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1 Transformers and Kernel Memory Networks Representations

From a representational perspective, (Iatropoulos et al., 2022) demonstrates that the formulations
in Eqs.(1-2) in the main manuscript are special instances of Kernel Memory Networks (KMN), i.e.
kernel machines from statistical learning, that train each individual neuron in the MHN to perform
either kernel classification or interpolation (regression) with a minimum weight norm. Under this
specialization, the update rule for an auto-associative memory framework (such as the classical
Hopfield or Modern Hopfield Networks) can be expressed in a form analogous to Eq. (2) in the main
manuscript:

s(t+1) = ΞK†K(Ξ, s(t)), (1)

where the kernel function K(·, ·) : RK ×RK → R is defined pairwise between two input vectors
in K-dimensional space, and K = K(Ξ,Ξ) = ϕ(Ξ)

T
ϕ(Ξ) is the kernel matrix associated with the

feature transformation ϕ(·) : RK → RD to a D dimensional vector space. K† is its Moore-Penrose
pseudoinverse, where K† = K−1 if ϕ(Ξ) is full column rank.

This framework is applicable under the restriction that K(·, ·) is a Mercer kernel (symmetric-positive
definite), admits a reproducing bilinear form where the transformation Φ(·) is a reproducing kernel
hilbert space (RKHS). Under these restrictions, (Iatropoulos et al., 2022) lays the groundwork to
analyze the storage capacity and corresponding recovery guarantees for query patterns (i.e. proxim-
ity to attractor basins) and their relation to the properties of the kernel function and the optimization
procedure. In the case of continuous valued memories (non-binary case), a standard choice of a
radial translation-invariant exponential kernel (with infinite dimensional basis) with a fixed spatial
scale r and temperature parameter α.

K(α,r)(x,y) = exp
[
−

(1
r
||x− y||2

)α]
(2)

The KMN optimization is expected to be well-posed, convex, and is expected to provide global
convergence to one of the stored memories (i.e. no meta-stable outputs) in theory.
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1.1 Relating Transformer and HEN Updates to the KMN formulation:

Under the KMN formulation, the MHN form involves a kernel that is not symmetric positive definite,
as the energy objective is not a convex optimization problem (Iatropoulos et al., 2022; Wright &
Gonzalez, 2021). Nevertheless, it permits a bilinear reproducing form for the kernel K(·, ·), where
the feature transformation maps {ΦX (·) : X → FX (·),ΦY(·) : Y → FY} map input elements from
vector spaces {x ∈ X ,y ∈ Y} to the D-dimensional Banach spaces {ΦX (·) ∈ FX ,ΦY(·) ∈ FY},
characterized by linear manifold functional forms {fΦX (x;WQ) ∈ BX ,gΦY (y;WK) ∈ BY}. The
mathematical expression for the transformer kernel is:

K(x,y) = ⟨ΦX (x),ΦY(y)⟩FX×FY
= ⟨fΦX (x),gΦY(y)⟩BX×BY

= exp
[ 1√

dk
(WQx)

T (WKy)
]

From the representational perspective, it is sufficient to know the bilinear (reproducing) form of the
kernel above in the MHN updates without requiring an explicit computation of {ΦX (x),ΦY(y)}
or sampling from the Banach spaces, FX : WQx,FY : WKy, or estimation of the manifold
functional forms {BX ,BY}. Mathematically, these constructions can be formalized as:

BX = {fv : X → R : fv(x) = ⟨ΦX (x),v⟩FX×FY
;v ∈ FY ,x ∈ X}

=

{
f(WKy)(x) = exp

[ (WQx)
TWKy√
dk

]
;WKy ∈ FY ,x ∈ X

}
BY = {gu : Y → R : gu(y) = ⟨u,ΦY(y)⟩FX×FY

;u ∈ FX ,y ∈ Y}

=

{
g(WQx)(y) = exp

[ (WQx)
TWKy√
dk

]
;WQx ∈ FX ,y ∈ Y

}
By extension, the kernel form for HEN can be formalized as follows:

KHEN(x,y) = exp
[
β(Φenc(x))

T (Φenc(y))
]

BX =

{
f(Φenc(y))(Φenc(x)) = exp

[
β(Φenc(x))

TΦenc(y)
]
;Φenc(y) ∈ FY ,x ∈ X

}

BY =

{
g(Φenc(x))(Φenc(y)) = exp

[
β(Φenc(x))

TΦenc(y)
]
;Φenc(x) ∈ FX ,y ∈ Y

}

1.2 Eq. (2) is a special case of the Radial Translation-Invariant Exponential Kernel in Eq. (4)

According to the formulation in (Iatropoulos et al., 2022), for continuous valued memories, the
suggested form of kernel is a radial translation-invariant exponential kernel with a fixed spatial scale
r and parameter α is as follows:

K(α,r)(x,y) = exp
[
−

(1
r
||x− y||2

)α]
= exp

[
−
(1
r
||x− y||22

)α
2
]

= exp
[
−

(1
r
||x||22 + ||y||22 − 2xTy

)α
2
]

= exp
[
−
(1
r
[||x||22 + ||y||22]

)α
2
]
· exp

[(2
r
· 1
2
· 2xTy

)α
2
]

Substituting α = 2, β =
2

r
=

1√
dk

and ||x||2 = ||y||2 = 1

KTrans(x,y) = C · exp
[ 1√

dk
(IKx)T (IKy)

]
= C · exp

[
βxTy

]
where C is a constant. This is the form of the transformer kernel corresponding to the update in
Eq. (2) and energy functional in Eq. (1) of the main manuscript. We note that spherical normalization
was also used in (Ramsauer et al., 2020; Krotov & Hopfield, 2020; Wu et al., 2024) as a mechanism
to control the dynamics of the updates to mitigate metastable solutions.
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2 Ablations on β for experiments on choices of fsim(·, ·) and Neural
Representation

Table 1: Structural Similarity Index Measure for HEN for increasing β values. This table presents
the 1-SSIM results (lower is better) for a set of N=6000 images from the MS-COCO dataset. Every
row represents the similarity metrics (Dot or ℓ2) for five different types of pre-trained encoder-
decoder architectures (kl8, vqf8, klf16, vqf16, dVAE). The Image column represents the Modern
Hopfield Network formulation, the established baseline model in this comparison. We see that as
for increasing temperature values of β, the recovery stabilizes and produces near exact recoveries
for all sets of the trained encoder-decoder architectures. In comparison, we see that the image-based
Modern Hopfield network fails to handle a large number of images in memory.

β Dot-klf8 Dot-vqf8 Dot-klf16 Dot-vqf16 Dot-Image Dot-dVAE L2-klf8 L2-vqf8 L2-klf16 L2-vqf16 L2-Image L2-dVAE
500 0.0003 0.0213 0.0043 0.0191 0.9089 0.0000 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
480 0.0003 0.0213 0.0043 0.0191 0.9089 0.0000 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
460 0.0003 0.0213 0.0043 0.0191 0.9089 0.0000 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
440 0.0003 0.0213 0.0043 0.0191 0.9089 0.0000 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
420 0.0003 0.0213 0.0043 0.0191 0.9089 0.0000 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
400 0.0003 0.0213 0.0043 0.0191 0.9089 0.0000 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
380 0.0003 0.0213 0.0043 0.0191 0.9089 0.0000 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
360 0.0003 0.0213 0.0043 0.0191 0.9089 0.0000 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
340 0.0003 0.0213 0.0043 0.0191 0.9089 0.0000 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
320 0.0003 0.0213 0.0043 0.0191 0.9089 0.0000 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
300 0.0003 0.0213 0.0043 0.0191 0.9089 0.0000 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
280 0.0003 0.0213 0.0043 0.0191 0.9089 0.0000 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
260 0.0003 0.0213 0.0043 0.0191 0.9089 0.0000 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
240 0.0003 0.0213 0.0043 0.0191 0.9090 0.0000 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
220 0.0003 0.0213 0.0043 0.0191 0.9090 0.0000 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
200 0.0003 0.0213 0.0043 0.0191 0.9499 0.0000 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
180 0.0003 0.0213 0.0043 0.0191 0.9503 0.0000 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
160 0.0003 0.0213 0.0043 0.0191 0.9506 0.0000 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
140 0.0003 0.0213 0.0043 0.0191 0.9514 0.0000 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
120 0.0003 0.0213 0.0043 0.0191 0.9521 0.0000 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
100 0.0003 0.0213 0.6657 0.0191 0.9518 0.0000 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
80 0.0003 0.0213 0.6625 0.0191 0.9517 0.0000 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
60 0.0003 0.0213 0.6617 0.0191 0.9501 0.7911 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
40 0.0002 0.0213 0.6644 0.0191 0.9481 0.7629 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000
20 0.6635 0.0213 0.6665 0.7104 0.9464 0.7828 0.1840 0.0523 0.2315 0.0819 0.8815 0.0000

Table 2: Mean Squared Error (MSE) Measure for HEN for increasing β values. This table presents
the MSE results (lower is better) for a set of N=6000 images from the MS-COCO dataset. Every
row represents the similarity metrics (Dot or ℓ2) for five different types of pre-trained encoder-
decoder architectures (kl8, vqf8, klf16, vqf16, dVAE). The Image column represents the Modern
Hopfield Network formulation, the established baseline model in this comparison. We see that as
for increasing temperature values of β, the recovery stabilizes and produces near exact recoveries
for all sets of the trained encoder-decoder architectures. In comparison, we see that the image-based
Modern Hopfield network fails to handle a large number of images in memory.

β Dot-klf8 Dot-vqf8 Dot-klf16 Dot-vqf16 Dot-Image Dot-dVAE L2-klf8 L2-vqf8 L2-klf16 L2-vqf16 L2-Image L2-dVAE
500 0.0000 0.0005 0.0001 0.0003 0.1788 0.0000 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
480 0.0000 0.0005 0.0001 0.0003 0.1788 0.0000 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
460 0.0000 0.0005 0.0001 0.0003 0.1788 0.0000 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
440 0.0000 0.0005 0.0001 0.0003 0.1788 0.0000 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
420 0.0000 0.0005 0.0001 0.0003 0.1788 0.0000 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
400 0.0000 0.0005 0.0001 0.0003 0.1788 0.0000 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
380 0.0000 0.0005 0.0001 0.0003 0.1788 0.0000 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
360 0.0000 0.0005 0.0001 0.0003 0.1788 0.0000 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
340 0.0000 0.0005 0.0001 0.0003 0.1788 0.0000 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
320 0.0000 0.0005 0.0001 0.0003 0.1788 0.0000 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
300 0.0000 0.0005 0.0001 0.0003 0.1788 0.0000 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
280 0.0000 0.0005 0.0001 0.0003 0.1787 0.0000 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
260 0.0000 0.0005 0.0001 0.0003 0.1787 0.0000 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
240 0.0000 0.0005 0.0001 0.0003 0.1787 0.0000 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
220 0.0000 0.0005 0.0001 0.0003 0.1786 0.0000 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
200 0.0000 0.0005 0.0001 0.0003 0.0913 0.0000 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
180 0.0000 0.0005 0.0001 0.0003 0.0899 0.0000 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
160 0.0000 0.0005 0.0001 0.0003 0.0833 0.0000 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
140 0.0000 0.0005 0.0001 0.0003 0.0824 0.0000 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
120 0.0000 0.0005 0.0001 0.0003 0.0815 0.0000 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
100 0.0000 0.0005 0.1112 0.0003 0.0758 0.0000 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
80 0.0000 0.0005 0.1082 0.0003 0.0746 0.0000 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
60 0.0000 0.0005 0.1074 0.0003 0.0698 0.4034 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
40 0.0000 0.0005 0.1070 0.0003 0.0659 0.3819 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000
20 0.1434 0.0005 0.0852 0.1447 0.0635 0.3821 0.0280 0.0057 0.0341 0.0105 0.0906 0.0000

In this experiment, we examine the impact of the β parameter on the performance of HEN in the
context of image recovery, the choice of the similarity function fsim(·, ·) in the energy functional.
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We explore the influence of various pre-trained neural encoder-decoder architectures on the HEN’s
ability to converge to stable states and achieve accurate recovery. As in the main manuscript, we
evaluated the performance using the structural similarity index measure (1-SSIM) and the Mean
squared error (MSE) to assess the image recovery. The experiment was conducted using the MS-
COCO dataset subset of 6000 images. This dataset was selected for its diversity and complexity,
providing a robust challenge to the storage and recovery capabilities of the Modern Hopfield net-
works and Hopfield Encoded Networks.

The β value was varied from 20 − 500 in increments of 20. This range was chosen to cover a
broad range of the dynamics within the MHN. For the similarity function fsim(·, ·) , we examine the
ℓ2 distance and the dot product. The choices for pre-trained encoder-decoder architectures are the
Discrete Variational Autoencoder (D-VAE) and variants of VQ-K8 and VQ-F16. We also compared
the performance of the Hopfield encoded networks with that of image-based Modern Hopfield net-
works that did not utilize any pre-trained encoder-decoder systems. This comparison sheds light on
the benefits of incorporating complex encoding mechanisms into Hopfield networks. To maintain
consistency in representation, we downsampled the images to a resolution of 28 × 28 × 3.

Tables 1, 2 highlight the critical role of β in tuning the network’s dynamics, with optimal perfor-
mance observed beyond specific β thresholds. The use of encoded neural representations is stable
across a much larger range of βs. In conjunction with the results on separability of encodings and the
results in Section 2.4.1 of main manuscript, this experiment highlights the benefits of leveraging en-
coded neural representations for addressing practical storage considerations in the MHN framework
over alternatives such as kernel based approaches.

In exploring the intricate dynamics of HEN, our investigation does not extend to a universal asser-
tion that any combination of time step Tf , update rule/energy function, and well-trained encoder-
decoder methods will provide good convergence for all datasets or patterns. The behavior of the
update dynamics tends to stabilize after a certain number of iterations (Tf ), beyond which further
improvements are marginal. In our experiments, we found that after Tf = 100 iterations, the up-
dates plateau, suggesting that the optimal value of Tf is both dataset-dependent and influenced by
factors like data dimensionality and pattern separability.

Additionally, delaying the onset of metastable states is an important feature of our proposed ap-
proach, as it enables the system to store more content within encoded representations, potentially
leading to a higher memory-capacity ceiling. However, this does not imply that the method is en-
tirely free from metastable states or that it will always guarantee convergence for all possible input
distributions.

Certain real-world datasets with high noise, irregular structure, or non-separable patterns may still
present challenges, even for our enhanced architecture. Future work could involve extending the
analysis of metastable state dynamics across different datasets and exploring further variations of
update rules or encoding strategies to improve convergence guarantees across a wider range of prac-
tical applications.

3 Quantifying Meta-Stable States

Recall that SSIM and MSE metrics used in Fig. 2 in the main manuscript quantify the error in the
recovery of the stored image content (Fig. 1, column 4). By definition, meta-stable states correspond
to degenerate solutions (among entities in the recovered content) in the energy landscape. To quan-
tify the prevalence of these meta-stable states as a function of the dynamics of the HEN, we report
an additional proxy for identifying such behavior.

Specifically, we report the relative rank (RR = RŜ/RΞ̂) of the recovered state matrix (Ŝ =

[ŝ1, . . . , ŝN ] ) to that of the memory bank (Ξ̂ = [ξ̂1, . . . , ξ̂N ]) for various values of β during the
evolution of the dynamics in Eq. (2). In Fig. 1, we plot the RR on the y axis against the number of
iterations on the x axis.

RR < 1 upon convergence indicates degeneracy in the recovered solutions. Each dashed line
corresponds to different values of the temperature β. For this illustration, we use the dVAE encoder
with the dot product formulation of the HEN and 6000 images from the MS-COCO dataset (i.e.
the same setup as the green line in Fig. 2 of the main manuscript). We observe very consistent
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Figure 1: Tracking the evolution of meta-stable states during the dynamics of the HEN. We plot
the relative rank (RR = RŜ/RΞ̂) of the recovered state matrix (Ŝ = [ŝ1, . . . , ŝN ] ) to that of the
memory bank (Ξ̂ = [ξ̂1, . . . , ξ̂N ]). Lower matrix rank signals the presence of meta-stable states. For
a judiciously chosen β, the HEN provides near-perfect recall for this collection of images

trends with those seen in the 1-SSIM and MSE metrics, where near-zero values of these metrics
signal no degeneracy (no meta-stable states), while increasing non-zero values indicate imperfect
retrieval due to the presence of meta-stable states (such as with row 1, column 4 of Fig. 2). Early
in the optimization (t < 20 iterations), the {ŝ(t)i } contain information corresponding to encoding
the masked image signal. These vectors are distinct across input examples and also exhibit some
baseline (non-zero) correlation with the stored memories {ξ̂i} . As the dynamics evolve, we observe
that for low values of β = [20, 50], the dynamics destabilize to low-rank solutions, collapsing the
retrieval fidelity. For sufficiently high β = [80, 150], the dynamics stabilize over a period of time,
leading to near-perfect recovery ( consistent with 1− SSIM = MSE = 0)

Finally, the work of (Wu et al., 2024) leverages the equivalence between MHNs, kernel meth-
ods, and transformers to directly address the issue of separability of patterns under arbitrary data-
distributions. Their framework introduces a second separation maximization objective that is added
to the energy minimization objective (i.e. Eq.(1) in the main manuscript). The separation objective
is based on a kernel transformation parameterized as a learnable linear kernel or deep network (i.e.
encoder) and radial kernel. Thus, pattern retrieval is a two step process that interleaves a stochastic
optimization of the encoding parameters with the retrieval dynamics of the Modern Hopfield Net-
work. Here, in each step, local convergence is achieved either as a mini-batch or full batch gradient
descent routine. This strategy was shown to provide improvements over the traditional MHNs and
their variants upto dataset sizes of 500 for image retrieval. In contrast, our framework fixes the en-
coding transformation as defined by a pre-trained VAE. As the VAE parameters are frozen apriori,
this avoids an expensive outer optimization loop, in turn providing expedient retrieval for datasets
of relatively larger size (15000 examples) as well as support hetero-association.

4 Handling cross-stimuli using pixelized language-image association

To test language-image associations, we utilized the unique set of captions associated with each
image in the COCO dataset. Specifically, we employed Python’s hashlib.sha256(.) function
to hash the captions generating a unique ID text string to associate with the image. Initially, we
created a memory bank {ξ̂Tn } by converting the hashed captions into pixelized text representations
using a generic text-to-pixel function. Subsequently, both the pixelized text and the corresponding
images were processed through the same encoder. The resulting vectors were concatenated to form
the elements of the memory bank {ξ̂n = [ξ̂In; ξ̂

T
n ]}.

During the query phase, we supplied only the pixelized text part of the encoded vector, setting the
image component to zero. The Hopfield network iteratively updated the image encoding vector,
which was passed through the corresponding decoder to reconstruct the image. Fig. 2 illustrates the

5



Table 3: The table displays the performance of various encoded cross-modal HEN compared to
image-based Modern Hopfield networks as the memory bank {ξ̂n} increases. All of the different
encoders performed well. The first line shows the CLIP-encoded cross-modal representations, while
the following lines present pixelized text-encoded representations for increasing image sizes.

NUM IMAGES
1-SSIM, MSE vqf8 vqf16 Image D-VAE

6000-CLIP 0.016, 0.000 0.024, 0.000 0.681, 0.118 0.000, 0.000
6000 0.016, 0.000 0.024, 0.000 0.952, 0.214 0.000, 0.000
8000 0.016, 0.000 0.023, 0.000 0.952, 0.215 0.000, 0.000

10000 0.015, 0.000 0.024, 0.000 0.952, 0.215 0.000, 0.000
15000 0.015, 0.000 0.024, 0.000 0.952, 0.215 0.000, 0.000

network’s progression in reconstructing the image based on the pixelized text input. The recurrent
updates in the HEN iteratively reconstructed the full image.

As illustrated in Figs. 2, the HEN network is able to recall perfectly using pixelized cross-stimuli
associations. Table 3 (repeated from the main section of the paper for convenience) reveals that
all HEN variants with different encodings still outperformed traditional image-based MHNs even
as the number of image patterns to store increased. While the HEN can recall accurately based on
cross-stimuli associations, we expect such associations to be unique as in the case of stimuli from
the same domain/modality (See result in Fig. 6 of the main manuscript).

Figure 2: Step-by-step progression of a cross-modal query using only text input. Top Row: The
companion text is pixelized and encoded (using D-VAE in this example). This encoded represen-
tation is used to reconstruct the complete image. Bottom Row: The reconstruction process for the
experiment in Subsection 4. (L-R) Ground Truth, Iteration t = 0 starting with a blank canvas with
the provided pixelized text inputs as query prompts, an intermediate update, and finally the fully
reconstructed image. This visualization effectively demonstrates the network’s ability to accurately
reconstruct the image from a text-only input modified into an image-based representation
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