
Neural Action Policy Safety Verification: Applicablity Filtering
Technical Appendix

Primary Keywords: None

A Neural Action Policy
A (ReLU) feed-forward neural network over S is a (real-
valued) function

fπ : S → Rdd , s 7→ fd(. . . f2(f1(s))),

where d denotes the number of layers in the NN, di for i ∈
{1, . . . , d} denotes the size of layer i, and

• f1 : S → Rd1 , s 7→ (s(v1), . . . , s(vd1))
is the input layer function, where vj ∈ V for j ∈5

{1, . . . , d1} denotes the state variable associated with in-
put neuron j.

• fi : Rdi−1 → Rdi , V 7→ ReLU (Wi · V +Bi),
for i ∈ {2, . . . , d − 1}, is the function of hidden layer i.
Wi is the weight matrix of layer i, i.e., (Wi)j,k denotes10

the weight of the output of neuron k in layer i− 1 to the
input of neuron j in layer i. Bi is the bias vector, i.e.,
(Bi)j denotes the bias of neuron j in layer i.

• fd : Rdd−1 → Rdd , V 7→ Wd · V +Bd is the function of
output layer d . Here, no ReLU activation is applied.15

Given a neural network fπ , a neural action policy is a
function

fL : S → L, s 7→ argmax
{l∈L|∃o∈Ol : s|=o}

f l
π(s)

where f l
π denotes the output of fπ associated with l (abbre-

viated πl in the main text).

B Abstract Transition Problem in SMT
In this section, we outline the SMT encoding of the abstract
transition problem, i.e., given operator o = (l, g, u)1 does20

there exist a concrete state s ∈ [sP ] such that s |= o, sJoK ∈
[s′P ] and π(s) = l. Importantly, our encoding differs from
the encoding used by VEA only in the label selection of the
policy.

Each state variable v ∈ V , occurs in an unprimed form;25

representing the state variable in the source state and a
primed form v′ representing the updated state variable in the
successor state.

1VEA apply SMT checks on a per operator basis and iterate
operators as part of their search algorithm (Vinzent, Steinmetz, and
Hoffmann 2022).

To encode the neural network structure we introduce real-
valued auxiliaries variables:

{vi,j | i ∈ {1, . . . , d}, j ∈ {1, . . . , di}}
and

{v i,j | i ∈ {2, . . . , d − 1}, j ∈ {1, . . . , di}}
corresponding to neuron inputs and outputs. More precisely,
vi,j corresponds to the neuron output and v i,j to the input of 30

hidden layer neurons. For i = 1, vi,j is syntactic sugar for
the respective state variable vj in the input layer.

The abstract transition problem is then encoded by the
conjunction of the constraints:

(i) lov ≤ v and v ≤ upv as well as lov ≤ v′ and v′ ≤ upv 35

for each v ∈ V , where lov denotes the lower bound and
upv denotes the upper bound of state variable v.

(ii) p if sP(p) = 1 and ¬p if sP(p) = 0 as well as
p′ if s′P(p) = 1 and ¬p′ if s′P(p) = 0
for each p in P where p′ denotes the predicate in its 40

primed form, i.e., with primed variables.
(iii)

∧
i∈{1,...,m} g

i
o

(iv) v′ = u(v) for each v ∈ V

(v) v i,j =
di−1∑
k=1

(Wi)j,k · vi−1,k + (Bi)j and

vi,j = ReLU (v i,j) 45

for each hidden layer i ∈ {2, . . . , d − 1} and each
neuron j ∈ {1, . . . , di},

(vi) vd,j =
dd−1∑
k=1

(Wd)j,k · vd−1,k + (Bd)j for the output

layer d and each neuron j ∈ {1, . . . , dd},

(vii)
∧

l′∈L\{l}

(
vd,j > vd,k ∨ ¬

∨
o∈Ol′

∧
i∈{1,...,m} g

i
o

)
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where j ∈ {1, . . . , dd} is the output neuron associated
with l and k ∈ {1, . . . , dd} \ {j} is the output neuron
associated with l′ (abbreviated πl and πl′ in the main
text).

(i) constrains the variables to respect the corresponding 55

state variable domains, such that every satisfying assignment
to the SMT encoding corresponds to a valid state pair s, s′.
(ii) then encodes s ∈ [sP ] and s′ ∈ [s′P ]. (iii) encodes s |= o,



and (iv) encodes s′ = sJoK. π(s) = l is encoded by (v – vi,
neural network) and (vii, label selection) – applicability of60

label l itself is entailed by s |= o (iii).
Note that the presented encoding is specific to the NN-

tailored solver Marabou (Katz et al. 2019) in that it as-
sumes a special construct for ReLU constraints. Further-
more, Marabou only supports real-valued variables, i.e.,65

integer state variables are continuously-relaxed. VEA es-
tablish integer support via a branch & bound loop around
Marabou (Vinzent, Steinmetz, and Hoffmann 2022).
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