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In the supplementary materials, we report the following topics:

1. Dataset descriptions and class-splits used for ODG in Section 1.

2. Detailed experimental results for closed-set domain generalization (Table 2-5).

3. Model implementation details and description of the attention modules Ad and Ao in Section 3.

4. A t-SNE Van der Maaten & Hinton (2008) plot showing the distribution of the style-space (both original and
augmented) is depicted in Fig. 1.

5. Some discussions on model complexity of ODG-NET and DAML Shu et al. (2021).

6. Sensitivity to β in LGAN in Section 6.

7. System specification for the reported experiments (Section 7).

1 Dataset descriptions

(1) Office-Home Venkateswara et al. (2017) - This dataset comprises of 15,500 images distributed among 65 classes
spanning four domains: Art, Clipart, Product, and Real.

(2) PACS Li et al. (2017) - PACS consists of 9991 images categorized into seven classes, spread across four domains:
Artpaint, Cartoon, Sketch, and Photo.

(3) VLCS Fang et al. (2013) - VLCS is a combination of images from four image classification datasets: PASCAL
VOC 2007 Everingham et al. (2010), Caltech Fei-Fei et al. (2004), LabelMe Russell et al. (2008), and Sun Xiao et al.
(2010). The dataset comprises images from five classes: Bird, Car, Chair, Dog, and Person.

(4) Digits-DG Zhou et al. (2020b) - This dataset is a combination of several handwritten digit recognition datasets:
MNIST LeCun et al. (1998), MNIST-M Ganin & Lempitsky (2015), SVHN Netzer et al. (2011), and SYN Ganin &
Lempitsky (2015).

(5) DomainNet Peng et al. (2019) - DomainNet is a dataset that consists of images from six different domains,
including photos (real), painting, clipart, quickdraw, infograph, and sketch. The dataset has a total of 600K images
classified into 345 classes, with each domain having between 48K to 172K images.
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(6) Multi-dataset Shu et al. (2021) - This dataset is a combination of several public datasets, including Office-31
Saenko et al. (2010), STL-10 Coates et al. (2011), and Visda2017 Peng et al. (2017), with four domains from Domain-
Net Peng et al. (2019) as the target. Additionally, 20 classes are considered as open classes, which are not present in
the joint label set of source domains. The class splits for all the five datasets considered for ODG are mentioned in
Table 1, with the classes numbered in alphabetical order.

Table 1: Class splits for PACS, VLS, Office-Home, Digits-DG, and Multi-dataset for the ODG experiments.
Domain PACS VLCS Digits-DG Office-Home Multi-dataset

Source 1 3, 0, 1 0, 1 0, 1, 2 0 − 2, 3 − 8, 9 − 14, 21 − 31 0 − 30
Source 2 4, 0, 2 1, 2 2, 3, 4 0 − 2, 3 − 8, 15 − 20, 32 − 42 1, 31 − 41
Source 3 5, 1, 2 2, 3 4, 5, 6 0, 3 − 4, 9 − 10, 15 − 16 31, 33, 34, 41, 42 − 47

Target 0−6 0−5 0−9 21 − 23, 32 − 34, 43 − 45, 54 − 64 31 − 36, 39 − 43, 45 − 46, 48 − 67

2 Detailed results for closed-set DG

We show the detailed results and comparisons of the closed-set DG tasks for PACS, Office-Home, VLCS, and Digits-
DG, and DomainNet in Tables 2-5. It can be found that ODG-NET produces the new state-of-the-art for all the
datasets by outperforming the literature by at least 2 − 3% for all the domain combinations and the average leave-one-
out accuracies.

Table 2: Results of PACS dataset under closed-set DG. (In %)

Method A C S P Avg

CCSA Motiian et al. (2017) 80.50 76.90 93.60 66.80 79.40
SFA-A Li et al. (2021) 81.20 77.80 73.70 93.90 81.70
MetaReg Balaji et al. (2018) 83.70 77.20 70.30 95.50 81.70
MixStyle Zhou et al. (2021) 84.10 78.80 75.90 96.10 83.70
DSON Seo et al. (2020) 84.67 77.65 82.23 95.87 85.11
JiGen Carlucci et al. (2019) 79.42 75.25 71.35 96.03 80.51
Epi-FCR Li et al. (2019) 82.10 77.00 73.00 93.90 81.50
SagNet Wu et al. (2019) 83.58 77.66 76.30 95.47 83.25
RSC Huang et al. (2020) 83.43 80.31 80.85 95.99 85.15
DDAIG Zhou et al. (2020a) 84.20 78.10 74.70 95.30 83.10
L2A-OT Zhou et al. (2020b) 83.30 78.20 73.60 96.20 82.80
FACT Xu et al. (2021) 85.37 78.38 79.15 95.15 84.51
STEAM Chen et al. (2021) 85.50 80.60 82.90 97.50 86.60
Style Neo. Kang et al. (2022) 84.41 79.25 83.27 94.93 85.47
DAML Shu et al. (2021) 83.00 78.10 74.10 95.60 82.70

ODG-NET 91.75 85.27 86.79 98.83 90.66

3 Implementation details

We adopt a double-convolution layered network (double-conv) for our embedding networks Fim, Fv, Fy , and Fη ,
where each network consists of the sequence: conv-batchnorm-ReLU repeated twice. The architecture of FG is
inspired by Ronneberger et al. (2015) and consists of four down-sampling layers, each comprising convolution, max-
pooling, batch norm, and ReLU nonlinearity, followed by four up-sampling layers that form a symmetric structure.
For each domain-specific network Fs

l , we employ two double-conv blocks followed by global average pooling (GAP)
and classification layers to implement the Fc

lss.

The classifiers Fd and Fdisc use the double-conv structure repeated four times, with the only difference being the
activation function, where we use a Leaky-ReLU layer with a negative multiplication factor of 0.2 in Fdisc. Following
the convolution blocks, Fdisc applies the GAP layer and a linear layer with sigmoid activation, while Fd employs a
combination of GAP and a fully connected layer with softmax activation. The architecture of Fo, which serves as a
feature extractor cum classifier, depends on the specific benchmark, as in Zhou et al. (2020b); Kang et al. (2022).
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Table 3: Results of Office-Home dataset under closed-set DG. (In %)

Method A C P R Avg

CCSA Motiian et al. (2017) 59.90 49.90 74.10 75.70 64.90
D-SAM D’Innocente & Caputo (2018) 58.03 44.37 69.22 71.45 60.77
DSON Seo et al. (2020) 59.37 45.70 71.84 74.68 62.90
Jeon et al. Jeon et al. (2021) 60.24 53.54 74.36 76.66 66.20
MMD-AAE Li et al. (2018b) 56.50 47.30 72.10 74.80 62.70
MixStyle Zhou et al. (2021) 58.70 53.40 74.20 75.90 65.50
JiGen Carlucci et al. (2019) 53.00 47.50 71.50 72.80 61.20
Cross-Grad Shankar et al. (2018) 58.40 49.40 73.90 75.80 64.40
SagNet Wu et al. (2019) 60.20 45.38 70.42 73.38 62.34
RSC Huang et al. (2020) 58.42 47.90 71.63 74.54 63.12
DDAIG Zhou et al. (2020a) 59.20 52.30 74.60 76.00 65.50
L2A-OT Zhou et al. (2020b) 60.60 50.10 74.80 77.00 65.60
FACT Xu et al. (2021) 60.34 54.85 74.48 76.55 66.56
STEAM Chen et al. (2021) 62.10 52.30 75.40 77.50 66.80
Liu et al.Liu et al. (2021) 62.24 54.38 76.12 78.64 67.85
Style Neo. Kang et al. (2022) 59.55 55.01 73.57 75.52 65.89
DAML Shu et al. (2021) 62.47 54.39 76.33 77.65 67.71

ODG-NET 67.89 58.91 81.22 83.68 72.92

Table 4: Results of VLCS dataset under closed-set DG. (In %)

Method C L V S Avg

D-MTAE Ghifary et al. (2015) 89.10 60.10 63.90 61.30 68.60
CIDDG Li et al. (2018c) 88.80 63.10 64.40 62.10 69.60
CCSA Motiian et al. (2017) 92.30 62.10 67.10 59.10 70.20
DBADG Li et al. (2017) 93.60 63.50 70.00 61.30 72.10
MMD-AAE Li et al. (2018b) 94.40 62.60 67.70 64.40 72.30
MLDG Li et al. (2018a) 94.40 61.30 67.70 65.90 72.30
Epi-FCRLi et al. (2019) 94.10 64.30 67.10 65.90 72.90
SFA-A Li et al. (2021) 97.20 62.00 70.40 66.20 74.00
JiGen Carlucci et al. (2019) 96.93 60.90 70.62 64.30 73.19
RSC Huang et al. (2020) 97.61 61.86 73.93 68.32 75.43
MASF Dou et al. (2019) 94.80 64.90 69.10 67.60 74.10
EIS-NET Wang et al. (2020) 97.30 63.50 69.80 68.00 74.65
MetaVIB Du et al. (2020) 97.37 62.66 70.28 67.85 74.54
DGER Zhao et al. (2020) 96.92 58.26 73.24 69.10 74.38
Liu et al. Liu et al. (2021) 97.86 64.33 74.35 69.37 76.48
DAML Shu et al. (2021) 95.51 62.11 67.48 66.72 72.95

ODG-NET 98.53 69.25 77.94 73.71 79.85

We employ self-attention modules (Ad, Ao) to offer spatial-spectral attention using query-key-value-based process-
ing Han et al. (2022). The attention parameters for Ad and Ao are disjoint. For a given input feature map Fel(x) with
shape C × W × H (representing the channel, width, and height dimensions), we define the mathematical operations
for the spatial and spectral parts of the attention modules.

Spatial attention: We initialize Query (Q), Key (K), and Value (V ) with Fel(x). We perform 1 × 1 convolution to
transform (V, Q, K) into shapes: HW ×C for V , and HW × C

4 for K and Q, respectively. We further obtain K ⊗QT

of shape HW × HW . The final self-attention mask with shape C × W × H is obtained as,

V T ⊗ softmax(K ⊗ QT ) (1)

Spectral attention: Similar to the spatial attention, we initial Query (Q), Key (K), and Value (V ) with Fel(x). We
perform 1 × 1 convolution to transform (V, Q, K) into shapes: C × HW . We further obtain Q ⊗ KT of shape C × C.
The final self-attention mask with shape C × W × H is obtained as,

V T ⊗ softmax(Q ⊗ KT ) (2)
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Table 5: Results of Digits-Dg dataset under closed-set DG. (In %)

Method MNIST MNIST_M SVHN SYN Avg

CCSAMotiian et al. (2017) 95.20 58.20 65.50 79.10 74.50
MMD-AAELi et al. (2018b) 96.50 58.40 65.00 78.40 74.60
SFA-A Li et al. (2021) 96.50 66.50 70.30 85.00 79.60
JiGen Carlucci et al. (2019) 96.50 61.40 63.70 83.20 76.20
Cross-Grad Shankar et al. (2018) 96.70 61.10 65.30 80.20 75.83
DDAIG Zhou et al. (2020a) 96.60 64.10 68.60 81.00 77.58
L2A-OT Zhou et al. (2020b) 96.70 63.90 68.60 83.20 78.10
Liu et al. Liu et al. (2021) 97.68 66.24 70.97 85.18 80.02
FACT Xu et al. (2021) 97.90 65.60 72.40 90.30 81.55
STEAM Chen et al. (2021) 96.80 67.50 76.00 92.20 83.13
DAML Shu et al. (2021) 96.33 65.38 72.43 85.43 79.89

ODG-NET 98.53 71.45 80.34 96.71 86.75

Figure 1: The space of real and generated styles for Digits-DG dataset produced by ODG-NET. The legend ‘3.0’ is
for the generated styles, while the other colors represent the source styles per instance.

We use skip connection to add the original Fel(x) with both the attended feature maps for better highlighting the
important features, which also aids in gradient propagation.

4 Spread of the style space generated by ODG-NET

We show the t-SNE for the original and synthesized styles for the Digits-DG dataset in Fig. 1, which shows that our
interpolation technique is able to synthesize a large space of possible styles.

5 Comparison of model complexity between ODG-NET and DAML

It is worth noting that DAML is composed of an ensemble of source domain classification models, each with a dif-
ferent ResNet-18 backbone. In contrast, ODG-NET employs a single feature backbone in Fo, while the other feature
extractors for the local classification models {Fs

l }S
s=1 are relatively light-weight. Although the parameter sizes of

ODG-NET and DAML are comparable, ODG-NET demonstrates better training convergence and faster inference
time (0.6-0.75x) in GFLOP than DAML, while achieving significantly improved performance over DAML.

6 Sensitivity analysis of the regularizer weight β for LGAN

As we observe in Fig. 2, a small beta provide a soft regularizer to the GAN losses by outputting diverse synthesized
images for the closed and pseudo-open spaces. As we increase β, the accuracy decreases as it affects the GAN losses.
β = 0.5 is found to provide the best solution.
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Figure 2: Sensitivity analysis of β in LGAN.

7 System specification

We used a system with 16 CPUs, 128 GB memory and two NVIDIA 2080 Ti graphics cards. The code was written in
Pytorch 1.5 with CUDA 10.
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