whereas OOD denotes the
out-of-domain setting.

Figure 4: Comparison of detection accuracy between LLM fine-tuning and InstructDetector on different
training data size. (a) Detection accuracy comparison in the in-domain setting (Wikipedia+LaMini-Instruction).
(b) Detection accuracy comparison in the out-of-domain setting (News Article+BIPIA).

4.5.4 Training Data Size548

We conduct experiments using training data of vary-549

ing sizes to assess how the quantity of training550

data affects the performance of InstructDetector.551

As presented in Figure 4, even with a small train-552

ing set of only 50 samples (25 positive and 25553

negative), InstructDetector achieves relatively high554

performance, exceeding 95% accuracy in both in-555

domain and out-of-domain scenarios. These results556

indicate that InstructDetector requires only mini-557

mal training data to achieve strong results. These558

findings highlight the remarkable data efficiency of559

InstructDetector, which performs well even with560

very limited data.561

5 Conclusion562

In this work, we present InstructDetector, a563

detection-based approach that leverages the inter-564

nal behavioral states of LLMs as signals to iden-565

tify IPI attacks. A key finding of our study is that566

the hidden states and gradients from the intermedi-567

ate layers of LLMs provide highly discriminative568

features for instruction detection. By leveraging569

these internal behavioral states, InstructDetector570

provides a robust mechanism for identifying hid-571

den instructions within external data. 572

We demonstrate that InstructDetector achieves 573

superior detection accuracy in both in-domain and 574

out-of-domain settings, while significantly reduc- 575

ing the attack success rate compared to existing 576

defense methods. These findings underline the ef- 577

fectiveness and adaptability of InstructDetector, of- 578

fering a robust solution for enhancing the security 579

of LLM-based systems. 580

6 Limitation 581

InstructDetector has several limitations. First, it re- 582

quires both forward and backward passes through 583

the LLM, introducing additional computational 584

overhead compared to lightweight defenses. While 585

suitable for offline filtering or batch processing, 586

this may limit deployment in resource-constrained 587

settings and raise environmental concerns due to 588

the increased energy consumption associated with 589

higher computational demands. Second, although 590

our experiments cover multiple representative sce- 591

narios and datasets, we cannot guarantee cover- 592

age of all possible attack strategies or domain- 593

specific variations. Third, the current design adopts 594

a conservative binary decision—discarding any ex- 595

ternal data flagged as containing hidden instruc- 596

8

tions—result in the unintended removal of useful,597

non-malicious information. In future work, when598

hidden instructions are identified, we will attempt599

to refine this approach by isolating and eliminat-600

ing the hidden instructions embedded within the601

external data, rather than discarding the entire ex-602

ternal data. This enhancement could enable the603

LLMs to leverage the remaining valid information604

while maintaining robust defenses against hidden605

instructions.606

7 Ethical Impact607

Our proposed method, InstructDetector, defends608

against IPI attacks, which is essential for ensur-609

ing the secure and reliable operation of LLMs in610

third-party system integrations. By mitigating the611

risks posed by IPI attacks, InstructDetector fosters612

ethical and socially responsible use of AI technolo-613

gies, enhancing trust in their application within614

critical sectors such as healthcare, legal and finance615

domains. There may be concerns about whether616

InstructDetector could provide attackers with in-617

sights to bypass detection. Since InstructDetector618

leverages the distinct behavioral states of LLMs to619

differentiate between data and instructions, while620

IPI attacks fundamentally rely on the external in-621

structions to alter the behavioral states of LLMs,622

it would be exceedingly difficult for attackers to623

circumvent our detection. In summary, InstructDe-624

tector strengthens the security and trustworthiness625

of AI systems by effectively defending IPI attacks,626

aligning with ethical principles and supporting the627

development of reliable, safe, and socially respon-628

sible AI technologies for real-world applications.629

References630

Sahar Abdelnabi, Aideen Fay, Giovanni Cherubin,631
Ahmed Salem, Mario Fritz, and Andrew Paverd.632
2024. Are you still on track!? catching llm task drift633
with activations. arXiv preprint arXiv:2406.00799.634

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama635
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,636
Diogo Almeida, Janko Altenschmidt, Sam Altman,637
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.638
arXiv preprint arXiv:2303.08774.639

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,640
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei641
Huang, et al. 2023. Qwen technical report. arXiv642
preprint arXiv:2309.16609.643

Tom Brown, Benjamin Mann, Nick Ryder, Melanie644
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind645

Neelakantan, Pranav Shyam, Girish Sastry, Amanda 646
Askell, et al. 2020. Language models are few-shot 647
learners. Advances in neural information processing 648
systems, 33:1877–1901. 649

Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun. 650
2024a. Benchmarking large language models in 651
retrieval-augmented generation. In Proceedings of 652
the AAAI Conference on Artificial Intelligence, vol- 653
ume 38, pages 17754–17762. 654

Sizhe Chen, Julien Piet, Chawin Sitawarin, and David 655
Wagner. 2024b. Struq: Defending against prompt 656
injection with structured queries. arXiv preprint 657
arXiv:2402.06363. 658

Yulin Chen, Haoran Li, Yuan Sui, Yufei He, Yue Liu, 659
Yangqiu Song, and Bryan Hooi. 2025. Can indirect 660
prompt injection attacks be detected and removed? 661
arXiv preprint arXiv:2502.16580. 662

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 663
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 664
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. 665
2023. Vicuna: An open-source chatbot impressing 666
gpt-4 with 90%* chatgpt quality. See https://vicuna. 667
lmsys. org (accessed 14 April 2023), 2(3):6. 668

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 669
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul 670
Barham, Hyung Won Chung, Charles Sutton, Sebas- 671
tian Gehrmann, et al. 2023. Palm: Scaling language 672
modeling with pathways. Journal of Machine Learn- 673
ing Research, 24(240):1–113. 674

Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and 675
Li Yuan. 2023. Chatlaw: Open-source legal large 676
language model with integrated external knowledge 677
bases. CoRR. 678

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao 679
Chang, and Furu Wei. 2022. Knowledge neurons in 680
pretrained transformers. In Proceedings of the 60th 681
Annual Meeting of the Association for Computational 682
Linguistics (Volume 1: Long Papers), pages 8493– 683
8502. 684

tianru dai. 2017. News Articles. 685

Robert Dale. 2021. Gpt-3: What’s it good for? Natural 686
Language Engineering, 27(1):113–118. 687

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan 688
Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu, 689
Tianyu Liu, et al. 2022. A survey on in-context learn- 690
ing. arXiv preprint arXiv:2301.00234. 691

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 692
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 693
Akhil Mathur, Alan Schelten, Amy Yang, Angela 694
Fan, et al. 2024. The llama 3 herd of models. arXiv 695
preprint arXiv:2407.21783. 696

Wikimedia Foundation. Wikimedia downloads. 697

9

https://doi.org/10.7910/DVN/GMFCTR
https://dumps.wikimedia.org

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,698
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen699
Wang. 2023. Retrieval-augmented generation for700
large language models: A survey. arXiv preprint701
arXiv:2312.10997.702

Mor Geva, Roei Schuster, Jonathan Berant, and Omer703
Levy. 2021. Transformer feed-forward layers are704
key-value memories. In Proceedings of the 2021705
Conference on Empirical Methods in Natural Lan-706
guage Processing, pages 5484–5495.707

Kai Greshake, Sahar Abdelnabi, Shailesh Mishra,708
Christoph Endres, Thorsten Holz, and Mario Fritz.709
2023. Not what you’ve signed up for: Compromis-710
ing real-world llm-integrated applications with indi-711
rect prompt injection. In Proceedings of the 16th712
ACM Workshop on Artificial Intelligence and Secu-713
rity, pages 79–90.714

Stefan Harrer. 2023. Attention is not all you need: the715
complicated case of ethically using large language716
models in healthcare and medicine. EBioMedicine,717
90.718

Keegan Hines, Gary Lopez, Matthew Hall, Federico719
Zarfati, Yonatan Zunger, and Emre Kiciman. 2024.720
Defending against indirect prompt injection attacks721
with spotlighting. arXiv preprint arXiv:2403.14720.722

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan723
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea724
Madotto, and Pascale Fung. 2023. Survey of halluci-725
nation in natural language generation. ACM Comput-726
ing Surveys, 55(12):1–38.727

Feiran Jia, Tong Wu, Xin Qin, and Anna Squicciarini.728
2024. The task shield: Enforcing task alignment to729
defend against indirect prompt injection in llm agents.730
arXiv preprint arXiv:2412.16682.731

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-732
sch, Chris Bamford, Devendra Singh Chaplot, Diego733
de las Casas, Florian Bressand, Gianna Lengyel, Guil-734
laume Lample, Lucile Saulnier, et al. 2023. Mistral735
7b. arXiv preprint arXiv:2310.06825.736

Ehsan Kamalloo, Nouha Dziri, Charles Clarke, and737
Davood Rafiei. 2023. Evaluating open-domain ques-738
tion answering in the era of large language models.739
In Proceedings of the 61st Annual Meeting of the740
Association for Computational Linguistics (Volume741
1: Long Papers), pages 5591–5606.742

Nicholas Ka-Shing Kong. 2024. InjectBench: An In-743
direct Prompt Injection Benchmarking Framework.744
Ph.D. thesis, Virginia Tech.745

Jinqi Lai, Wensheng Gan, Jiayang Wu, Zhenlian Qi, and746
S Yu Philip. 2024. Large language models in law: A747
survey. AI Open.748

Yinheng Li, Shaofei Wang, Han Ding, and Hang Chen.749
2023. Large language models in finance: A survey.750
In Proceedings of the fourth ACM international con-751
ference on AI in finance, pages 374–382.752

Yupei Liu, Yuqi Jia, Runpeng Geng, Jinyuan Jia, and 753
Neil Zhenqiang Gong. 2024. Formalizing and bench- 754
marking prompt injection attacks and defenses. In 755
33rd USENIX Security Symposium (USENIX Security 756
24), pages 1831–1847. 757

Vipula Rawte, Amit Sheth, and Amitava Das. 2023. A 758
survey of hallucination in large foundation models. 759
arXiv preprint arXiv:2309.05922. 760

Sippo Rossi, Alisia Marianne Michel, Raghava Rao 761
Mukkamala, and Jason Bennett Thatcher. 2024. 762
An early categorization of prompt injection at- 763
tacks on large language models. arXiv preprint 764
arXiv:2402.00898. 765

Malik Sallam. 2023. The utility of chatgpt as an exam- 766
ple of large language models in healthcare education, 767
research and practice: Systematic review on the fu- 768
ture perspectives and potential limitations. MedRxiv, 769
pages 2023–02. 770

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 771
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle- 772
moyer, Nicola Cancedda, and Thomas Scialom. 2023. 773
Toolformer: Language models can teach themselves 774
to use tools. Advances in Neural Information Pro- 775
cessing Systems, 36:68539–68551. 776

Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, 777
Ellery Wulczyn, Le Hou, Kevin Clark, Stephen 778
Pfohl, Heather Cole-Lewis, Darlene Neal, et al. 779
2023. Towards expert-level medical question an- 780
swering with large language models. arXiv preprint 781
arXiv:2305.09617. 782

Oscar Skean, Md Rifat Arefin, and Ravid Shwartz- 783
Ziv. 2024. Does representation matter? exploring 784
intermediate layers in large language models. In 785
Workshop on Machine Learning and Compression, 786
NeurIPS 2024. 787

Liyan Tang, Zhaoyi Sun, Betina Idnay, Jordan G Nestor, 788
Ali Soroush, Pierre A Elias, Ziyang Xu, Ying Ding, 789
Greg Durrett, Justin F Rousseau, et al. 2023. Eval- 790
uating large language models on medical evidence 791
summarization. NPJ digital medicine, 6(1):158. 792

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 793
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 794
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 795
Azhar, et al. 2023a. Llama: Open and effi- 796
cient foundation language models. arXiv preprint 797
arXiv:2302.13971. 798

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 799
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 800
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 801
Bhosale, et al. 2023b. Llama 2: Open founda- 802
tion and fine-tuned chat models. arXiv preprint 803
arXiv:2307.09288. 804

A Vaswani. 2017. Attention is all you need. Advances 805
in Neural Information Processing Systems. 806

10

Jiongxiao Wang, Fangzhou Wu, Wendi Li, Jinsheng807
Pan, Edward Suh, Z Morley Mao, Muhao Chen, and808
Chaowei Xiao. 2024. Fath: Authentication-based809
test-time defense against indirect prompt injection810
attacks. arXiv preprint arXiv:2410.21492.811

Rui Wang, Junda Wu, Yu Xia, Tong Yu, Ruiyi812
Zhang, Ryan Rossi, Lina Yao, and Julian McAuley.813
2025. Cacheprune: Neural-based attribution de-814
fense against indirect prompt injection attacks. arXiv815
preprint arXiv:2504.21228.816

Fangzhou Wu, Ethan Cecchetti, and Chaowei Xiao.817
2024a. System-level defense against indirect prompt818
injection attacks: An information flow control per-819
spective. arXiv preprint arXiv:2409.19091.820

Minghao Wu, Abdul Waheed, Chiyu Zhang, Muham-821
mad Abdul-Mageed, and Alham Aji. 2024b. Lamini-822
lm: A diverse herd of distilled models from large-823
scale instructions. In Proceedings of the 18th Confer-824
ence of the European Chapter of the Association for825
Computational Linguistics (Volume 1: Long Papers),826
pages 944–964.827

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski,828
Mark Dredze, Sebastian Gehrmann, Prabhanjan Kam-829
badur, David Rosenberg, and Gideon Mann. 2023.830
Bloomberggpt: A large language model for finance.831
arXiv preprint arXiv:2303.17564.832

Yueqi Xie, Minghong Fang, Renjie Pi, and Neil Gong.833
2024. Gradsafe: Detecting jailbreak prompts for llms834
via safety-critical gradient analysis. In Proceedings835
of the 62nd Annual Meeting of the Association for836
Computational Linguistics (Volume 1: Long Papers),837
pages 507–518.838

Haoran Xu, Young Jin Kim, Amr Sharaf, and839
Hany Hassan Awadalla. 2023. A paradigm shift840
in machine translation: Boosting translation perfor-841
mance of large language models. arXiv preprint842
arXiv:2309.11674.843

Rui Yang, Ting Fang Tan, Wei Lu, Arun James844
Thirunavukarasu, Daniel Shu Wei Ting, and Nan845
Liu. 2023. Large language models in health care:846
Development, applications, and challenges. Health847
Care Science, 2(4):255–263.848

Jingwei Yi, Yueqi Xie, Bin Zhu, Emre Kiciman,849
Guangzhong Sun, Xing Xie, and Fangzhao Wu. 2023.850
Benchmarking and defending against indirect prompt851
injection attacks on large language models. arXiv852
preprint arXiv:2312.14197.853

Qiusi Zhan, Zhixiang Liang, Zifan Ying, and Daniel854
Kang. 2024. Injecagent: Benchmarking indirect855
prompt injections in tool-integrated large language856
model agents. arXiv preprint arXiv:2403.02691.857

Biao Zhang, Barry Haddow, and Alexandra Birch. 2023.858
Prompting large language model for machine transla-859
tion: A case study. In International Conference on860
Machine Learning, pages 41092–41110. PMLR.861

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, 862
Kathleen McKeown, and Tatsunori B Hashimoto. 863
2024. Benchmarking large language models for news 864
summarization. Transactions of the Association for 865
Computational Linguistics, 12:39–57. 866

Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, 867
Yejin Choi, and Yuntian Deng. 2024. Wildchat: 1m 868
chatgpt interaction logs in the wild. arXiv preprint 869
arXiv:2405.01470. 870

Kaijie Zhu, Xianjun Yang, Jindong Wang, Wenbo 871
Guo, and William Yang Wang. 2025. Melon: 872
Indirect prompt injection defense via masked re- 873
execution and tool comparison. arXiv preprint 874
arXiv:2502.05174. 875

Andy Zou, Long Phan, Sarah Chen, James Campbell, 876
Phillip Guo, Richard Ren, Alexander Pan, Xuwang 877
Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, 878
et al. 2023. Representation engineering: A top- 879
down approach to ai transparency. arXiv preprint 880
arXiv:2310.01405. 881

11

A Additional Experimental Settings882

Prompt for LLM (Zero-shot).

Guideline
You are a helpful assistant, and your task is
to determine if there is any external instruc-
tion in the text. Respond with 1 if there is an
instruction, or 0 if there is not. Only reply
with 1 or 0, without additional explanation.
Your Task
Text: external data
Answer:

883

Prompt for LLM (Few-shot).

Guideline
You are a helpful assistant, and your task is
to determine if there is any external instruc-
tion in the text. Respond with 1 if there is an
instruction, or 0 if there is not. Only reply
with 1 or 0, without additional explanation.
Examples ### Here are few concrete
examples to help you understand how to
make decision.
Example 1:
Text: external data
Answer: label
Your Task
Text: external data
Answer:

884

Prompt for Response Check.

Please follow the instruction based on the
context below.
Instruction: instruction
Context: external data

885

A.1 Dataset Details886

All datasets used in this work are in English and the887

use of these datasets complies with their intended888

purposes as specified by their creators. We have889

carefully reviewed the data to ensure that they do890

not contain personally identifiable information or891

offensive content.892

Wikipedia The dataset is constructed using893

Wikipedia dump files, under the CC-BY-SA license.894

Each data instance comprises the content of an en-895

tire Wikipedia article. In addition, we remove the896

overly long articles to ensure that they are not trun-897

cated during processing. 898

News Articles The dataset contains 3,824 news 899

articles, each featuring metadata including the ti- 900

tle, subtitle, content, and publication date, sourced 901

from multiple media outlets, under the CC0 license. 902

Similarly, we remove the overly long articles to en- 903

sure that they are not truncated during processing. 904

LaMini-instruction The dataset consists of 2.58 905

million pairs of instructions and corresponding re- 906

sponses, generated using GPT-3.5-Turbo, drawing 907

from a wide range of existing resources of prompts, 908

including Self-Instruct, P3, FLAN, and Alpaca, un- 909

der the CC-BY-NC license. 910

BIPIA BIPIA is the first benchmark aimed at 911

evaluating the risk of IPI attacks on LLMs, under 912

the MIT license, and we use its instruction dataset 913

for our experiments. The dataset consists of 15 914

attack types, categorized into task-irrelevant, task- 915

relevant, and targeted attacks, with 5 instructions 916

per attack type, resulting in a total of 75 instructions 917

across both the training and test sets. These instruc- 918

tions were semi-automatically generated with the 919

assistance of ChatGPT and manually reviewed for 920

rationality. 921

A.2 Baseline Details 922

A.2.1 Detection-based Defenses 923

LLM (Zero-shot) (Liu et al., 2024) Directly 924

query the LLM to identify if there is any hidden 925

instruction within the external content, utilizing 926

the LLM’s existing capabilities without additional 927

enhancements or fine-tuning. 928

Response Check (Liu et al., 2024) Evaluate the 929

LLM’s output by checking whether the response 930

aligns with the intended task, where a mismatch 931

indicates potential manipulation by hidden instruc- 932

tions within the external content. 933

TaskTracker (Abdelnabi et al., 2024) Detect 934

IPI attacks by contrasting the LLM’s activations 935

before and after feeding the external data, which 936

indicates whether the user’s instruction is distorted 937

by the instruction hidden in the external data. 938

LLM (Few-shot) To enhance the performance 939

of Naive LLM-based Detection, we attempt to 940

leverage in-context learning (Dong et al., 2022) 941

to strengthen the model’s capability to detect hid- 942

den instructions, where task demonstrations are 943

integrated into the textual prompt. 944

12

Wiki+LaMini News+LaMini Wiki+BIPIA News+BIPIA
Wiki+LaMini 99.60% 98.35% 99.45% 96.90%
News+LaMini 99.60% 98.50% 99.55% 96.45%
Wiki+BIPIA 99.15% 97.50% 99.85% 97.30%
News+BIPIA 99.45% 98.35% 99.65% 98.05%

Table 5: Detection accuracy comparison utilizing different combinations of training datasets. The highest detection
accuracy is indicated in bold.

Wiki+LaMini (ID) News+LaMini (OOD) Wiki+BIPIA (OOD) News+BIPIA (OOD)
I’m sorry 99.45% 97.95% 97.25% 95.15%
Hello 99.45% 97.90% 98.15% 95.90%
Yes 99.55% 97.80% 99.40% 96.80%
Sure 99.60% 98.35% 99.45% 96.90%

Table 6: Detection accuracy comparison using different paired responses to extract gradient features. The highest
detection accuracy is indicated in bold. Here, ID denotes the in-domain setting, whereas OOD denotes the out-of-
domain setting.

LLM (Fine-tuning) Similarly, to further im-945

prove naive LLM-based detection, we conduct su-946

pervised fine-tuning using task-specific annotated947

data, thereby strengthening the model’s ability to948

detect hidden instructions.949

A.2.2 Prevention-based Defenses950

In-context Learning (Yi et al., 2023) Employ951

in-context learning to enable the model to distin-952

guish between external data and user instructions,953

by providing samples where the model responds to954

input containing external data without being misled955

by the instruction embedded within external data.956

Multi-turn Dialogue (Yi et al., 2023) Strategi-957

cally shift external data—which may contain covert958

instructions—to the preceding conversational turn,959

while reserving the user’s instruction for the cur-960

rent turn. This separation between external content961

and user instruction effectively mitigates ASR.962

Adversarial Training (Yi et al., 2023) Incorpo-963

rate adversarial learning during the LLM’s self-964

supervised fine-tuning phase, training the model965

to disregard instructions embedded within external966

content. The approach further adapts the model’s967

embedding layer to explicitly demarcate external968

content boundaries, enabling clearer distinction be-969

tween external content and user instructions.970

A.3 Additional Experimental Details971

As shown earlier, we employ specific prompt tem-972

plates for LLM (Zero-shot), Response Check, and973

LLM (Few-shot).974

For the LLM (Fine-tuning), we use the AdamW 975

optimizer to train the model for one epoch, with 976

a learning rate set at 0.00001 and a maximum in- 977

put length of 2048 tokens. Both the learning rate 978

and the number of epochs are chosen based on per- 979

formance on the validation set. For TaskTracker, 980

we use the publicly available model released by 981

the work. As for the prevention-based approaches, 982

we utilize the publicly available implementations 983

provided by the respective works. 984

We conduct our method using an 8B-parameter 985

LLM. All training and inference are performed on a 986

single NVIDIA A100 80GB GPU, with the training 987

phase requiring approximately 1 GPU hour. For all 988

reported results, we present outcomes from a single 989

run. During preprocessing, to construct negative 990

samples by inserting instructions into benign text, 991

we utilize the PunktSentenceTokenizer from the 992

NLTK library for sentence segmentation. 993

Scenario 1 Scenario 2
TaskTracker 70.55% 71.35%
InstructDetector 99.40% 99.55%

Table 7: Detection accuracy comparison of Instruct-
Detector and TaskTracker when the external instruction
closely resembles the user’s instruction. For scenario 1,
the user instruction is "Translate the news into Chinese."
and the external instruction is "Translate the news into
Japanese."; For scenario 2, the user instruction is "Gen-
erate a step-by-step guide for solving this problem." and
the external instruction is "Generate a list of common
mistakes in solving this problem." The highest detection
accuracy is indicated in bold.

13

Wiki+LaMini (ID) News+LaMini (OOD) Wiki+BIPIA (OOD) News+BIPIA (OOD)
one instruction 99.60% 98.35% 99.45% 96.90%
two instructions 99.85% 98.40% 99.80% 97.00%
three instructions 99.85% 98.45% 99.85% 97.00%

Table 8: Detection accuracy comparison for different quantities of inserted instructions in the test dataset. The
highest detection accuracy is indicated in bold. Here, ID denotes the in-domain setting, whereas OOD denotes the
out-of-domain setting.

Wiki+LaMini (ID) News+LaMini (OOD) Wiki+BIPIA (OOD) News+BIPIA (OOD)
beginning 99.90% 98.60% 99.90% 97.35%
middle 99.60% 98.35% 99.45% 96.90%
end 99.90% 98.40% 99.55% 97.05%

Table 9: Detection accuracy comparison for different positions of inserted instructions in the test dataset. The
highest detection accuracy is indicated in bold. Here, ID denotes the in-domain setting, whereas OOD denotes the
out-of-domain setting.

B Comparison with Related Method994

Both InstructDetector and TaskTracker (Abdelnabi995

et al., 2024) utilize the hidden states of LLMs as a996

key feature for detecting IPI attacks, but they differ997

significantly in their underlying principles. Task-998

Tracker aims to capture distortions in the user’s999

instruction caused by embedded instructions in the1000

external content. In contrast, InstructDetector aims1001

to distinguish the LLM’s behavioral states when1002

processing normal external data versus those con-1003

taining hidden instructions.1004

TaskTracker has two primary limitations. First,1005

it requires a large number of training samples1006

(418,110 pairs of positive and negative samples) to1007

accurately identify deviations in the user’s task. In1008

contrast, InstructDetector leverages the high sen-1009

sitivity of LLM’s behavioral states to embedded1010

instructions, achieving effective detection with a1011

significantly smaller dataset (just 100 pairs).1012

Second, TaskTracker’s effectiveness relies heav-1013

ily on a clear distinction between user’s instructions1014

and external instructions, while InstructDetector1015

is task-agnostic. As shown in Table 7, when the1016

external instruction closely resembles the user’s in-1017

struction, TaskTracker’s detection accuracy drops1018

significantly, while InstructDetector maintains high1019

detection accuracy.1020

C Extended Ablation Studies1021

C.1 Composition of Training Data1022

We conduct experiments using different combina-1023

tions of training datasets to assess the robustness1024

and adaptability of InstructDetector to various train-1025

ing dataset compositions. As presented in Table 5,1026

InstructDetector consistently yields high accuracy 1027

across all test datasets, regardless of the specific 1028

combination of training data used. This indicates 1029

the generalizability and adaptability of InstructDe- 1030

tector, as it does not rely on any particular training 1031

dataset source. Additionally, we observe that accu- 1032

racy is consistently lower when tested on the News 1033

Articles with the BIPIA combination, indicating 1034

that this scenario poses the greatest challenge for 1035

instruction detection. Nonetheless, InstructDetec- 1036

tor still achieves satisfactory accuracy in this chal- 1037

lenging scenario, further validating its effectiveness 1038

and robustness in instruction detection. 1039

C.2 Paired Responses for Gradients 1040

To investigate the effect of various paired responses 1041

on the extraction of gradient features, we conduct 1042

experiments using four candidate responses: "I’m 1043

sorry" "Hello" "Yes" and "Sure." These candidates 1044

are selected based on an analysis of common re- 1045

sponses to instructions in WildChat (Zhao et al., 1046

2024) dataset, ranked by frequency. Results in Ta- 1047

ble 6 show that all four paired responses achieve 1048

high accuracy (>95%) in distinguishing between 1049

normal external data and those containing hidden 1050

instructions. Among them, "Sure" delivers the best 1051

performance across all test datasets, further vali- 1052

dating our choice of "Sure" as the paired response 1053

in InstructDetector. These results emphasize the 1054

robustness of InstructDetector to differentiate re- 1055

sponse pairings while confirming that "Sure" is a 1056

particularly effective option for this task. 1057

14

C.3 Influence of Instruction Quantity and1058

Position1059

To further explore the influence of instruction quan-1060

tity and position on detection performance, we1061

conduct experiments using a fixed training dataset1062

while varying only the number or placement of1063

inserted instructions in the test dataset.1064

Results in Table 8 reveal a trend that detection1065

accuracy shows a certain degree of improvement1066

as the number of inserted instructions increases.1067

This suggests that a higher quantity of instructions1068

provides stronger signals, making IPI attacks more1069

distinguishable by InstructDetector. Additionally,1070

we examine the effect of instruction placement by1071

inserting instructions at the beginning, middle, or1072

end of the external content. As shown in Table1073

9, instructions placed in the middle are the most1074

challenging to detect, whereas those positioned at1075

the beginning or end are relatively easier to iden-1076

tify. Among these, instructions at the beginning1077

yield the highest detection accuracy, likely because1078

LLMs exhibit greater sensitivity to early input.1079

15

	Introduction
	Related Work
	Indirect Prompt Injection Defense
	Behavioral States of Large Language Models

	Methodology
	Overview
	Hidden States Extraction
	Gradients Extraction
	Feature Fusion

	Experiment
	Datasets
	Baselines
	Experimental Setup
	InstructDetector
	Detection Accuracy Comparison
	Attack Success Rate Comparison

	Overall Results
	Detection Accuracy Comparison
	Attack Success Rate Comparison

	Ablation Study
	Solely Utilizing Hidden States/Gradients
	Detection Accuracy across Layers
	Large Language Models
	Training Data Size

	Conclusion
	Limitation
	Ethical Impact
	Additional Experimental Settings
	Dataset Details
	Baseline Details
	Detection-based Defenses
	Prevention-based Defenses

	Additional Experimental Details

	Comparison with Related Method
	Extended Ablation Studies
	Composition of Training Data
	Paired Responses for Gradients
	Influence of Instruction Quantity and Position

