
A Choice of hyperparameters

The Disc algorithm requires the following hyperparameters: (i) The bandwidth for the kernel functions
KA(X

A
·i , X

A
·j ),KB(X

B
·i , X

B
·j ), see Eq. (1), and (ii) The number of significant eigenvectors computed

for GA and GB , denoted dA and dB , respectively.

Self-tuning bandwidth For computing the weight matrices, we use the self-tuning bandwidth from
[47] where the bandwidth for an RBF kernel is given by K(xi, xj) = exp(∥xi − xj∥/σiσj). The
local bandwidth σi for each node is set to the distance to its k-th nearest neighbor, as suggested in
[47] and as is common in practice. The rule of thumb for choosing k is around log(p) where p is the
number of features.

Determining dA and dB The notation dA, dB represent the number of significant eigenvectors
present in the random walk matrices of PA, PB respectively. It is important to note that if dA, dB
are two small, the leading singular vectors of PAQB and PBQA will include elements of the shared
latent space. The results will not change dramatically, however, if the choice of dA, dB is higher than
the optimum. For example, in the experiment in section 4.1 “Identifying newly connected features”,
when we consider dA = dB < 4, the shared latent space of features between 100-150 are also
highlighted in VA, VB which is undesirable. However, we can increase the values of dA, dB up to
around 150, with very little impact on the results. For the MNIST data, we computed differential
features between digits 4 and 9 with various values for dA = dB = d and followed the procedure
mentioned in the paper to compute the classification accuracy. These results are given in Table 2. We
can see that for very small values of d , the accuracy is lower since the classifier is partially trained
on information about shared features. Here as well, there is a wide range of values (between 20-40)
that yield similar results.

dA = dB = d 10 20 30 40 50 60
Test Accuracy 95.2% 96.5 % 96.5% 96.4% 94.7 % 88.5%

Table 2: Impact of the choice of hyperparameter d on the classifier accuracy for pairs of MNIST
digits.

B Proof of lemmas 1 and 2

B.1 Preliminaries

The Davis-Kahan Theorem In our proof, we make a repeated use of the Davis-Kahan theorem.
We apply both the classic theorem, and a useful variant derived in [45].
Theorem 2 ([45], Theorems 1 and 2). Let W be a symmetric matrix with eigenvectors v1, . . . , vn and
corresponding eigenvalues λ1 ≥ λ2, . . . , λn. We denote by W̃ a perturbation of W , with eigenvectors
ṽ1, . . . , ṽn and corresponding eigenvalues λ̃1 ≥ λ̃2, . . . , λ̃n. Let TW , T

W̃
be the projection matrices

onto a subspace spanned by the leading d eigenvectors,

TW =

d∑
i=1

viv
T
i T

W̃
=

d∑
i=1

ṽiṽ
T
i .

In addition, we define δ via,
δ = min

j≤d;i>d
|λ̃i − λj |.

Then,
∥TW − T

W̃
∥ ≤ ∥W − W̃∥/δ.

Alternatively,
∥TW − T

W̃
∥ ≤ 2

√
d∥W − W̃∥/(λk − λk+1).

The first inequality is the classic Davis-Kahan theorem and the second is its variant derived in [45].
The importance of the variant is that it bounds the eigenvector perturbation as a function of the
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eigenvalues of original matrix W , with no dependency on the eigenvalues of the perturbed matrix,
which are unknown in many cases. In addition, the bound on the projection matrices TW − T

W̃
can

be replaced with a bound on the difference in norm between the subspace of eigenvectors, see for
example Corollary 3 in [45]. For a single vector we have

∥ṽi − vi∥ ≤ 23/2∥W − W̃∥
min(λi−1 − λi, λi − λi+1)

. (9)

B.2 Concentration of weight matrix for stochastic block models

Another useful result is the concentration, in spectral norm, of a weight matrix generated according
to the stochastic block model. This result follows directly from Bernstein’s inequality for sums of
independent matrices with bounded norm. This derivation is clearly presented, for example, in [40]

Lemma 3. Let W ∈ Rl×l be a matrix generated by the stochastic block model as in Eq. (8). Then,

∥W − E[W ]∥ = C
√
l with probability 1− exp(−l).

The rank of the expected weight matrix E[W ] is equal to the number of communities in the model.
Assume d communities and let TW and TE[W ] denote the projection matrices onto the leading d
eigenvectors of W and E[W ] respectively. Let λd denote the d-th eigenvalue of E[W ]. Combining
Lemma 3 and Theorem 2 yields the following perturbation bound,

∥TW − TE[W ]∥ ≤ C
√
dl

λd
. (10)

where C is a constant that does not depend on the parameters of the model.

B.3 Auxiliary lemmas

For the lemmas in this subsection we have the following notation. Let WA,WB ∈ R(2l+s)×(2l+s)

be random weight matrices obtained via the stochastic block model as described in Section 3.3.
Let QWA

, QE[WB ] denote two projection matrices onto the complementary subspace of the leading
eigenvectors of WA and E[WB ] respectively.

Lemma 4. We have the following bound on the numerator of Eq. (15).

∥QWA
WBQWA

−QE[WB ]E[WB ]QE[WB ]∥ ≤ C1

√
l + C2

√
s

l
λ3

Proof. We denote by E = QWA
−QE[WB ]. Applying the triangle inequality and the Cauchy-Schwarts

inequality,

∥QWA
WBQWA

−QE[WB ]E[WB ]QE[WB ]∥
= ∥QWA

WB(QE[WB ] + E)− (QWA
− E)E[WB ]QE[WB ]∥ (11)

≤ ∥QWA
(WB − E[WB ])QE[WB ]∥+ ∥EE[WB ]QE[WB ]∥+ ∥QWA

WBE∥.
≤ ∥WB − E[WB ]∥+ ∥E∥∥E[WB ]QE[WB ]∥+ ∥QWA

WB∥∥E∥.

The term ∥E[WB ]QE[WB ]∥ is equal by definition to the third eigenvalue of E[WB ]. We combine
lemmas 3, 5 and 6 to get,

∥QWA
WBQWA

−QE[WB ]E[WB ]QE[WB ]∥ ≤ C
√
l +

√
s

l
λ3 + C2

√
s.

Lemma 5. The error of ∥E∥ = ∥QWA
−QE[WB ]∥ is bounded by,

∥E∥ ≤ C

√
s

l
.
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Proof. The triangle inequality yields,

∥QWA
−QE[WB ]∥ ≤ ∥QWA

−QE[WA]∥+ ∥QE[WA] −QE[WB ]∥
For the first term, we use the results for the standard stochastic block model of sizes l and l + s. The
second (and smallest non-zero) eigenvalue of E[WA] is larger than (p− q) l

2

∥QWA
−QE[WA]∥ ≤ C

√
l

(p− q)l
=

C√
l(p− q)

.

The second term bounds the difference in projection matrices of the subspace spanned by the leading
two eigenvectors of E[WA] and E[WB ]. In the proof of lemma 1 we show that the difference between
the leading eigenvectors of the two matrices is bounded by

√
s
l and that the second eigenvector is

identical. It follows that,

∥QWA
−QE[WB ]∥ ≤ C√

l(p− q)
+

√
s

l
.

Lemma 6. The value of ∥QWA
WB∥ is bounded by,

∥QWA
WB∥ ≤ C

√
l.

Proof. We use the triangle inequality and Cauchy Schwartz to split the term into the following,

∥QWA
WB∥ ≤ ∥QWA

WA∥+ ∥QWA
(WA −WB)∥ ≤ ∥QWA

WA∥+ ∥QWA
(E[WA]− E[WB ])∥

+ ∥QWA
(WB − E[WB ])∥+ ∥QWA

(WA − E[WA])∥ (12)
≤ ∥QWA

WA∥+ ∥WB − E[WB ]∥+ ∥WA − E[WA]∥+ ∥QWA(E[WA]− E[WB ])∥
≤ ∥QWA

WA∥+ ∥WB − E[WB ]∥+ ∥WA − E[WA]∥+ ∥QE[WA](E[WA]− E[WB ])∥
+ ∥E[WA]− E[WB ]∥∥QE[WA] −QWA

∥

By lemma 3 (concentration of the norm of random matrix) The terms ∥WB − E[WB ]∥ and ∥WA −
E[WA]∥ are bounded by C

√
l. The term ∥QWA

WA∥ is equal by definition to the third eigenvalue of
WA. Recall that the third eigenvalue of E[WA] is equal to zero. Thus, by weyl’s inequality, the third
eigenvalue of WA is bounded by

λ3(WA) ≤ ∥WA − E[WA]∥ ≤ C
√
l.

To bound the term ∥QWA(E[WA]− E[WB ])∥ note that the matrix E[WA]− E[WB ] is deterministic,
and equal to

E[WA]− E[WB ] = (p− q)eβe
T
γ

with a norm of (p− q)
√
sl. The operator QWA

removes the average from the vector vβ over the l+ s
last elements. Thus, the norm of ∥QE[WA]eβ∥ is bounded by s/l, which implies that

∥QE[WA](E[WA]− E[WB ])∥ ≤ (p− q)s3/2/l.

Finally, the last term is bounded by C
√
sl

(p−q)
√
l
= C

√
s

p−q , Which is dominated by the first four terms.
Summing up the different terms we have,

∥QWA
WB∥ ≤ C

√
l + (p− q)s3/2/l.

B.4 Proof of lemma 1

Proof. We define eα, eβ and eγ as the binary block indicator vectors where (eα)i = 1 if i ∈ α,
(eβ)i = 1 if i ∈ β and (eγ)i = 1 if i ∈ γ. Let E ∈ R(2l+s)×3 be a concatenation of eα, eβ and eγ .
We denote the pairwise block confusion matrix Θ ∈ [0, 1]3×3 given by,

Θij =

{
p i = j

q i ̸= j.
(13)
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The expected weight matrix of the stochastic block model is equal to,

E[WB ] = EΘET .

We denote by ∆ ∈ R3×3 a diagonal matrix with,

∆11 =
√
l ∆22 =

√
l ∆33 =

√
s.

The expected weight matrix of the stochastic block model is equal to

E[WB ] = EΘET = (E∆−1)(∆Θ∆)(∆−1ET ).

The matrix E∆−1 is orthonormal. The eigenvalues of E[WB ] are thus equal to the eigenvalues of
∆Θ∆ and the corresponding eigenvectors are equal to E∆−1 multiplied by the eigenvectors of ∆Θ∆.
Consider the matrix Z given by,

Zij =

{
(∆Θ∆)ij i, j < 3 or i = j = 3

0 o.w.

The eigenvectors of Z are equal to u1 = [1, 1, 0] and u2 = [1,−1, 0] with corresponding eigenvalues
(p + q)l and (p − q)l respectively. We denote by ũ1, ũ2, ũ3 the eigenvectors of ∆Θ∆. A direct
computation shows that ũ2 = u2 with the same eigenvalue. Applying Theorem 2 yields,

∥u1 − ũ1∥ ≤ 2
√
2∥Z −∆Θ∆∥

2ql
=

4
√
2q
√
ls

2ql
=

√
8s

l
. (14)

Both u1, u3 and ũ1, ũ3 are orthogonal to u2 = ũ2 and thus span the same 2D subspace. This implies

∥ũ3 − u3∥ = ∥u1 − ũ1∥ ≤
√

8s

l
.

It follows directly that vγ , the the third eigenvector of E[WB ] satisfies∥∥∥vγ − 1√
s
eγ

∥∥∥ ≤
√

8s

l
.

Finally, we derive a lower bound on the third eigenvalue of E[WB ]. Recall that the eigenvalues of
E[WB ] are equal to those of ∆Θ∆. For the latter we apply the inequality,

λmin(∆Θ∆) ≥ λmin(∆)λmin(Θ)λmin(∆),

where λmin denotes the smallest eigenvalue. The matrix ∆ is diagonal with values
√
l,
√
l,
√
s and

hence λmin(∆) =
√
s. By direct computation λmin(Θ) ≥ (p− q). Hence,

λ3(E[WB ]) = λmin(∆Θ∆) ≥ s(p− q).

B.5 Proof of Lemma 2

In this lemma we bound the difference between the vector ṽγ and the corresponding eigenvector of
E[WB ], denoted by vγ . Recall the definition of QE[WB ] as the projection matrix onto the complemen-
tary subspace of the two leading eigenvectors of E[WB ]. By definition, vγ is the leading eigenvector
of QE[WB ]E[WB ]QE[WB ]. Thus, our goal is to bound the leading eigenvector of two matrices:

QE[WB ]E[WB ]QE[WB ] and QE[WA]WBQE[WA].

To that end, we apply the Davis-Kahan theorem. Let λγ be the third eigenvector of E[WB ]. The
theorem gives the following bound.

∥vγ − ṽγ∥ ≤ 23/2
∥QE[WB ]E[WB ]QE[WB ] −QE[WA]WBQE[WA]∥

λ3
. (15)

Applying lemma 4 we get:

∥vγ − ṽγ∥ ≤ C

√
l

λ3
+ C2

√
s

l
For the first term, we apply the lower bound λ3 ≥ (p− q)s. This yields,

∥v − ṽ∥ ≤ C1

√
l

s
+ C2

√
s

l

In Section E.6 we provide a numerical validation of Lemma 4 and the bound on λ3.
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C Alternative justification for our approach

A different variation of the graph-cut criterion in (2) is the Normalized cut. Let di denote the degree
of node i, and let vol(α) =

∑
i di be the sum of degrees of a subset of nodes α. The normalized cut

is equal to,

Ncut(α, β) =
∑

i∈α,j∈β

W (i, j)
( 1

vol(α)
+

1

vol(β)

)
.

Similarly to (3), we can define an indicator vector by,

fi =


√

vol(β)
volα i ∈ α√

vol(α)
volβ i ∈ β.

(16)

The normalized cut can be expressed as,

Ncut(α, β) = fTLf.

Here, the indicator vector is orthogonal to D1, where D is a diagonal matrix containing the degrees
{di} in its diagonal and 1 is the all ones vector. In addition, though the norm of f depends on α, the
term fTDf is a constant. Relaxing the requirement in Eq. (16), yields the following optimization
problem for the normalized cut,

min
f

fTLf subject to fTDf = 1.

In our work, we consider two graph Laplacians LA, LB . For simplicity we assume that the degree
matrix of both graphs is identical. Thus, the indicator vector in Eq. (16) is the same for both graphs
and for any partition. The second graph LB yields a second constraint on the optimization problem.

min fTLAf subject to fTDf = 1, fTLBf = γ. (17)

The solution to Eq. (17) satisfies the generalized eigenvector problem

LAf = λ1(D + λ2LB)f.

Multiplying both sides by D−1 yields,

(I + λ2Pb)
−1PAf = λ1f, (18)

where PA, PB are the random walk Laplacian matrices. Note that the term (I + λ2D
−1Lb)

−1 is a
regularized inverse matrix of PB , often used to ovoid an arbitrary increase of noise when computing
the inverse of ill condition matrices. Thus, the expression in (18) is very similar in nature to the
expression in Eq. 5.

D DiSC extension to multiple datasets

The extension of our approach to multiple datasets (i.e. more than two) is straightforward. We
consider M datasets Xm ∈ Rnm×p for m = 1, ..,M . We compute random-walk transition matrices
on the graphs by Pm = D−1

m Wm. Let Um ∈ Rp×dm be a matrix containing the dm leading right
eigenvectors of Pm, and let Q̂m be a projection matrix onto the the complementary subspace of
∪k ̸=mUk, given by

Q̂m = I − Ûm(ÛT
mÛm)−1ÛT

m. (19)

where Ûm = [U1, ..., Um−1, Um+1, ..., UM ]. We then compute the differential vectors of Gm,
denoted by (Vm)i and the corresponding significance level (σm)i using

(Vm)i = argmax
dimE=i

min
v∈S(E)

||PmQ̂mv||2. (20)

(σm)i = ||PmQ̂m(Vm)i||2. (21)
where E is a subspace in Rp and S(E) denotes the unit Euclidean sphere in E. An algorithm
implementing our approach for multiple datasets is given in Alg. 2.
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Algorithm 2 DiSC - Extension to multiple datasets
Input: Datasets Xm ∈ Rnm×p for k = 1 : M

Kernel functions {Km(·, ·)}k=1:M

Hyper parameters {dm}k=1:M

Output: Subsets of differentiating features {Vm}m=1:M

1: Compute graphs Gm on the columns of Xm with weights given by (1).
2: For all the graphs, compute the random walk matrix,

Pm = D−1
m Wm for m = 1, ...,M

3: Calculate {Um}m=1:M , the leading right eigenvectors of {Pm}m=1:M .
4: Compute the projection matrices {Q̂m}m=1:M via Eq. (19).
5: Compute differential vectors {Vm}m=1:M via Eq. (20).
6: Compute significance levels {σm}m=1:M via Eq. (21).
7: optional: Perform k-means over the rows of VA, and VB .

To demonstrate this extension, in the following example we generalize our approach to reveal
differential features given three datasets XA, XB and XC . Some of the features connections are
specific to each dataset and the remaining connections may be present in more than one dataset. Each
dataset is consists of p = 400 features and nA = nB = nC = 10, 000, with feature correlations as
shown in Fig. 6(a). Dataset specific groups of correlated features are highlighted. That is, feature
connections between 301-350, 201-250 and 351-400 are specific to XA, XB and XC , respectively.
Note that each dataset has two groups of correlated features that are dataset specific and the aim is
to identify these two groups of features individually. We apply DiSC with dA = dB = dC = 20.
Differential features are shown in Fig. 6(c). The significance level of the first two differential vectors
is almost similar for all the datasets and then significance level drops, as shown in Fig. 6(b). This
indicates that the first two differential vectors capture the major differences. These vectors, shown in
Fig. 6(b), clearly represent the dataset specific connections and each differential vector identifies a
group of connected features, unlike diffusion maps in Fig. 6(d).

Figure 6: Multiple datasets. a) Correlation matrices. b) Significance levels. c) Differential features.
d) Diffusion maps.

E Additional experimental results

Identifying subsets of connected features in both datasets We generate a toy problem with two
datasets XA and XB with p = 200 features and nA = nB = 10, 000, whose features are correlated
as in Fig. 7(a). There is a subset of correlated features in XA that are divided into two groups in XB

and vice versa. XA has three groups of correlated features with feature indices [1-75],[76-100] and
[101-200]. XB has another three groups of correlated features with feature indices [1-100],[101-
125],[126-200]. Thus, feature indices [1-100] which have strong connectivity in XB are divided
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Figure 7: a) Correlation matrices. b) Significance levels c) Differential features d) Eigenvectors of
diffusion maps.

Figure 8: The differential vectors for XA = Xoct (top row) and XB = Xoct−c (bottom row).

into [1-75] and [76-100] groups in XA. Similarly, feature indices [101-200] which have strong
connectivity in XA are divided into [101-125] and [126-200] groups in XB . The goal is to identify
these sub-divided groups i.e., feature indices [1-75],[76-100] in XA and [101-125],[126-200] in
XB as the differential features. Significant differential vectors and the corresponding significance
values are shown in Fig. 7(c) and (b) respectively. The significance level of the differential vector in
both datasets is roughly similar and the significance level drops after the first vector. Therefore, the
first differential vector is the most significant one. Fig. 7(c) shows that the differential vectors are
clustering the two subsets of differential features.

E.1 Hyperspectral imaging

We provide two additional results of DiSC on the hyperspectral imaging dataset. To illustrate the
feature grouping capability of DiSC, we choose XA = Xoct and XB = Xoct−c, and set the
hyperparameters dA = dB = 20. The top four differential features of XA and XB are shown in
Fig. 8 in the top row and bottom row respectively. (VB)3 captures the tarp and (VB)4 captures the
slight variation in the trees in the background. (VB)1 and (VB)2 captures the change in the grass.
Clearly, there is a grouping effect and each group of differential features are captured individually.
Also, since the entire information in XA is present in XB , VA do not capture any differences.

To evaluate the robustness of our approach to noise, we added Gaussian noise with µ = 0 and
σ = 0.01 to all datasets. We then compute the differential features using DiSC and distance measure
using DM-changing data. We cluster the features using these with k-means clustering and k=3.
Fig. 9 shows the clusters for four pairs of datasets using DiSC (top row) and DM-changing data
(bottom row). DiSC is more robust to noise than DM-changing data. In most months it groups the
pixels belonging to the tarp as a practically separate cluster of differential features, as opposed to
DM-changing data which groups the tarp with other features in the background. Thus, DiSC is more
invariant to imaging conditions and highlights the object that has changed in the scene.

E.2 MNIST pairwise classification

The MNIST dataset [23] consists of images of hand written digits from 0 to 9, each of dimension
28 × 28 pixels. It has 60k training samples and 10k testing samples. We extract the differential
features between each pair of digits with dA = dB = 20. The top 3 differential features from the
two digits are further concatenated columnwise to form a matrix of dimension 784 × 6. For each
pair of digits, we group the features into three clusters using the k-means algorithm applied to this
matrix of concatenated differential features. We compare our approach with Naive Elastic Net (EN),
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Figure 9: Noisy data. Three groups of features (white, red and blue) formed from DiSC (top row)
and Diffusion Maps for changing data (bottom row).

Figure 10: Results for MNIST data. The figure shows the accuracy of various methods for classifying
a pair of digits. For each digit (x-axis) we show the average accuracy over all pairs.

an Elastic Net variation for classification (EN-logistics) and Diffusion Maps applied to the features
of each dataset. Each of these methods yields a vector(s) representing feature importance, which is
then used for feature grouping using k-means with k = 3. As an additional baseline, we group the
features based on the entire data. To have a quantitative metric to measure the performance of these
methods, we first compute the average feature values for each cluster of features and use these to
train a logistic regression classifier between pairs of digits, and measure the classification accuracy
on the test samples.

For each digit, Fig. 10 shows the average of its pairwise accuracy with the other digits, for different
methods. Our method consistently performs better than the other methods, with relatively less
variability in accuracy across different pairs of digits. The baseline model and diffusion maps have
a huge variability, which may be because these are not designed to extract differences between the
digits. In most cases, EN-logistic performs better than diffusion maps because EN-logistic assigns
feature importance based on the classification task. However, it only has a single set of coefficients for
features, whereas our method has a number of differential features with associated significance level.
As illustrated in Fig. 10 for digits 4 and 9, diffusion maps captures the overall structures whereas
DiSC explicitly capture their differences.

E.3 single cell RNA sequencing

Using the splatter simulator [46] we generated a simulated dataset containing the RNA expression
level of p = 500 genes, as measured in 1000 cells, which belong to two different cell types. Out of
the 500 genes, only approximately 100 genes are differential, and thus have a different expression
level for the two cell types.

We visualize the cells in 2D using t-SNE [38]. Figure 11 colors the cells by meta features, that are
equal to weighted sum over the gene expression profile of each cell. In the upper four panels, the
weights are computed by the two leading diffusion vectors of the graphs GA (left two panels) and
GB (right two panels). In the bottom four panels, the weights are equal to the differential vectors VA

(left two panels) and VB (right two panels). Clearly, the differential vectors highlight genes that are
more relevant for differentiating between the two groups.
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Figure 11: 2D t-SNE plots of simulated scRNA-seq generated by splatter [46]. The two clusters
represent two cell types. In all panels cells are colored by meta-features - a weighted sum on the gene
expression, corresponding to diffusion maps on each of the feature graphs separately (top row), or
DiSC vectors (bottom row).

E.4 Differential feature extraction in partially correlated conditions

We empirically analyze the performance of detecting differential features in a non-ideal case, where,
say, correlated components in one dataset are partially correlated in other dataset. In section 4.1,
we compared two ideal settings - features that are highly correlated in one dataset are completely
independent in another. Here, we added an extension to this experiment to test non ideal cases. To
that end, we introduce a parameter p that determines the correlation level. Specifically, we set the
eigenvalues of the covariance to decrease exponentially such that the ith eigenvalue λi is proportional
to exp(−i ∗ p). Thus, if p is close to 0 - the decrease is very small, which results in a covariance
matrix close to identity and thus no correlation. If p is high, then the decrease is fast which results in
high correlation. In the experiment, we kept the covariance of features 151-200 in XA fixed with
p = 1. For these features of XB we changed the values of p between 0 and 1 and computed the
differential vectors and significance level for each of the p values. As expected the significance
level of the differential vectors of XA decreases as p gets close to 1. For intermediate levels, the
significance level is still high. The results are shown in Figure 12.

E.5 Iterative baselines on simulated dataset

We applied the best subset selection approach to the simulated example in section 4.1, Identifying
newly connected features. Here, our proposed methodology was able to identify features 151-200
and 201-250 as the differential features in XA and XB respectively. We applied the iterative feature
selection approach to select the top 100 features that best differentiate XA and XB . For our best
subset selection, as a criterion, we used the accuracy of a nearest neighbor (NN) and logistic regression
classifiers, that take as input the selected features. The accuracy was very poor compared to our group
feature selection method, as shown in figure 13. The figure on the left (right) indicates the selected
features while using NN classifier (logistic regression classifier). The selected features are indicated
by value 1. Clearly, these methods do not highlight the groundtruth 151-250 features as the features
that best distinguish XA and XB .

E.6 Simulations for validating Lemma 2

We ran several simulations to validate the theoretical results obtained in the proof of Lemma 2. In our
simulations, the block size l varied from 500 to 2000. We set s = lα for various values of α between
0.6 and 0.9. Our goal is to obtain numerical approximation to the rate of convergence of several
factors in our proof, as a function of the block size l. Specifically, we estimate the increase rate of the
numerator and denominator of Eq. (15). The denominator is equal to λ3, the third eigenvalue of WB .
By Lemma 1, λ3 is proportional to s = lα. Figure 14 draws λ3 as a function of l on a log scale. The
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Figure 12: a) feature correlation matrix for dataset A. b) feature correlation matrix for dataset B
where p=0 (left), p=0.5 (middle) and p=1 (right). c) Significance of the first differential vector of XA

(blue) and XB (orange). d) First two differential vectors of XA (top row) and XB (bottom row) for
p=0 (left), p=0.5 (middle) and p=1 (right).

theoretical vs. numerical slope value is written over each panel. The numerical value matches the
theoretical value almost perfectly.

Next, we repeat the same experiment to compare the numerical and theoretical increase for the
numerator of Eq. (15). Since λ3 is proportional to s, The theoretical increase of the numerator is
O(l0.5 + l(3α/2−0.5)). Figure 15 shows the numerator vs. l on a log-log scale. Similarly to Figure 14,
for each panel, we write the numerical value of the slope, vs. the theoretical one. As expected, for
low values of α, the dominant term is O(l0.5). For larger values of α, the increase is slightly slower
than expected from theory, implying that the bound on the numerator can be improved.
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Figure 13: Iterative subset selection approach with NN (a) and logistic regression (b) classification
accuracy criterion.

Figure 14: Caption: convergence of the denominator of Eq. (15)

Figure 15: Caption: convergence of the numerator of Eq. (15)
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