
Rebuttal response at ICLR 2024

AUTHORS’ RESPONSE

Anonymous authors
Paper under double-blind review

1 GLOBAL RESPONSES

We sincerely thank all the reviewers for their feedback and constructive comments. We have made
several changes to the paper based on their suggestions.

More baselines. We conducted additional experiments to compare our method with the best
heuristic results from the commercial solver Gurobi and the recent baseline method PS+Gurobi
(Han et al., 2023) as suggested by Reviewers jBX3, wgcj, and MZmK. We used Gurobi to solve
each dataset instance for 100 seconds to obtain the best possible solutions as optimal values for bet-
ter validating the effectiveness of our method as suggested by Reviewer CS3k. The results of these
experiments are now included in table 1 and table 2 of Section 5 in the updated manuscript. For
convenience, we also report the specific values here:

Instance
IP Guided

DDIM
IP Guided

DDPM
IP Guided DDIM

+ Completesol
ND (low coverage)

+ Completesol
PS + Gurobi SCIP Gurobi Optimal

obj. fea. obj. fea. obj. fea. obj. fea. obj. obj. obj. obj.

SC (min) 533.5 99.8% 577.9 95.7% 255.5 100% 849.0 100% 593.7 1967.0 522.4 168.28
CA (max) 26916.9 97.1% 800.3 87.3% 32491.1 99.7% 30143.6 87.0% 31159.5 28007.4 30052.0 36102.6
CF (min) 25119.2 89.7% 58488.1 44.0% 14224.1 100% 14259.8 81.3% 32119.8 84748.4 50397.3 11405.5
IS (max) 455.6 99.7% 129.9 100% 639.4 100% 484.1 90.4% 587.9 447.8 415.5 685.3

Table 1: The average objective value (obj.) and feasible ratio (fea.) for 100 instances.

Size
IP Guided

DDIM
IP Guided

DDPM
IP Guided DDIM

+ Completesol
ND (low coverage)

+ Completesol
PS + Gurobi SCIP Gurobi Optimal

obj. fea. obj. fea. obj. fea. obj. fea. obj. obj. obj. obj.

small 533.5 99.8% 594.7 96.5% 255.5 100% 849.0 100% 593.7 1967.0 522.4 168.3
medium 486.8 99.9% 451.8 83.7% 217.4 100% 1145.8 100% 737.0 2236.2 718.8 140.4
large 464.9 100% 440.7 77.9% 195.9 100% 1465.6 100% 994.9 2386.0 1454.5 126.9

Table 2: The average objective value (obj.) and the feasible ratio (fea.) for 100 instances in 3
different size SC datasets.

Training and inference time. Our all evaluations are preformed in a machine with two Intel(R)
Xeon(R) Platinum 8163 CPU @ 2.50GHz, 176GB ram and two Nvidia V100 GPUs. We reported
the total training and inference time for sampling 3000 solutions in Appendix A.8 as suggested by
Reviewers jBX3 and wgcj. The specific results are

Dataset Training (CISP + Diffusion) IP Guided DDIM IP Guided DDPM

SC 24.4m 37.5m 374m
CA 9.3m 23m 233.5m
CF 71.7m 84m 805m
IS 11.1m 23m 234m

Table 3: Total training time and total time for sampling 3000 solutions for each dataset

1



Rebuttal response at ICLR 2024

Ablation study on CISP. For presenting the advantage of contrastive learning empirically, we
add an experiment in which we train IP and solution embeddings directly via the training produce of
diffusion and decoder without using CISP the results were presented in Appendix A.9 in the updated
manuscript. The specific values are

Unguided
DDIM

Constraint Guided
DDIM

Objective Guided
DDIM

IP Guided DDIM
w/o CISP

IP Guided
DDIM

dataset
obj. fea. obj. fea. obj. fea. obj. fea. obj. fea.

SC (min) - 0.0% 63046.9 99.8% - 0.0% 763.4 99.8% 533.5 99.8%
CA (max) - 0.0% 5157.2 99.7% - 0.0% 23383.3 57.7% 26916.9 97.1 %
CF (min) - 0.0% 53311.2 74.1 % - 0.0% 31319.8 41.7% 25119.2 89.7%
IS (max) - 0.0% 386.5 100 % - 0.0% 479.1 68.9% 455.6 99.7%

Table 4: Ablation study for 100 instances in 4 datasets with different guidances.

The qualitative analysis of solutions. We also included qualitative analysis of the generative
solutions: we sampled 1000 solutions from a single instance of the SC and IS datasets and plotted
the distribution of corresponding objectives, see Section 5.3 in the updated manuscript.

200 300 400 500 600 700 800
Objectives

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Fr
eq

ue
nc

y

Gurobi Heuristic
Optimal
IP Guided DDIM
IP Guided DDIM + CompleteSol

(a) SC instance (minimization).

400 450 500 550 600 650 700
Objectives

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fr
eq

ue
nc

y

Gurobi Heuristic
Optimal
IP Guided DDIM
IP Guided DDIM + CompleteSol

(b) IS instance (maximization).

Figure 1: The objective distribution of 1000 solutions sampled from a single instance.

Others. We have added section on related works in the field of machine learning for solving In-
teger Programming for readers to better understand our work in Appendix A.12. Additionally, we
have corrected typos and improved the overall readability in the newly uploaded version.

[1] Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and
Xiaodong Luo. A GNN-guided predict-and-search framework for mixed-integer linear program-
ming. In International Conference on Learning Representations, 2023.

2



Rebuttal response at ICLR 2024

2 REVIEWER CS3K

Summary: The paper proposed a learning based IP solver. For problem and solu-
tion embedding, the solver took the GCN framework, combined with contrastive
learning inspired by CLIP. In addition the authors adapted DDPM/DDIM by intro-
ducing IP specific guidance into the sampling procedure. Experiments on several
IP problems showed superior performance to both Neural Diving and SCIP.
Soundness: 3 good Presentation: 3 good Contribution: 2 fair
Strengths: Several key components were designed to make the solver specifically
effective for IP. Experiments are solid.
Weaknesses: To better validate that the quality of the proposed solver, comparison
between the found optimal objective value and the ground-truth (global optimum)
would be more convincing, the paper only provided relative comparison between
the proposed solver and two baseline approaches.
Questions: N/A
Flag For Ethics Review: No ethics review needed. Rating: 8: accept, good paper
Confidence: 2: You are willing to defend your assessment, but it is quite likely
that you did not understand the central parts of the submission or that you are
unfamiliar with some pieces of related work. Math/other details were not carefully
checked. Code Of Conduct: Yes

2.1 RESPONSE

Thank you for your suggestion! We have employed Gurobi to solve each dataset instance for 100
seconds, aiming to obtain the best possible solutions as optimal values. In the updated manuscript,
we have included the average optimal values for each dataset in Table 1 and Table 2 in Section 5 (we
also report these results in Table 1 and Table 2 in the global responses). The experimental results
demonstrate that our feasible solutions achieve a gap of 7% to 34% compared to the optimal values.
This performance is superior to the heuristic methods from Gurobi and SCIP.

3



Rebuttal response at ICLR 2024

3 REVIEWER JBX3

Summary: A solution generation method is adopted to estimate binary solutions
of integer programming. The method includes a contrastive learning gaining ini-
tial representations of solutions and instances, and a conditioned generative model
estimating binary solutions. Guided sampling is adapted from present diffusion
models to increase the feasibility ratio.
Soundness: 2 fair Presentation: 2 fair Contribution: 2 fair
Strengths: Applying cutting-edge deep learning to solve integer programming
problems is encouraging. This research focuses on generating feasible solutions
by generative model and borrows the powerful representation learning capability
of neural networks. The method is technically sound by simply applying con-
trastive learning and diffusion model for solution estimation.
Weaknesses: My first concern is the insufficient comparison in experiments. As
described in related work, considerable literature attempted to improve the div-
ing method in solvers. Except Neural Diving (Nair et al., 2020), many follow-up
works continue similar research topics. More recent methods should be com-
pared. Even by only comparing Neural Diving, the results are not enough. The
training time and resource usage are not clear, which is important to show prac-
ticality and efficiency of applying multiple deep neural networks in the proposed
method. Moreover, the functions of contrastive model and generative model are
not showcased by ablation study.
Many works apply deep learning methods to solve integer programming problems
with totally feasible solutions. To name a few, ”A general large neighborhood
search framework for solving integer linear programs”, ”Learning large neighbor-
hood search policy for integer programming”, ”Mip-gnn: A data-driven frame-
work for guiding combinatorial solvers”. The advantage of this research over this
line of works is not clear. The use case of the given method is not given. Many
descriptions are not well explained (see questions).
Questions:

Q1. Why SCIP is chosen in experiments but not Gurobi, given the fact that Gurobi
often performs better than SCIP.

Q2. GCN is described by ”It does not explicitly incorporate objective and con-
straint information during sampling, often resulting in infeasible complete
solutions.” In Gasse et al. (2019), GCN always gains feasible solutions.

Q3. Any integer programming problem can be converted into a 0-1 programming.
But the conversion increases the number of constraints a lot. How large inte-
ger programming can the method solve?

Q4. What is the advantage of contrastive learning compared to supervised learn-
ing? Additional experiment should be provided to see the effect of contrastive
learning without labeled solutions

Flag For Ethics Review: No ethics review needed. Rating: 3: reject, not good
enough Confidence: 3: You are fairly confident in your assessment. It is possible
that you did not understand some parts of the submission or that you are unfamiliar
with some pieces of related work. Math/other details were not carefully checked.
Code Of Conduct: Yes

3.1 RESPONSE

Thank you for reviewing our paper! We try to address your concerns and answer the raised questions
below.

First concern and Q1: More empirical comparisons: We added more experimental results com-
paring our method with Gurobi and a more recent baseline method (Han et al., 2023) suggested by
Reviewer wgcj, which shows that our methods consistently produce higher quality solutions than
these two baselines. Please check Table 1 and Table 2 in Section 5 for more detail (or check Table 1
and Table 2 in our global response).

4



Rebuttal response at ICLR 2024

Other concerns and Q4: ablations and training time: Further, we ablated on the contrastive
learning, i.e., with and without contrastive learning for the embeddings. Specifically, we include an
ablation experiment in which we train IP and solution embeddings directly via the training produce
of diffusion and decoder (Algorithm 2 in appendix A.3 in the updated manuscript) without using
CISP, the results were updated in the Appendix A.9 of the updated manuscript.

Unguided
DDIM

Constraint Guided
DDIM

Objective Guided
DDIM

IP Guided DDIM
w/o CISP

IP Guided
DDIM

dataset
obj. fea. obj. fea. obj. fea. obj. fea. obj. fea.

SC (min) - 0.0% 63046.9 99.8% - 0.0% 763.4 99.8% 533.5 99.8%
CA (max) - 0.0% 5157.2 99.7% - 0.0% 23383.3 57.7% 26916.9 97.1 %
CF (min) - 0.0% 53311.2 74.1 % - 0.0% 31319.8 41.7% 25119.2 89.7%
IS (max) - 0.0% 386.5 100 % - 0.0% 479.1 68.9% 455.6 99.7%

Table 5: Ablation study for 100 instances in 4 datasets with different guidances.

The results show that CISP plays a crucial role in ensuring that the solutions produced by our meth-
ods are more feasible. We found that the advantage of contrastive learning is its ability to extract
meaningful representations for IP instances and solutions, which is achieved by the assumption that
instances should stay close to their feasible solutions and away from their infeasible ones. This can
further integrate features from different forms, as the instance is represented using a bipartite graph
and the solution is represented in a vector space. In contrast, this cannot be simply achieved by
supervised learning.

As for the training time and computation usage, all our evaluations were conducted on a worksta-
tion equipped with two Intel(R) Xeon(R) Platinum 8163 CPUs @ 2.50GHz, 176GB RAM, and two
Nvidia V100 GPUs. We have provided the total training time and the total inference time for gener-
ating 3000 solutions below (also see appendix A.8 in the updated manuscript). During the inference
phase, IP Guided DDIM exhibits faster performance than IP Guided DDPM, with average time of
0.46s-1.68s for sampling each solution (see Appendix A.8 or Table 3 in global responses for more
detail).

Q2. We think there is misunderstanding of some parts of our work possibly due to some misleading
discussions in our paper. We agree with the reviewer that Gasse et al. (2019) proposed using a bi-
partite graph structure to model an IP instance and applied GCN to extract variable representations.
But their primary focus was on learning the branching policy, i.e., selecting the variable for parti-
tioning the node’s search space. Follow-up studies, such as Nair et al. (2020), Yoon Taehyun (2022)
and Han et al. (2023) confirm that directly using the bipartite graph and GCN to learn solutions
for an IP instance may result in infeasible solutions, and thus extended this method by using partial
assignments and CompleteSol heuristic to obtain complete feasible solutions. We clarified this in
the revised manuscript in the paragraph 2 of Section 1.

Q3. We agree with the review that the conversion increases the number of constraints. But the point
we tried to make is that our approach is generic enough to solve more general integer programming
problems. In fact, with the aforementioned computation space, our approach can solve sizable IP
problems: the largest instance (CF dataset) solved by our approach has about 5000 variables and
5000 constraints. These sizes can be further improved with more computation resources and more
pre-training on typical small-size IP instances.

References for part 1:

[1] Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and
Xiaodong Luo. A GNN-guided predict-and-search framework for mixed-integer linear program-
ming. In International Conference on Learning Representations, 2023.

[2] Maxime Gasse, Didier Chetelat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact com-
binatorial optimization with graph convolutional neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

[3] Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov,
Brendan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

5



Rebuttal response at ICLR 2024

[4] Taehyun Yoon. Confidence threshold neural diving. CoRR, abs/2202.07506, 2022. URL
https://arxiv.org/abs/2202.07506.

Other related work We thank the reviewer for sharing many papers. However, it appears that
there may have been some misunderstanding regarding the relationship between our work and other
papers. Therefore, we would like to provide further context in order to clarify our position and help
the reviewer better understand our contribution.

It is true that numerous works have been undertaken to apply deep learning methods to solve Integer
Programming problems. But the underlying ideas are quite different to each other. Particularly,
Bengio et al. (2021) categorize existing methods into three main groups (see Appendix A.12 in our
update manuscript for a detailed discussion):

Group 1 End-to-end learning, which refers to the training of a machine learning model to di-
rectly generate solutions based on input instances. In the context of solving integer programming
(IP) problems, this involves learning to construct solutions, as demonstrated by methods like Neural
Diving (Nair et al.,2020; Taehyun Yoon, 2022) and Predict-Search framework (Han et al., 2023).
However, these methods still need to rely on a solver to generate complete solution. Another
line in end-to-end learning focuses on learning to improve solutions, i.e., neighborhood search tech-
niques (Sonnerat et al., 2021; Wu et al., 2021). It is noteworthy that these methods typically
require a solver to acquire an initial solution.

Group 2 Learning to configure algorithms: Complex optimization algorithms usually have a set
of hyper-parameters left constant during optimization. This area use machine learning to select the
values of hyper-parameters.

Group 3 Learning alongside optimization: This field focuses on developing existed CO algo-
rithms, typically the branch-and-bound framework, that continuously utilize a machine learning
model throughout their execution, including techniques such as learning to branch (Gasse et al.,
2019) and learning to node selection (Khalil et al., 2022). These works aim to generate high-quality
solutions by combining ML method with the branch-and-bound framework in solvers.

Our approach falls into learning to construct solutions of Group 1. Importantly, to the best of our
knowledge, our approach is the first that generates complete and feasible solutions using pure neural
techniques, without relying on any solvers.

The papers mentioned by the review fall into other groups and study different research questions.
Specifically, the papers (Sonnerat et al., 2021; Wu et al., 2021) falls into learning to improve solu-
tions of Group 1 since they focus on learning methods for enhancing solution quality using neigh-
borhood search techniques, not directly related to solution generation. The papers Khalil et al.,
(2022) falls more into Group 3 and primarily focuses on node selection and also proposes the policy
of producing a partial solution through a prescribed rounding threshold, which is then completed
using SCIP, similar to Nair et al. (2020) and Taehyun Yoon (2022).

References for part 2:

[1] Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and
Xiaodong Luo. A GNN-guided predict-and-search framework for mixed-integer linear program-
ming. In International Conference on Learning Representations, 2023.

[2] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinato-
rial optimization: a methodological tour d’horizon. European Journal of Operational Research,
290(2):405–421, 2021.

[3] Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov,
Brendan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

[4] Taehyun Yoon. Confidence threshold neural diving. CoRR, abs/2202.07506, 2022. URL
https://arxiv.org/abs/2202.07506.

[5] Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
neighborhood search algorithm for mixed integer programs. arXiv preprint arXiv:2107.10201,2021.

6



Rebuttal response at ICLR 2024

[6] Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood
search policy for integer programming. Advances in Neural Information Processing Systems,
34:30075–30087, 2021.

[7] Maxime Gasse, Didier Chetelat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact com-
binatorial optimization with graph convolutional neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

[8] Elias B Khalil, Christopher Morris, and Andrea Lodi. Mip-gnn: A data driven framework for
guiding combinatorial solvers. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 10219–10227, 2022.

7



Rebuttal response at ICLR 2024

4 REVIEWER WGCJ

Summary: This paper proposes a novel framework that generates complete fea-
sible solutions end-to-end (i.e., assigning all variables using neural networks) for
Integer Programming (IP) problems, in contrast to most prior works that generate
partial solutions (i.e., only assigning a subset of variables using neural networks).
Specifically, it proposes a contrastive learning approach to capture the relationship
between the IP instances and the solutions, a diffusion model to generate solution
embeddings, and a guided sampling strategy to enhance the feasibility and quality
of solutions. Experiments on four datasets show that the proposed method out-
performs previous state-of-the-art methods in terms of feasible ratio and objective
value.
Soundness: 3 good Presentation: 3 good Contribution: 3 good
Strengths: This work is well motivated and the paper is easy to follow.
While most previous methods can only generate partial solutions, this work repre-
sents a valuable attempt to an end-to-end framework to generate complete feasible
solution.
Experiments demonstrate the effectiveness of the proposed method.
a) Experiments on four datasets demonstrate the effectiveness of the proposed
methods compared with Neural Diving and SCIP in terms of feasible ratio and
objective value.
b) The scalability test demonstrates that the proposed method can generalize to
large instances.
c) The ablation study demonstrates the effectiveness of the IP guidance.
d) The authors also conduct hyperparameter tuning experiments to investigate the
effect of the gradient scale and the leverage factor.
Weaknesses: The authors may want to add [1] as a baseline. The prediction loss
defined in Eq. (3) empirically performs better than that from general diffusion
models. It would be better to provide some intuitive interpretation. Moreover,
the authors may want to provide the inference algorithm of the modified diffu-
sion model. As diffusion generative models may suffer from inefficiency in both
training and inference, the authors may want to report the training and inference
time.
[1] Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang
Wang, Ruoyu Sun, and Xiaodong Luo. A gnn-guided predict-and-search frame-
work for mixed-integer linear programming. In The Eleventh International Con-
ference on Learning Representations, 2023.
Questions: Is this work the first one to generate complete solutions? See Weak-
ness 2. The training loss defined in Eq. (3) is different from general diffusion
models. Does it cause a different inference algorithm?
Flag For Ethics Review: No ethics review needed. Rating: 6: marginally above
the acceptance threshold Confidence: 4: You are confident in your assessment,
but not absolutely certain. It is unlikely, but not impossible, that you did not
understand some parts of the submission or that you are unfamiliar with some
pieces of related work. Code Of Conduct: Yes

4.1 RESPONSE

Thank you for reviewing our work!

More experiments We added more experimental results comparing our method with Gurobi and
the baseline suggested by the reviewer. Please check the results in the Section 5 of the manuscript
(or check Table 1 and Table 2 in our global responses) Results show that our methods consistently
produce higher quality solutions than these two baselines.

We also report toal training time and total sampling time for 3000 solutions on a workstation
equipped with two Intel(R) Xeon(R) Platinum 8163 CPUs @ 2.50GHz, 176GB RAM, and two
Nvidia V100 GPUs. During the inference phase, IP Guided DDIM exhibits faster performance than

8



Rebuttal response at ICLR 2024

IP Guided DDPM, with average time of 0.46s-1.68s for sampling each solution (see Appendix A.8
or Table 3 in global responses for more detail).

Q1: Yes, to the best of our knowledge, our approach is the first that generates complete and feasible
solutions using pure neural techniques, without relying on any solvers.

Q2: loss and inference algorithm: The loss in Eq.(3) utilizes noisy embeddings to reconstruct
the original embeddings as the objective. Intuitively, this helps enhance denoising capability in the
neural networks, and facilitates the simultaneous training of the solution decoder via estimating zx.
Regarding the inference algorithm, as mentioned in Section 2, in the reverse process, the mean of
z
(t−1)
x can be approximated by adding z

(0)
x as a condition

µθ(z
(t)
x , t) =

√
αt(1− ᾱt−1)

1− ᾱt
z(t)x +

√
ᾱt−1βt

1− ᾱt
z(0)x (1)

In paper [1], they use the following formula (2) from the forward process

z(t)x =
√
ᾱtz

(0)
x +

√
1− ᾱtϵ (2)

to replace z
(0)
x . It implies that

µθ(z
(t)
x , t) =

√
αt(1− ᾱt−1)

1− ᾱt
z(t)x +

√
ᾱt−1βt

1− ᾱt
z(0)x

=

√
αt(1− ᾱt−1)

1− ᾱt
z(t)x +

√
ᾱt−1βt

(1− ᾱt)
√
ᾱt

(z(t)x −
√
1− ᾱtϵ)

=
1

√
αt

(z(t)x − 1− αt√
1− ᾱt

ϵ).

(3)

The last equation holds because αt := 1− βt and ᾱ :=
∏t

s=1 αs. Therefore, we obtain the original
sampling method of DDPM (Ho et al., 2020). In our work, since we use the neural network to
predict z(0)x , we can directly use Eq.(1) to estimate the mean of z(t−1)

x in sampling phase as shown
in Appendix A.4 in the updated manuscript. In the experiments, we use the same variance estimation
as DDPM (see Eq.(7) in Ho et al., (2020)). Based on Eq.(2), we also produce the estimation of ϵ by
using z

(t)
x and predicted z

(0)
x and use it in the inference phase for DDIM.

[1]. Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840-6851, 2020.

9



Rebuttal response at ICLR 2024

5 REVIEWER MZMK

Summary: This paper studies the problem of finding feasible solutions to integer
programming problems. The authors propose a novel framework that generates
complete feasible solutions end-to-end. Their framework learns the embeddings
for IP instances and their solutions and then uses diffusion models to learn the
distributions. Finally, they perform sampling with trained models.
Key results: From their experimental results, it appears that their sampling meth-
ods provide solutions with a higher proportion of which are feasible solutions and
have smaller objectives than our approaches. Trained on small-size datasets, their
models are able to scale to large-scale instances.
Soundness: 2 fair Presentation: 2 fair Contribution: 2 fair
Strengths: From their experimental results, it appears that their sampling methods
provide solutions with a higher proportion of which are feasible solutions and
have smaller objectives than our approaches. Trained on small-size datasets, their
models are able to scale to large-scale instances.
Weaknesses: Major comments:
“For SCIP, we adopt the first solution obtained through non-trivial heuristic algo-
rithms during the solving phase.” I don’t know whether this comparison is fair.
Did you try, for example, using the solutions they get within a fixed window of
time?
Why do you compare your algorithm mostly with SCIP instead of Gurobi which
is possibly a much better solver.
Your algorithm requires small C to make sure feasibility, does it mean that the
heuristic from SCIP did most of the work? How do I know that the quality of
generated solution actually come from your algorithm instead of the heuristic?
How does the objective value that you sampled compare to the optimal solution?
How close are they? If they are far from each other, having a high feasible ratio
does not mean anything. The feasible region increases exponentially, so there
could be a large number of feasible solutions that are far from the optimal solution.
Minor comments:
In “Related work”, you mentioned “our method aims to learn the latent structure
. . . , without any reliance on the IP solver.”, but you still need to complete partial
solutions use Completesol heuristic from SCIP.
In page 8, the first paragraph, you mentioned “the coverage is set to 0.1 and 0.2
due to the difficulty in finding feasible partial solutions when C ¿ 0.2.”. What do
you mean by difficulty? Does it mean that you cannot find any feasible partial
solutions within 30 generated solutions?
Is it possible to generate repeated solutions so that the performance is not improv-
ing? Possible typoes: Page 3 last paragraph: DDIM then
Questions: Combined in the ”Weaknesses”
Flag For Ethics Review: No ethics review needed. Rating: 5: marginally below
the acceptance threshold Confidence: 5: You are absolutely certain about your as-
sessment. You are very familiar with the related work and checked the math/other
details carefully. Code Of Conduct: Yes

5.1 RESPONSE

Thank you for reviewing our work! We try to address your major concerns as follows

Fair comparison and Gurobi The main goal of this paper is to generate good and complete initial
feasible solutions end-to-end using neural network approaches, which is different from both SCIP
and Gurobi solves: they aim for producing optimal solutions using initial feasible solutions as a
starting point by using the branch and bound algorithm with a fixed time window. Hence, we com-
pare the heuristic solutions obtained from SCIP and solutions after completing from Neural Diving.
To further ensure the comparison comprehensive, in the paper, we have added additional results of
the best heuristic solutions from Gurobi, as well as the best heuristic solutions from the PS+Gurobi

10



Rebuttal response at ICLR 2024

algorithm, as suggested by Reviewer wgcj. The results show that the complete solutions gener-
ated by our methods have comparable quality to the best heuristic solutions from Gurobi in the SC
dataset and better objectives in the CF and IS datasets. The partial solutions produced from our
methods, combined with the CompleteSol heuristic, further improve the quality of solutions beyond
all baseline methods. For more details, please refer to table 1 and table 2 in Section 5 in the updated
manuscript (or check Table 1 and Table 2 in our global responses).

Small C and Qualitative analysis: We have to point out some misunderstanding in the reviewer’s
comments. Our algorithms do not require small C to ensure feasibility because they have a high
probability of generating complete solutions. Please refer to the result of IP Guided DDIM in table
1 in section 5, which shows that the complete solutions generated by our method alone have a
feasibility ratio of at least 90%. Besides, in section 5.1, we provide an illustrative example to
demonstrate the distinction between our methods and Neural Diving. The example highlights that IP
Guided DDIM is capable of obtaining the optimal solution during sampling without the reliance of
Solvers, whereas Neural Diving requires the Solver to complete the partial solution. In addition, we
have discovered that randomly sampling a certain portion of variables from the generated solutions,
with completion from the CompleteSol heuristic, further improves solution quality. Moreover, we
have included qualitative analysis of the generatived solutions: we sampled 1000 solutions from a
single instance of the SC and IS datasets and plotted the distribution of corresponding objectives,
see Section 5.3 in the updated manuscript. The majority of solutions (over 95%) from our methods
have better quality than the Gurobi heuristic. Furthermore, when combining our methods with the
CompleteSol heuristic, the distributions of solutions are even closer to the optimal values.

200 300 400 500 600 700 800
Objectives

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Fr
eq

ue
nc

y

Gurobi Heuristic
Optimal
IP Guided DDIM
IP Guided DDIM + CompleteSol

(a) SC instance (minimization).

400 450 500 550 600 650 700
Objectives

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fr
eq

ue
nc

y

Gurobi Heuristic
Optimal
IP Guided DDIM
IP Guided DDIM + CompleteSol

(b) IS instance (maximization).

Figure 2: The objective distribution of 1000 solutions sampled from a single instance.

We try to address your minor concerns as follows:

* [Partial solution] No, our approach does not need CompleteSol to generate complete feasible
solutions.

* [Coverage rate] We empirically observed that for the CF dataset, when the value of C is set to
above 0.2, the feasibility ratio of partial solutions obtained from Neural Diving is consistently low,
less than 40% feasible across 100 instances on average. When C is set to 0.3, none of the generated
solutions were found to be feasible.

* [Repeated solutions] See our qualitative analysis.

11


	Global Responses
	Reviewer CS3k
	Response

	Reviewer jBX3
	Response

	Reviewer wgcj
	Response

	Reviewer MZmK
	Response


