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A More details of Multimodal Pipeline1

A.1 Image Encoder2

In this work, we focus on patch features and apply vision transformer based models(ViTs) by [15] as3

our visual encoder backbones. We split input image into a sequence of patches and adopt the linear4

projection embedding of patch features vq , which simplifies the step for fusing with text embedding.5

Following the vision-language models, we train our model with multiple popular ViTs to examine the6

influence of image encoder in OOD detection backpropagation process.7

A.2 Knowledge Retrieval Module8

Given the caption S, we parse it into triplets in the form of T id = ⟨o(c), r(c), o′(c)⟩, where o(c)9

and o′(c) are concepts ∈ Cid ,and r(c) is the relation(s) between them, i.e., 〈man, riding, bicycle〉.10

In our example, the seed triplets(ID triplets) parsed from the caption are ⟨man, riding, bicycle⟩ and11

⟨bicycle, down, street⟩. Then we construct knowledge graph by bridging these triplets with external12

open knowledge including domain and commonsense knowledge graphs, e.g., ConceptNet [13].13

ConceptNet provides a large scale commonsense knowledge with over 21 million edges by 36 type14

of relations connecting 8 million nodes, i.e., IsA, UsedFor, AtLocation. In this study, to complete15

our knowledge graph, we collect concepts by querying from ConceptNet using o(c), o′(c) and reli16

where i ∈ [0, 36] and integrate extracted triplets to seed triplets. For example, given “street" as o(c)17

and “AtLocation" as reli, we will extract the related concepts are located at street to form triple ti.18

Specifically, we query explicit knowledge triplets of o(c) and o′(c) from ConceptNet to form T cn,19

i.e., 〈bicycle, used for, transport〉. Finally, these knowledge triplets ∈ T = T cn ∪ T id are encoded as20

language features, such as lj using a language encoder(e.g., BERT[3]).21

A.3 Multimodal Fusion Encoder22

We consider our proposed OOD detection layer as a plug module to different vision-language23

architectures. In ViLT and CLIP, we sum the visual and textual embeddings with incorporating s(·)24

as in Eq 4 of the main paper, and pass them to a standard L-depth transformer. Considering the BLIP25

backbones, we perform a two-stream transformer pipeline consisting of stacked multiple layers to26

joint vision and knowledge textual representations. For each layer, we have self-attention unit and27

merged cross-attention unit which integrates vision and knowledge semantic information and the28

alignments across them, and a position-wise feed-forward network.29

Moreover, we update the image and language embedding outputs of themselves previous layer as30

queries and concatenate them together as keys and values. To further improve the performance of31

attention function, we use a multi-head attention which is composed by multiple paralleled attention32

function in each head. The feed-forward layer transform the outputs of multi-head attention through33

two fully-connected layers with GeLU activation.34
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B More details of Training objectives35

We mainly introduce our training objectives in our pipeline in this section, including image text36

matching (ITM) and masked language modeling (MLM).37

B.1 Image Text Matching38

To incorporate both the vision and the language representations, we adopt ITM which is widely used39

in previous VL studies. Given an image and text of triple pair ⟨vq, lj⟩, ITM predicts whether they are40

matched as positive examples or not, and it is a binary classification problem with the loss function in41

Equation 5 of the main paper. We assume that each image and ID triple pair ⟨vq, lj⟩, as a positive42

example. The negative pairs are constructed through batch-sampling.43

B.2 Masked Language Modeling44

MLM utilizes vision features and text features of ID concepts and relations to predict the masked45

tokens in the caption sentence S. Following most VL models, we randomly masked some tokens46

in S replacing as ymsk and predict them with their visual and textual features. Since some tokens47

are replaced with “[mask]", the OOD score s(·) is changed based on the random masks. Thus, we48

incorporate s(·) to calculate the predicted probability for a masked token similar to Eq 4 of the main49

paper, and MLM loss is written as50

Lmlm = E(v,l̂)∼DH(ymlm, p(v, l̂)) (1)

where H denotes the cross-entropy, ymlm is a one-hot vector where the ground truth tokens are with51

probabilities of 1, l̂ denotes the masked text.52

C More Experiments53

In this section, we show implement details, more experiments on ablation studies, and more qualitative54

analysis of our proposed VK-OOD models.55

C.1 Implement details56

Datasets. Following the practical settings, we adopt the training strategies of pre-training on more57

data and fine-tuning on downstream tasks. We pre-train on three datasets, including COCO [5],58

Visual Genome [4], and SBU Captions [9] with total of 1M images and 6.8M image-caption pairs, as59

approximate 30% less than the baseline(ViLT). Each caption is parsed to 1 - 3 triplets and augmented60

with 5 external knowledge triplets. For downstream datasts, we use Flickr30k [10] and COCO61

for image-text retrieval, VQAv2 [1] and OKVQA [8] for visual question answering and ablation62

studies, and NLVR2 [14] for visual reasoning. We resize each image to the size of 224 × 224 by63

center-cropping. In the merged attention module, each multimodal encoder layer consists of one64

multi-head self-attention block and one feedforward block, and total number of identical layers is 12.65

Encoder backbones. First, we retrieve explicit knowledge triplets in pre-processing, by using66

ConceptNet Numberbatch1. Next, for ViLT, we use RoBERTa [6] as text encoder and ViT-B/32 by67

[11] as visual encoder. To scale with CLIP, we use CLIP-ViT-B/32 [11] as both backbones. Then, we68

follow the BLIP design with BERT-base as text encoder and ViT-B/16 as visual encoder.69

Network training. We pre-train the model for 10 epochs, and use AdamW optimizer designed by [7]70

with the learning rate of 1e-4 and weight decay of 1e-2. The warm-up ratio of learning rate is 10% of71

the total training steps, and the learning rate was decayed linearly to 0 in the rest steps. Then, we72

finetune our model for 5 epochs with learning rate of 2e-4 for all downstream tasks. In addition, we73

apply RandAugment [2] as augmentation strategy in finetuning steps. We pre-train and fine-tune both74

on 8 NVIDIA RTX 2080Ti GPUs, and inference on 1 NVIDIA RTX 2080Ti GPU.75

1https://github.com/commonsense/conceptnet-numberbatch
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Model
COCO F30k

TR IR TR IR
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

ViLT 61.8 86.2 92.6 41.3 72.0 82.5 81.4 95.6 97.6 61.9 86.8 92.8
UNITER 64.4 87.4 93.1 50.3 78.5 87.2 85.9 97.1 98.8 72.5 92.4 96.1
ALBEF 73.1 91.4 96.0 56.8 81.5 89.2 94.3 99.4 99.8 82.8 96.7 98.4
VinVL 74.6 92.6 96.3 58.1 83.2 90.1 - - - - - -
BLIP 80.6 95.2 97.6 63.1 85.3 91.1 96.6 99.8 100 87.2 97.5 98.8

Ours(ViLT) 73.8 91.4 96 52.4 81.3 90.1 85.9 97.1 97.6 80.1 94.6 96.7
Ours(CLIP) 69.8 87.5 93.6 48.8 78.5 82.5 92.3 98.4 99.5 79.8 92.1 96.4
Ours(BLIP) 80.7 95.1 96.8 62.9 84.8 92.8 96.4 99.6 99.8 86.3 97.1 98.8

Table 1: Detailed results of image-text retrieval tasks on COCO and Flickr30k datasets. Our model
with different backbones outperforms other models and achieve the best and second-best results.

Model Objectives VQA Flickr30k
test-dev TR@1 IR@1

ViLT ITM 70.6 82.1 65.6
ViLT MLM 72.8 - -
ViLT ITM+MLM 74.2 88.1 74.1
VK-OOD ITM 72.1 84.5 69.8
VK-OOD MLM 73.4 - -
VK-OOD ITM+MLM 74.8 89.0 77.2

Table 2: Ablation study experiment results of VK-OOD model. ViLT is our implementation without
explicit knowledge and OOD detection layer. ITM is image-text matching, and MLM is masked
language modeling. Results on VQA are on test-dev set. Both downstream results are in zero-shot
settings. The bold values mean the best model in the table. Comparing with the baselines, our model
with OOD detection layer outperforms on all objectives with two datasets. Training on combinations
of objectives improves model performance.

C.2 More experimental results76

Detailed results of image-text retrieval tasks. We provided detailed results on COCO and F30K77

datasets, as shown in Table 1. The model of OOD detection layer with ViLT has significant improve-78

ments in image retrieval and text retrieval tasks. Overall, our model achieved the best and second-best79

results on both datasets comparing to other SOTA models.80

Training Objectives with OOD deteation Layer. To evaluate our proposed model, we perform81

more ablations with the default training settings of the baseline and our model mentioned in Section82

3.3 of the main paper. We consider different combinations of train objectives and evaluate in zero-83

shot settings. We observe our model performance on training objectives. Note that, ViLT is our84

implementation with the same subset of training datasets. IOur raw results are presented in Table85

2. We train on pre-train datasets with Litm in Equation 7, Lmlm in Equation 8 and L in Equation 9.86

The results in Table 2 show that training on image-text matching and masked language modeling is87

beneficial for both downstream tasks comparing to the baseline model, especially, there is promising88

improvements in image retrieval and text retrieval tasks. Thus, it is beneficial to train on both ITM89

and MLM for filtering outlier concepts and improve performance on downstream tasks.90

C.3 More Qualitative Analysis91

As the feature maps shown in Fig 2 of the main paper, our model result demonstrates more clusters92

can be identified over the multimodal features extracted by VK-OOD. Thus, it illustrates that our93

model is able to detect outliers and cluster images closest to the corresponding µk with image and94

explicit knowledge triplets. Figure 1a and Figure 1b are examples that the nearest images in each95

cluster.96

Figure 2 and Figure 3 show more qualitative examples of our multimodal alignment results of our97

models. We visualize the multimodal attention maps on images corresponding to concept triplets98

using Grad-cam designed by [12]. Following our model architecture, the caption is parsed and99

integrated with knowledge triplets. The right bottom subfigure in our model in Figure 2 and Figure 3100
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(a) example cluster 1 (b) example cluster 2

Figure 1: Example images in the clusters on COCO val set.

Figure 2: Visualization of the attention maps of image feature vq and language features lj of external
knowledge alignment. The results are from our VKOOD-ViLT model. The original sample caption is
“a giraffe and zebras mingle as cars drive out of an animal park". We highlight areas in the example
image corresponding to different knowledge triplets. Comparing with the attention maps of the
baseline model, our model learns object shapes such as zebras and localize those objects correctly.

are the multimodal alignment of original captions from MSCOCO [5] dataset. Other subfigures show101

the alignments of extracted triplets on the image.102

Interestingly, we find that our model is able to capture concept “plug” as a part of “refrigerator” or103

“microwave” in Figure 2. The heatmap area of “plug” and “microwave” in Figure 2 clearly suggest104

that our model has the capability to exploit different relevance between visual and corresponding105

conceptual text features. By contrast, the baseline results have not shown the relation between106

plug and microwave. In Figure 3, it shows that we detect three zebras comparing with baseline,107

but counting cars is not performing well as we expected – since the size (or scale) of cars is not108

sufficiently high, and moreover some parts of them are occluded.109
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Figure 3: Visualization of the attention maps of image and knowledge concept triplets alignment.
The results are from our VKOOD-ViLT model. The original sample caption is “a metallic refrigerator
freezer next to a microwave oven". We highlight areas in the example image corresponding to
different knowledge triplets. Comparing with the attention maps of the baseline model, our model
learns the relations between the parts (i.e., plug) of the objects correctly.
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