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A Neural Action Policy

A (ReLU) feed-forward neural network over S is a (real-
valued) function

fr: S = R s fal... f2(f1(s))),

where d denotes the number of layers in the NN, d; for i €
{1,..., d} denotes the size of layer i, and

e f1: S = RE s (s(ol),...,s(vh))
is the input layer function, where v/ € V for j €
{1,..., d1} denotes the state variable associated with in-
put neuron j.

o fi:Ré-1 5 RE Vs ReLU(W; -V + By),
fori € {2,...,d — 1}, is the function of hidden layer i.
W; is the weight matrix of layer i, i.e., (W;); 1 denotes
the weight of the output of neuron £ in layer « — 1 to the
input of neuron j in layer 7. B; is the bias vector, i.e.,
(B;); denotes the bias of neuron j in layer ¢.

o fg:RY%-1 5 R% Vs Wy -V + By is the function of
output layer d. Here, no ReL.U activation is applied.

Given a neural network f, a neural action policy is a
function

1
Jfx(s)

fr:S—= L s— argmax

{leL]|30€0;: s=o0}

where f. denotes the output of f, associated with [ (abbre-
viated 7r; in the main text).

B Abstract Transition Problem in SMT

In this section, we outline the SMT encoding of the abstract
transition problem, i.e., given operator o = (I, g,u)' does
there exist a concrete state s € [sp] such that s |= o, s[o] €
[s] and 7(s) = [. Importantly, our encoding differs from
the encoding used by VEA only in the label selection of the
policy.

Each state variable v € V, occurs in an unprimed form;
representing the state variable in the source state and a
primed form v’ representing the updated state variable in the
successor state.

'VEA apply SMT checks on a per operator basis and iterate
operators as part of their search algorithm (Vinzent, Steinmetz, and
Hoffmann 2022).

To encode the neural network structure we introduce real-
valued auxiliaries variables:

{og lie{l,....d},je{l,...,di}}

and
(w9 ie{2,....,d—1},j€{1,...,d}}

corresponding to neuron inputs and outputs. More precisely,
v; ; corresponds to the neuron output and v* to the input of
hidden layer neurons. For ¢ = 1, v; ; is syntactic sugar for
the respective state variable v in the input layer.

The abstract transition problem is then encoded by the
conjunction of the constraints:

() lo, <wvandv < up, as well as lo, < v'and v’ < up,
foreach v € V, where lo,, denotes the lower bound and
up,, denotes the upper bound of state variable v.

(i) pif sp(p) = 1 and —p if sp(p) = 0 as well as
p'if s (p) = 1 and —p’ if s’ (p) =0
for each p in P where p’ denotes the predicate in its
primed form, i.e., with primed variables.

(iif) /\ie{1,...,m} 9o
(iv) v' = u(v) foreachv € V

o di—1
) v = 3 (Wi)jk - vi1k + (Bi); and
k=1
v;,; = ReLU (v*9)
for each hidden layer i« € {2,...,d — 1} and each
neuron j € {1,...,d;},
dq_1

Vi) va; = >, (Wa)jk - va—1,x + (Bq); for the output
k=1
layer d and each neuron j € {1,...,dg},

(vii) A (Ud>j>vd>kvﬁ V Aie{1,...,m}92>

rec\{l} 0cO,
where j € {1,..., ds} is the output neuron associated
withland k € {1,...,ds} \ {4} is the output neuron
associated with I’ (abbreviated 7; and 7 in the main
text).

(i) constrains the variables to respect the corresponding
state variable domains, such that every satisfying assignment
to the SMT encoding corresponds to a valid state pair s, s’
(i) then encodes s € [sp] and s’ € [s5]. (iii) encodes s |= o,
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and (iv) encodes s’ = s[o]. w(s) = [ is encoded by (v — vi,
neural network) and (vii, label selection) — applicability of
label [ itself is entailed by s = o (iii).

Note that the presented encoding is specific to the NN-
tailored solver Marabou (Katz et al. 2019) in that it as-
sumes a special construct for ReLU constraints. Further-
more, Marabou only supports real-valued variables, i.e.,
integer state variables are continuously-relaxed. VEA es-
tablish integer support via a branch & bound loop around
Marabou (Vinzent, Steinmetz, and Hoffmann 2022).
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