Supplementary material

A Additional graph visualisations

.

Arterioles

Figure 5: Graphical visualisations of the vessel graph and three different vessel types distinguishable
by diameter.

B Code and dataset documentation

B.1 Hosting, licensing and author statement

All of our codes and baselines are available in a public github repository https://github.com/jocpae/,
VesselGraph licensed under an MIT License. All of our data is also freely available and can be downloaded
from a university server following the links inhttps://github.com/jocpae/VesselGraph#datasets! The
dataset is provided in CSV format. The dataset has the following DOI: |10.5281/zenodo.5301621. All of
our released data is licensed under an Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.
The authors confirm the CC licenses for the included datasets and declare to bear all responsibility in case of
violation of rights. The authors declare no competing financial interests

B.2 Long term maintenance plan

The dataset and code has been permanently archived at Zenodo, guaranteeing long-term availability. We
will update the dataset when novel segmentations of the whole brain vasculature become publicly available.
Contributions will be solicited via GitHub pull request. Regarding maintenance, we will update the code
repository for loading and processing the data; the links to the university server where the data is stored will also
be kept up-to-date.

Additionally, we plan to incorporate our dataset into the Open Graph Benchmaﬂﬂ Our dataset and dataloader
are already compatible with the OGB data loader and platform. We believe that an integration into the OGB
framework will further facilitate and simplify the usage of our data. We also provide an alternative dataloader
for use with Pytorch Geometric.

B.3 Whole brain vessel imaging and segmentation

As discussed in the introduction, whole brain vascular imaging is an emerging field spanning different imaging
techniques, among the first technologies were tissue clearing-based methods [OH12]] which enable the fluores-
cent staining and clearing (that is, a chemical process which renders the organ transparent) of intact, whole

*https://ogb.stanford.edu/

14


https://github.com/jocpae/VesselGraph
https://github.com/jocpae/VesselGraph
https://github.com/jocpae/VesselGraph#datasets
10.5281/zenodo.5301621
https://ogb.stanford.edu/

Figure 6: Local differences in vessel structure can be observed in different brain regions in a dataset
of Todorov and Paetzold et al. [6].

brains with a subsequent imaging of the vessels with a 3D lightsheet microscope. Among the first imaging
protocols were VesSAP [6], Tubemap [[7] and the work by diGiovanna et al. [13]]. Alternative imaging tech-
niques are microCT[48]49], magnetic resonance imaging [S0] and optical coherence tomography [51]], which
however fail to achieve the spatial resolution to reliably image microcapillaries. Recently, a method based
on synchrotron-based phase-contrast tomographic microscopy was developed, achieving an isotropic voxel
size of 0.65 micrometers [52]]. Other technologies, such as serial serial two-photon microscopic imaging are
also developing rapidly with similar or even better resolution compared to the tissue clearing methods (e.g.
0.303 x 0.303 x 1.0 resolution [1]]), promising a widespread use/adoption of whole brain vascular imaging
approaches in the future.

B.4 Individual datasets, licenses and animal experiments

The nine base datasets from the VesSAP paper [6] are available here: http://discotechnologies.org/,
VesSAP/| They are licensed under a Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). The animal
experiments were carried out under approval of the institutional ethics review board of the Government of Upper
Bavaria (Regierung von Oberbayern, Munich, Germany), and in accordance with European directive 2010/63/EU
for animal research, details can be read here https://doi.org/10.1038/s41592-020-0792-1,

The base datasets from Ji et al. [1] are licensed under an open source (BSD 3-Clause) license. They are
available upon email request from the authors, their code is available at https://neurophysics.ucsd.edu/
software.php. The animal experiments followed the Guide for the Care and Use of Laboratory Animals and
have been approved by the Institutional Animal Care and Use Committee, details can be found in the original
paper: https://doi.org/10.1016/j.neuron.2021.02.006

The synthetic data was generated by the authors themselves following the approach by Schneider et al. [32], the
same license applies as for the graph datasets presented here. The synthetic base data can be downloaded here
https://github.com/giesekow/deepvesselnet/wiki/Datasets,

15


http://discotechnologies.org/VesSAP/
http://discotechnologies.org/VesSAP/
https://doi.org/10.1038/s41592-020-0792-1
https://neurophysics.ucsd.edu/software.php
https://neurophysics.ucsd.edu/software.php
https://doi.org/10.1016/j.neuron.2021.02.006
https://github.com/giesekow/deepvesselnet/wiki/Datasets

C Graph documentation

—
1000 pm

Figure 7: Rendering of the Allen brain atlas feature; on the left side a 2D image slice from the
CD1-E-1 brain is depicted, on the right side a rendering of the Allen brain atlas regions corresponding
to the coordinates of the image. A node n is assigned to a particular atlas region depending on the
T, Yn, zn, coordinate of the node n .

C.1 Voreen parameters

In the following Sections, we discuss the details of the Voreen graph extraction pipeline which follows a four
stage protocol introduced in Section 2] To recapitulate, the four stages are:

1. Skeletonization: The binary segmentation volume is reduced to a skeleton based representation by
applying a standard topological thinning algorithm by Lee et al. [38]].

2. Topology Extraction: memory efficient algorithms extract the vessel centerlines [39]]. Voreen allows to
store this intermediate representation in a combination with the graph.

3. Voxel-Branch Assignment: Computing of mapping between the so-called protograph (i.e. the initial
graph) and the voxels of the binary segmentation.

4. Feature Extraction: On basis of the protograph and the mapping, several features can be computed
from the foreground segmentation.

We chose the Voreen parameters in the following manner:

1. The binarization threshold is selected from the interval [0, 1]. This value is irrelevant for binary
segmentation masks, e.g. VesSAP.

2. Surface smoothing is deactivated.

3. The relative minimal bounding box diagonal is set to 0.05.
4. The total minimal bounding box diagonal is set to 0 mm.
5

. The bulge size is set to 3.0, see Figure[9)]

Bulge Size As depicted in the figures below, the total number of nodes decreases when increasing the bulge
size parameter. This is expected, as the bulge size describes the relation between parent vessel and branch,
and the relation between vessel bumpiness and parent vessel [31]]. The bulge size can be configured between
[0 <z < 10].

16



Number of Nodes

w
4]
o
S
w
w“
9]
—
9]
o
€
S
=

Average Node Degree

3.0

2.5

2.0

1.5

1.0

0.5

Mean of average vessel radius

35

3.0

25

2.0

1.5

1.0

0.5

Mean of vessel curveness

1.0

0.8

0.6

0.4

0.2

tlas.

1m a

f the Allen bra

10ns O

Different Node features of G plotted by the regi

Figure 8

17



Node Degrees Analysis for different graph extraction parameters

&3 bulge size 0.5 bulge size 1 bulge size 2

-

Counts
° o 5 G 8

e3 bulge size 3 bulge size 4 bulge size 5

=

Counts
= =
=3 w S &

e3 bulge size 6 bulge size 7 bulge size 8

-

Counts
= =
o w 1 &

1 2 5 6 1 2 5 6 1 2 5 6

3 4 3 4 3 4
Node Degree Node Degree Node Degree

Figure 9: Bulge Size analysis in the Voreen pipeline for a parameter range of 0.5- 8.0.

For bulge _size = 3.0, we obtain a good relationship between capturing the essential vessels, while capturing
the smoothness of the vascular trees. Following the recommendation of _size = 3.0 [31]] for healthy vasculature,
we keep _size = 3.0 as a maximum, to provide a reasonable _size = 3.0 value for future data with diseased
animals.

length distance curveness i inRadi inRadit i i i i nodel_degree node2_degree num_voxels volume

length
distance
curveness
avgCrosssection
minRadiusAvg
minRadiusstd
avgRadiusAvg
avgRadiusstd
maxRadiusAvg
maxRadiusstd
roundnessAvg
roundnessstd
nodel_degree
node2_degree

num_voxels

volume

Figure 10: Edge feature correlation plot.

Runtime of graph extraction: The Voreen pipeline used for graph extraction was run on a CPU cluster.
We timed one exemplary graph extraction on this cluster using 8 logical CPUs. For one of our synthetic vessel
datasets (500 x 500 x 401 pixels), the process described in Section[2] with 3 refinement iterations, resulting in
28538 nodes and 42727 edges required a total runtime of 3 minutes and 57 seconds. Importantly, the extraction
times scale roughly linearly with the number of nodes which are extracted [31]].

18



C.2 Post processing of graphs

In order to remove evident artifacts from the generated graphs we implemented rule based post processing or
pruning steps.

Feature merging: In a small percentage of the extracted graphs (< 1%), we obtain multiple edges e?j for
b = 1 : B with the same vertices. This can be attributed to imaging artifacts and irregularities in the vessel
staining process. For instance, holes in the segmentation mask, if not properly filled, can result in multiple edges
spanning from the same source node n; to the same target node n;, respectively n; to n;, as the underlying
graph is undirected. As our focus lies on biologically realistic graphs, in particular correct branching structures,
we merge the edge features of two identically labeled edges by obtain approximations. As the greater percentage
of irregularities have been already mitigated in various preprocessing steps, we are confident that approximations
in a small number of edges should not affect the performance and generalization of the deep learning models.
When we merge features we update them according to:

1. Length: l;; = & Zle 12

. Shortest Distance: d;; = ming{d%;}

B
. Volume: vi; = > v

2
3
4. Number of Voxels: nv;; = Sp | nol;
5
6

. _ 1 B b
. Curvature: pij = 5 > y_; Pij

. B
. Mean Cross Section Area: a;; = >y, b

As radius features are highly shape-dependent, and highly variable in the vessel itself, we can only approximate
the vessel attributes, as we cannot access the meta-information Voreen utilizes to calculate the minimum, average
and maximum vessel radius and the corresponding standard deviations.

Consequently, we obtain the average radius by summing the average radius of all identically labeled edges. We
calculate the standard deviation by obtaining the median of the mathematical relationship of standard deviation
of average radius to average radius.

r _ 7 _ R __ B 7b
Lo opiy = piy = piy = Zb:1 Mg

r _ 7 _ R _ [|\°B 7b)2
2. iy =045 =045 = Zb:l(gi]’)

We fit a linear function 1° = f(u") = a - u” + b to map the average radius p” to the vessel roundness 11°.
Similarly to the radius approximations, we obtain the newly computed roundness standard deviation by obtaining
the median of the mathematical relationship of standard deviation to roundness.

Lopgy = fuiy)

. o
2. o7, = median {{ H’;,J,_) } } g
) bv=1:B

The following properties are computationally updated.

. zxilj is updated.

* v} is updated.

D Baseline experimentation and discussion

D.1 Link prediction

We implemented a set of baselines from the literature. All of these implementations, including documentation
are available in our GitHub repository . The model architecture, learning rate, number of GCN layers, dropout
and batch size are the hyperparameters we optimized for our training and document below. We selected our
models according to the highest ROC AUC score on the validation set.

In order to select the values, we employed Grid Search, please see the tables below. Owing to the huge size
of our dataset, hyperparameter tuning is challenging. To overcome this challenge, we subsample a region of
the mouse brain in order to create a small graph. To ensure we are not introducing any bias, we measured the
KL-Divergence [53]] to ensure that our small graph is representative of the whole brain in its distribution of

19



Table 5: Details of the hyper-parameters search for Link prediction with the selected parameters for
the final training of each of our baseline models.

Model Parameter Range Selected Parameters Model Select.
Matrix Factorization ref{1-10-°,1-10%,1.10° %} Ir=1-10"° epochs 3000
num of layers € {2, 3, 4} num of layers = 3
hidden channels € {32, 64, 128, 256} hidden channels = 64
dropout € {0,0.2,0.5} dropout = 0.2
MLP Ire{1-10-2,1-10"2,1-10"%1-10"°} Ir=1-10"0° epochs 3000
num of layers € {2, 3, 4} num of layers = 4
hidden channels € {128, 256, 512} hidden channels = 256
dropout € {0,0.2,0.5} dropout = 0.2
GCN [14] Ire{l1-10-2,1-10"2,1-10"%,1-10" 7} Ir=1-10° epochs 3000
num of layers € {2, 3, 4} num of layers = 2
hidden channels € {128, 256, 512} hidden channels = 256
dropout € {0, 0.2, 0.5} dropout = 0.2
GNN + N2Vec Embeddings [43] Ire{1-102,1-10"°,1-10 %, 1-10" 7} Ir=1-10"° epochs 3000
num of layers € {2, 3, 4} num of layers = 2
hidden channels € {128, 256, 512} hidden channels = 256
dropout € {0, 0.2, 0.5} dropout = 0.2
GNN + SAGE [17] Ire{1-10-2,1-10"°,1-10"%,1-10" 7} Ir=1-10"% epochs 3000
num of layers € {2, 3, 4} num of layers = 3
hidden channels € {128, 256, 512} hidden channels = 16
dropout € {0, 0.2, 0.5} dropout=0.5
GNN + SAGE [17]l + N2Vec Embeddings [43] Ire{1-10792,1.103,1-10"%,1- 109} Ir=1-10"3 epochs 3000
num of layers € {2, 3, 4} num of layers = 2
hidden channels € {128, 256, 512} hidden channels = 16
dropout € {0, 0.2, 0.5} dropout = 0.5
SEAL 23] re{1-10-%1.105) Ir=1-10"%} epochs 100
num of layers € {2, 3, 4} num of layers = 2
hidden channels € {32, 64, 128} hidden channels = 32
dropout € {0,0.2,0.5} dropout = 0.0
num of hops€ {1, 2, 3} num of hops = 1
labeling € {drnl.de.de+,z0} labeling = drnl
model = DGCNN, GCN model = DGCNN
N2Vec [43] ref{1-10-2,1-10-3,1-10-%,1-107°,1-10°6} | r=1-.10"9 epochs 2
walk length € {5, 10, 20} walk length =5
walks per_node € {5, 10, 20} walks_per_node = 10
embedding_dim € {16, 32, 64, 128, 256} embedding_dim = 64

vasculature. We selected the best set of hyperparameters on the small graph and used it on the actual graph with
small modifications if needed. We summarize our results in Table 3land Table [6]

For Matrix Factorization, we tune the number of layers, hidden channels and dropout rate. To estimate the best
hyperparameters, we employed grid search. We observe that the Matrix Factorization method is not sensitive to
the choice of hyper-parameters as long as they are in a reasonable range (learning rate le-3 to le-5, dropout O to
0.5, hidden channels 32 to 256). We obtained the best results for a learning rate of le-4 with 3 layers, 64 hidden
channels and a dropout rate of 0.2. When extending to the entire BALBc1 whole mouse brain dataset (5.35
million edges, 3.54 million nodes), we reduced the number of hidden channels to 64 owing to GPU memory
constraints. We experimentally found out that the model with 64 channels was easily able to overfit to the
training data, showing that the model is sufficiently complex.

The MLP model is trained with the Adam optimizer and a learning rate of 1e-4. This combination of hyperparam-
eters provides us the best performance on the validation and test splits. We experimented with fully connected
layers of 128 and 256 features, the latter resulting in better scores. Thus, our final model has 4 layers each with
256 channels.

For the Graph Neural Networks, we use two setups. A GCN setup without embeddings (which we refer to as
GCN in the experiments) and a GCN with embeddings (which we refer to as GCN + Node2Vec Embeddings in
the experiments, Tab. [5). Both models are trained with Adam and le-5 and le-7 learning rate, respectively.

We discover that GCN+node embeddings do not perform superior to the GCN which is trained only on the node
features. Moreover, in our experiments, we find that the predictions made by the models result in scores close
to chance (approx. 51 for both). The model is overfitting on the training data almost immediately and is not
able to generalize to the unseen data. Reducing the model complexity by reducing the number of layers, hidden
channels and increasing the dropout did not improve performance.

We observe poor generalization and immediate overfitting in all cases. We hypothesize that this behaviour is
caused by the model not being able to distinguish symmetrically placed nodes while making the prediction
(something that the SEAL algorithm achieves using the Labeling trick). Our experiments done using SEAL with
a similar set of hyper-parameters substantiate this hypothesis. Please refer to the section on SEAL for more
details below.

In our experiments, we find that the GraphSAGE models tend to outperform the GCN baseline. The ROC AUC
increases to approximately 60 meaning a performance boost of almost 7% We initialized the nodes with the
Node2Vec embeddings[43] (we refer to this model as GraphSAGE + Node2Vec Embeddings) and findthat the

20



inclusion of pretrained Node2Vec embeddings as features leads to deterioration in model performance. We
observed the best model performance with a shallow network (2 hidden layers), a learning rate of 1e — 4 and 0.5
dropout. The hyperparameters were chosen according to the GCN baseline.

When we ran our model on the entire mouse brain graph, we observed behaviour similar to GCN and
GCN+embedding. Although the GraphSAGE performance is slightly superior to the GCN baseline, it is
still dwindling in the region of being random (approx 59%). The GraphSAGE algorithm tends to improve the
update of node features by concatenating the features of the node and its aggregated neighbourhood features. As
such, this may enable the network to assign different weights to the self nodes and its neighbours. However, this
does not allow it to break the symmetry while performing the link prediction task. Indicating that these models
suffer from the same issue in regards to node labeling as was described in the GCN discussion above. Further,
inclusion of Node2Vec features decreases the performance resulting in an 53% ROC AUC value.

Since Node2Vec is an unsupervised process we use the SGD optimizer with negative sampling, to maximize the
log likelihood objective on the random walks in the graph. We perform a hyperparameter search on the learning
rate, walk lengths, walks per node and embedding dimension.

We find the best combination to be a walk length of 5, 10 walks per node and an embedding dimension of 64. In
our experiments with the small sub-graph, we observed that the loss quickly plateaus after 3 epochs. We use the
same hyperparameter combination for the entire mouse brain graph. We observe that the inclusion of Node2Vec
features does not improve performance and in most cases, leads to worse results. Empirically we observe that
the inclusion of Node2 Vec features is not useful for the link prediction task and as discussed above, the Labeling
trick constitutes a much more important component.

SEAL: For the SEAL algorithm we implement a similar hyperparameter search. We discover a general
pattern in the selection of different labeling tricks, and find the DE and DRNL to perform best on the training set.

Moreover, we find SEAL to perform very well at different rates. However, we do get a general trend of optimal
performance for a learning rate of 1e — 4 and 2 hops. For the whole brain graph, we find Double-Radius Node
Labeling (DRNL) to better capture the hierarchical structure [25]]. Further, a DGCNN outperforms a GCN.
When training on a small region of interest we observe a gradual improvement for up to 50 epochs, for the whole
brain graph we discover that SEAL almost converges the first epochs while inducing significant inductive bias,
making it the superior model for our spatial and hierarchical graph. The training quickly plateaus. In all our
experiments, the SEAL method performs best amongst all the baselines. All performance measures are given in
Table[3]in the main paper.

D.2 Node classification

Similar to the link prediction task, we employ a grid Search for hyperparameters. For each graph neural network,
we explore the number of layers, hidden channels, learning rate and dropout ratio on the smaller sets validation
and test set. For each model, if applicable, we select a set of hyper-parameters specific to the architecture and
thus optimize. We selected our models according to the highest ROC AUC score on the validation set.

The Cluster GCN algorithm provides a memory efficient alternative to other graph learning algorithms and is
specifically designed to handle large-scale graphs efficiently. The number of partitions constitutes the essential
hyper-parameter. We find it to consistently outperform other models, irrespective of its number of partitions.

Further we implement the base GCN by Kipf et.al. and extend it to the GNN GCN and GNN SAGE (SAGE
introduces convolutional operator). For all we vary the number of hidden channels, number of layers and dropout
ratio. In direct comparison, the GNN SAGE outperforms the GNN GCN by high margins (>10%) for the
ROC-AUC metric on the whole brain graph. Similar to the link prediction task, indicating that the base GCN is
not suited for this task.

For the Node2Vec embeddings of the node classification task, we find similar trends for walk length, walks per
node and embedding dimension as in the link prediction task. Please refer to Table[f]for the exact hyper-parameter
selection.

For the MLP we select a comparative number of layers and obtain the best result for a high dropout ratio of 0.4.
‘We observe that the the model is unable to generalize to unseen data, indicating the absence of an appropriate
inductive bias.

For the MLP-CS, we selected similar values in comparison to the MLP implementation. Incorporating the
Correct&Smooth methodology into the model increases the F1 score but does not improve the metrics which
account for imbalanced datasets.

The SIGN applies subsampling techniques. Similar to the graph neural network baselines, we explore the hidden
channels and number of layers. We obtain the best for a high model complexity with 4 layers and 512 hidden
channels. The model converges very fast with a high learning rate but performs only on par with the base GCN.

21



Table 6: Details of the hyper-parameter search for node classification with the final parameters
selected for the our baseline models.

number of layers € {3, 4, 5}
hidden channels € {128, 512, 1024}
dropout € {0.0, 0.5}

number of layers = 5
hidden channels = 128
dropout = 0.5

Model Parameter Range Selected Parameters Model Select.
Cluster-GCN re{2-10-°2,1-10-%,1-1073,3-10 5} Ir=3-10"3 1500 epochs
number of layers € {3, 4, 5} number of layers = 4
hidden channels € {128, 256, 512} hidden channels = 128
number of partitions € {3, 6, 9} number of partitions = 9
dropout € {0.0, 0.2, 0.5} dropout = 0.2
GNN re{2-10-°,1-10-%,1-10"3,3-10 5} Ir=3-10"3 1500 epochs
number of layers € {3, 4, 5} number of layers = 3
hidden channels € {32, 128, 256, 512, 1024} hidden channels = 256
dropout € {0.1, 0.4, 0.5} dropout = 0.4
GNN-SAGE Ire{2-10-°,1-10-%,1-1073,3-10" 5} Ir=3-10"3 1500 epochs
number of layers € {2, 3, 4} number of layers = 4
hidden channels € {32, 128, 256, 512, 1024} hidden channels = 128
dropout € {0.0,0.2,0.4} dropout = 0.4
Graph-Saint re{1-10-%1.107°,1-100%,1-1072,5-10"3,1-10 2} | Ir=5-10 1% 1000 epochs
number of layers € {2, 3, 4} number of layers = 4
hidden channels € {64, 256, 512, 1024} hidden channels = 64
walk length € {3, 5, 7} walk length =7
dropout € {0.0,0.35,0.5} dropout =0.35
SIGN Ire{1-10°2,1-10"%,1-10-3,5.10" 5} Ir=1-10"2 1000 epochs
number of layers € {2, 3, 4} number of layers = 3
hidden channels € {32, 64, 128, 256, 512, 1024} hidden channels = 128
dropout € {0.0,0.1,0.3,0.5} dropout=0.1
MLP Ire(2-107°,1-10~%,5-10-%1-10"3,3-10"3,1-10"2} | Ir=1-10"2 1500 epochs
number of layers € {2, 3, 4} number of layers = 3
hidden channels € {32, 128, 256, 512} hidden channels = 256
dropout € {0.0, 0.3, 0.4} dropout = 0.0
SpecMLP-W + C&S Ire{1-107°,5.-10"%1-103,3-10 3} Ir=1-10"2 1500 epochs
number of layers € {3, 4, 5} number of layers = 5
hidden channels € {128,512, 1024} hidden channels = 128
dropout € {0.0, 0.5} dropout = 0.5
N2Vec Ire{1-107°,1-10-3,1-10" 2} Ir=1-10"2} 5 epochs
walk length € {16, 40} walk length = 40
walks per node € {4, 10} walks per node = 10
embedding dim € {16, 128} embedding dim = 128
batch size € {16, 128} batch size = 128
epochs € {1, 5, 32} epochs = 5
SpecMLP-W + C&S + N2Vec Ire{1-10-2,5-10"%,1-10"3,3-10 5} Ir=1-10"3 1500 epochs

D.3 Graph explainability

We use the concept of the GNNExplainer [54] as an initial graph explainability approach. GNNExplainer aims
to identify a compact subgraph with a small subset of node features which play a crucial role in a given GNN for

node classification.

We decided to run an initial GNNExpainer experiment on a small but representative subgraph of roughly
16000 nodes and 18000 edges. We predict node 2290 with our trained SAGEConv based model for the node
classification task on the Line Graph, see Figure@ The visualization represents the nodes which our model
considers important for the node prediction of 2290. One can observe, that the model relies heavily on its
immediate neighbourhood (denoted by thick edges). In our plot, we have visualized a 5 hop neighbourhood, for a
SAGEConv GCN with 4 layers. Naturally, the model does not consider any node beyond its 4 hop neighbourhood
in the computational graph.

D.4 Computational resources

All of our neural network trainings were performed on an Nvidia Quadro RTX 8000 GPU with 48GB memory.

22




1324

9396 \
w264
o4z

9265

Figure 11: Graph explainability plot based on the GNNExplainer concept [54]. Our considered
node of interest is node 2290. Pink nodes indicate nodes belonging artery/vein class, blue indicated
arterioles/venules and green indicates capillaries. Thick edges represent a strong influence on the
prediction. Please note that the considered graph is a spatial Line Graph.

23



E Datasheet for datasets

This description is an additional documentation intended to enhance reproducibility and follows the Datasheets
for Datasetsﬂ working paper developed for the machine learning community.

* For what purpose was the dataset created? To foster research development in machine learning for
graphs, in particular its application to neuroscience - specifically the brain vessel graph composition.

¢ Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)? The dataset was created thorough a collaborative effort by
neuro-scientists and computer-scientists at the Technical University of Munich and the Helmholtz
Zentrum Miinchen (under the supervision of Ali Ertuerk, Bjoern Menze and Stephan Giinnemann).

* Who funded the creation of the dataset? The creation of the dataset was funded only indirectly
via the salaries of the scientists at the Technical University of Munich and the other corresponding
affiliations of the authors.

E.1 Composition

* What do the instances that comprise the dataset represent? Our dataset represents graph repre-
sentations of the whole brain vasculature. We are providing two alternative representations of the
vascular graph. First, a representation where individual vessels are represented as edges in a Graph;
and second, the corresponding Line graph were vessels are represented as nodes. One can interpret the
graph of a single mouse brain as a single instance. Alternatively one can interpret each vessel (edge)
and bifurcation (node) as a physical instance.

* How many instances are there in total (of each type, if appropriate)? By the instance definition
of whole brain graphs as instances we are providing 17 graphs (with the option to generate the line
graph) from 3 imaging sources as instances. In the future we plan to extend the dataset as soon as
other whole brain vessel segmentations are made publicly available (open source).

By the definition of vessels and bifurcation points we have millions of instances for each. Please see
Table[dl for detailed numbers.

¢ Does the dataset contain all possible instances or is it a sample of instances from a larger set?
We are providing all available instances.

* What data does each instance consist of? In either case, please provide a description. By definition
1); each instance represents a whole mouse brains’ vascular graph saved in the widely used CSV
format. By definition 2) each node represents a bifurcation point and each edge a vessel.

Is there a label or target associated with each instance? Yes, in case of the edge and node instances,
the information from the extracted graphs (features) can be used as the instance labels. E.g. in our
node classification benchmark we use the vessel radius binned in three classes as an instance label.

* Is any information missing from individual instances? No, all of the information has been provided.

¢ Are relationships between individual instances made explicit? In our dataset the instances (brain
graphs) are independent.

¢ Are there recommended data splits (e.g., training, development/validation, testing)? For the
benchmark we split one whole brain into a train, validation and test set of 80/10/10.

* Are there any errors, sources of noise, or redundancies in the dataset? Our graph extraction is
based on experimental imaging and segmentation techniques. Therefore, errors and uncertainty are
inherent. We discuss these in detail in our Limitations section in the conclusion.

* Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? The provided dataset is self-contained.

¢ Does the dataset contain data that might be considered confidential (e.g., data that is protected
by legal privilege or by doctor-patient confidentiality, data that includes the content of individ-
uals’ non-public communications)? No.

¢ Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? No.

* Does the dataset relate to people? No.

*https://arxiv.org/abs/1803.09010

24


https://arxiv.org/abs/1803.09010

E.2 Collection process

* How was the data associated with each instance acquired? The data was generated from a set of
different publicly available datasets of whole murine brain images and segmentations. The specifics of
the generation of each of these public segmentations are specified in the referenced literature and their
licenses, see|B.4

¢ What mechanisms or procedures were used to collect the data? We use the Voreen framework
[31,130] to generate graphs from segmentations. Voreen is a software which runs on a CPU.

o If the dataset is a sample from a larger set, what was the sampling strategy? The dataset is
complete.

* Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much were crowdworkers paid)? Only researchers (co-
authors) of the Technical University of Munich and the Helmholtz Zentrum Miinchen were involved
in the data collection process.

¢ Over what timeframe was the data collected? Does this timeframe match the creation timeframe
of the data associated with the instances (e.g., recent crawl of old news articles)? The generation of
the dataset, including dedicated research to gather the base segmentations and to optimize the graph
extraction procedure took roughly one year.

* Were any ethical review processes conducted (e.g., by an institutional review board)? Our work
is purely based on public and open sourced data. However, ethical review processes were carried out
for each of these open sourced base segmentation sets:

The three graphs from Ji et al. [1] are based on animal experiments, they followed the Guide for the
Care and Use of Laboratory Animals and have been approved by the Institutional Animal Care and
Use Committee, for details see https://doi.org/10.1016/j.neuron.2021.02.006.

The animal experiments for the nine datasets from the VesSAP paper [6] were carried out under
approval of the ethical review board of the government of Upper Bavaria (Regierung von Oberbayern,
Munich, Germany), and in accordance with European directive 2010/63/EU for animal research, for
details see https://doi.org/10.1038/s41592-020-0792-1,

* Does the dataset relate to people? No.

E.3 Preprocessing/cleaning/labeling

¢ Was any preprocessing/cleaning/labeling of the data done ? Yes, this actually constitutes a core
contribution of our work, therefore please refer to Section 2]in the main paper and to Supplementary
section[C

¢ Was the ’raw’ data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)? The raw data are the base segmentations. They are publicly available,
the links are provided in Supplementary section [B.4]

* Is the software used to preprocess/clean/label the instances available? The Voreen software used
for the graph extraction is publicly available, see our github repo.

E.4 Uses

¢ Has the dataset been used for any tasks already? In its current size and level of labeling detailiza-
tion, the dataset was not used before (besides for the presented link prediction and node classification
in this work).

« Is there a repository that links to any or all papers or systems that use the dataset? If so, please
provide a link or other access point. Yes, https://github.com/jocpae/VesselGraphl

What (other) tasks could the dataset be used for? In the main paper we discussed two standard
tasks in machine learning on graphs; we think that our dataset can serve as a starting point for many
interesting research directions in machine learning research and neurovascular research.

¢ Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? No.

¢ Are there tasks for which the dataset should not be used? No.

E.5 Distribution

* Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? Our Dataset is open sourced under a
CC Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License. Therefore all third parties
can openly access it.

25


https://doi.org/10.1016/j.neuron.2021.02.006
https://doi.org/10.1038/s41592-020-0792-1
https://github.com/jocpae/VesselGraph

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Yes, our DOI is
10.5281/zenodo.5301621

When will the dataset be distributed? The dataset is available from the moment of submission.

Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? Our Dataset is open sourced under a CC Attribution-
NonCommercial 4.0 International (CC BY-NC 4.0) License.

Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? No.

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? No.

E.6 Maintenance

Who is supporting/hosting/maintaining the dataset? The dataset is initially supported and main-
tained by the lead authors of this paper. The data is initially hosted on a university server and links are
provided in the github repository https://github.com/jocpae/VesselGraph. In the long term
we aim to incorporate our dataset into the open graph benchmark (OGB) initiativeﬂ

How can the owner/curator/manager of the dataset be contacted (e.g., email address)? Of course
via e-mail: |johannes.paetzold@tum.de and via the github repository, see question above.

Is there an erratum? At this stage no, but we are happy to track them in a dedicated file in our github
repository.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete in-
stances)? Yes, we release the dataset on open platforms on which we plan to continuously update our
dataset. Particularly to add novel whole brain vessel graphs to the dataset.

If the dataset relates to people, are there applicable limits on the retention of the data associated
with the instances? The dataset does not relate to people.

Will older versions of the dataset continue to be supported/hosted/maintained? When novel
versions of the dataset will be released we will continue to host and maintain the old versions of the
dataset.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? We encourage other researches to exactly that. Depending on their contribution they
can contribute to our github repository (in case of implementations) or reach out to us via e-mail in
case they want to contribute graphs to the dataset. Our dataset and code are open sourced, see above.

*https://ogb.stanford.edu/

26


10.5281/zenodo.5301621
https://github.com/jocpae/VesselGraph
johannes.paetzold@tum.de
https://ogb.stanford.edu/

