
A Taxonomy of Non-Strategic Microeconomics1029

A.1 DECISIONS ON CONSUMPTION IN NON-STRATEGIC ENVIRONMENTS1030

We begin by characterizing the space of elements that test an agent’s ability to optimally allocate1031

their limited resources to goods and services they desire. In economics and decision theory, the1032

most primitive approach to describing the preferences of decision-makers is to use a function that1033

maps a set of possible choices to the agent’s optimal choice within that set. Under a set of intuitive1034

assumptions, such as transitivity (i.e., if bundle X is preferred to bundle Y , and Y is preferred to1035

bundle Z, then X must be preferred to Z), it becomes possible to “rationalize” preferences by instead1036

describing a utility function. This function assigns a real number to each bundle, and the agent selects1037

the bundle with the highest utility.1038

In this paper, we focus on these “rationalizable” preferences, where agent choice can be implemented1039

as utility maximization constrained by prices and income. The solution to these consumer choice1040

problems provides us with, among other things, individual demand functions, which describe the1041

choice of each good or service as a function of prices and income. The individual demand functions1042

for each good are essential when aggregating to the market demand in Consumer Goods Market1043

Aggregation, which in turn is used to find the price in a non-strategic equilibrium. In addition, we1044

test variations on the framework such as the agents ability to make tradeoffs between the quantity of1045

goods they would need to be able to purchase for an increase in the amount of work they provide for1046

a given wage (i.e., the elasticity of labor supply), as well as cases of choice under uncertainty where1047

the agent is choosing between possible lotteries under rationalizability assumptions required for von1048

Neuman expected utility.1049

A.1.1 Properties of Utility Functions1050

In this section, we test the ability of the agent to use utility functions as a means to compare preferences1051

over different “bundles” of goods or services. A key feature of economic reasoning in this context is1052

for agents to consider how substitution between different goods in a bundle might achieve the same1053

utility (i.e., map out the “indifference curves”). Key tests include correctly distinguishing between1054

substitutes and complements in consumption, and calculating the marginal rate of substitution at a1055

point on an indifference curve. This logic is essential for both agents acting as a planner as we will1056

see in Appendix A.4 and when fulfilling the role of choice under budget and income constraints, in1057

Deriving Demand.1058

Element A.1 (Marginal Utility). The ability to calculate marginal utility for different types of1059

demand curves such as quasilinear, Cobb-Douglas, and Leontief.1060

Element A.2 (Diminishing Marginal Utility). The ability to recognize the role of diminishing1061

marginal utility in consumption decisions and the role of achieving interior solutions.1062

Element A.3 (Marginal Rate of Substitution). The ability to calculate the marginal rate of substitu-1063

tion between two goods in a consumption decision.1064

Element A.4 (Tangency and the Marginal Rate of Substitution). The ability to calculate the1065

marginal rate of substitution between two goods in a consumption decision at a given point in the1066

budget constraint as tangent to the indifference curve.1067

Element A.5 (Substitutes and Complements). The ability to distinguish between substitutes and1068

complements in consumption decisions.1069

A.1.2 Deriving Demand1070

The module in this section tests an agent’s ability to solve a constrained utility maximization problem1071

to derive a demand function—relying on the results of Properties of Utility Functions. We test1072

the canonical classes of demand functions, check the duality of Marshallian demand and Hicksian1073

demand, and ask the agent to derive these demand functions from first principles.1074

Element A.6 (Derivation of Marshallian Demand). The ability to calculate the demand curve for a1075

good given a utility function and a budget constraint.1076

Element A.7 (Derivation of Hicksian Demand from Expenditure Minimization). The ability to1077

calculate the demand curve for a good given a utility function and a budget constraint.1078
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Element A.8 (Duality of Hicksian Demand). The ability to recognize that Hicksian demand (expen-1079

diture minimization) is dual to maximization in Marshallian Demand.1080

A.1.3 Comparative Statics of Demand1081

This module considers how agents reason about changes in prices or income, and their effects on1082

the quantity of each good they would purchase. We test the classic law of demand, different types1083

of goods (e.g., normal, inferior, and Giffen), and derive Engel curves from first principles. The key1084

tests are to ensure the agent rationally responds to changes in relative prices, and investigate their1085

substitution between goods in a bundle. In practice, these tests involve comparative statics of the1086

argmax from the utility maximization of the previous section on Deriving Demand—i.e., using an1087

Envelope theorem and perturbing prices or income.1088

Element A.9 (Law of Demand). The ability to calculate the change in demand with the change in1089

price for normal goods.1090

Element A.10 (Price Elasticity of Demand). The ability to calculate the price elasticity of demand1091

for a good given a utility function and a budget constraint.1092

Element A.11 (Consumption Changes). The ability to change the relative expenditures on goods1093

given changes in relative prices with ordinary or Giffen goods.1094

Element A.12 (Engel Curves). The ability to calculate the Engel curve for a good given a utility1095

function and a budget constraint.1096

Element A.13 (Income Elasticity of Demand). The ability to calculate the income elasticity of1097

demand for a good given a utility function and a budget constraint.1098

A.1.4 Labor Supply1099

While the proceeding elements tested tradeoffs in choices of bundles with different goods, services1100

(in Deriving Demand and over lotteries in Dynamic Consumption Decisions), often agents need1101

to make a choice trading off between leisure and consumption. The elements in this module test1102

an agent’s ability to optimally make that tradeoff by balancing the consumption goods required to1103

compensate for decreased leisure—which leads to the labor supply elasticity central to many branches1104

of economics. Since goods must be purchased, agents will consider the relative wage from additional1105

work compared to the price of goods. This leads us to be able to test an agent’s ability to distinguish1106

real from nominal prices.1107

Element A.14 (Deriving Labor Supply). The ability to calculate the labor supply curve given1108

specific preference parameterizations such as separable preferences or homothetic preferences.1109

Element A.15 (Labor Supply Elasticity). The ability to calculate the elasticity of labor supply.1110

Element A.16 (Marginal Rate of Substitution in Labor Supply). The ability to calculate the1111

marginal rate of substitution between consumption and leisure in a labor supply decision.1112

A.1.5 Dynamic Consumption Decisions1113

Individuals often face decisions about how to trade off more consumption today at the cost of1114

additional debt and less consumption in the future, and how best to plan for consumption with various1115

contingencies with the future is uncertain. Among other applications, this provides a formal model1116

of how to best choose a mixture of financial assets—i.e., portfolios. Consequently, this subsection1117

tests intertemporal consumption choices, optimal portfolio choice—which involves selecting a mix1118

of assets that maximizes expected utility given the risks and returns associated with each asset.1119

Understanding portfolio choice helps explain how consumers manage risk and make investment1120

decisions, which is vital for financial planning and economic stability.1121

Element A.17 (Price of Risk with Mean-Variance Utility). The ability to calculate the price of risk1122

for a mean-variance utility function.1123

Element A.18 (State-Contingent Consumption). The ability to calculate the optimal consumption1124

given a utility function and a set of state-contingent consumption bundles.1125

Element A.19 (Arbitrage). The ability to recognize and execute arbitrage opportunities given two1126

goods and prices you can resell.1127
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Element A.20 (Optimal Portfolio Choice with Bid-Ask Spreads). The ability to calculate the1128

optimal portfolio given bid-ask spreads.1129

Element A.21 (Exponential Discounting). The ability to exponentially discount future rewards or1130

costs.1131

Element A.22 (Intertemporal Consumption Smoothing). The ability to calculate a smoothed1132

consumption path and determine whether it is preferred to a non-smoothed path.1133

A.2 DECISIONS ON PRODUCTION IN NON-STRATEGIC ENVIRONMENTS1134

In the previous section, we derived how an agent facing a set of prices would choose the quantity1135

demanded of each good or service to maximize their utility function. We also tested the amount of1136

time that an agent might choose to wok (i.e., the quantity of labor supplied) given market wages—1137

where the agent trades off the additional goods they might purchase against the lost leisure time1138

they must forgo. Here, we look at the other side of the market and test an agent’s ability to operate1139

a production technology to maximize profits. Facing market prices for all production factors (e.g.,1140

wages and the capital) and the market price of the good or service they produce, the agent chooses the1141

quantity of each factor of production and the total output. Parallel to DECISIONS ON CONSUMPTION1142

IN NON-STRATEGIC ENVIRONMENTS, in Properties of Production Functions we first test general1143

properties of production functions to ensure the agent can reason about substitution between factors,1144

economies of scale in production, etc. Then in Deriving Factor Demand we solve the firms optimal1145

profit maximization problem to determine the optimal choice of factors of production and output1146

given a set of market prices. Finally, in Comparative Statics with Production we test the agents ability1147

to reason about comparative statics on prices and their impact on factor demand and firm output.1148

A.2.1 Properties of Production Functions1149

Production functions in these environments take continuous inputs of each factor, which lets us test an1150

agent’s ability to conduct marginal thinking when choosing the composition of inputs. For example,1151

by knowing the hourly wage of hiring an additional worker, the additional output the worker might1152

produce using the particular production process, and the price they can sell the firm’s output, they1153

can decide whether hiring the additional worker is profitable. In the absence of prices, this section1154

tests basic decision making of the agent for understanding substitution between factor of production,1155

marginal products for each input, and the understanding of the returns to scale of a production process.1156

Element A.23 (Marginal Products). The ability to calculate separate marginal products for a1157

production function with multiple inputs (e.g., labor and capital).1158

Element A.24 (Input Price Elasticity). The ability to calculate the responsiveness of output to a1159

proportional change in a specific input’s cost, holding all other inputs constant.1160

Element A.25 (Output Elasticity). The ability to calculate the output elasticity of an input in a1161

production function.1162

Element A.26 (Elasticity of Substitution). The ability to calculate the marginal elasticity of substi-1163

tution between inputs in a production function.1164

Element A.27 (Diminishing Marginal Products). The ability to calculate the diminishing marginal1165

products for a production function with multiple inputs.1166

Element A.28 (Average and Marginal Costs). The ability to calculate average and marginal costs1167

given a production function and input prices, and use them to determine scale.1168

Element A.29 (Returns to Scale). The ability to determine the proportional change in output1169

resulting from a proportional change in all inputs in a production function.1170

A.2.2 Deriving Factor Demand1171

This module tests the agent’s ability to act in the role of a profit maximizer in non-strategic situations1172

where they take as given the price which they could sell goods they produce, and must pay for inputs1173

to their production process at market rates (e.g., a competitive wage). Whereas in Deriving Demand,1174

the agent was solving a utility maximization problem subject to a budget constraint, here they solve a1175

profit maximization problem constrained by a production function. We test decisions on the quantity1176

and composition of inputs, and the quantity of output for canonical production functions such as1177

Cobb-Douglas and Leontief production functions given the agent’s understanding of production1178
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functions from Properties of Production Functions. The agent is asked to derive the factor demand1179

functions from first principles from profit maximization and test their ability to reason with the dual1180

cost-minimization formulation—analogous to the Hicksian vs. Marshallian demand of Deriving1181

Demand.1182

Element A.30 (Profit Maximization). The ability to calculate the optimal input bundle for a firm1183

given a production function and input prices. Examples of given production functions: Cobb-Douglas,1184

Leontief, Perfect Substitutes, CES production, CRS production, fixed costs.1185

Element A.31 (Expenditure Minimization). The ability to calculate the optimal input bundle for a1186

firm given a production function and input prices.1187

Element A.32 (Duality of Profit Maximization and Expenditure Minimization). The ability to1188

recognize that profit maximization is dual to expenditure minimization in production decisions and1189

achieve consistent solutions.1190

A.2.3 Comparative Statics with Production1191

This module considers how agents reason about changes in the prices at which they can sell their1192

goods, as well as changes in the costs of producing those goods. In particular, we can test how1193

this affects their optimal choice of inputs to their production process (e.g., how many people to1194

hire or robots to lease). We test comparative statics on the prices of inputs to the production1195

function, changes to the underlying production technology, and substitution between goods for classic1196

production functions such as Cobb-Douglas and Leontief. Analogous to the relationship between1197

Deriving Demand and Comparative Statics of Demand, these tests involve comparative statics of the1198

argmax from the profit maximization of Deriving Factor Demand—i.e., using an Envelope theorem1199

and perturbing factor prices.1200

Element A.33 (Price Elasticity of Supply). The ability to calculate the price elasticity of supply for1201

a good given a production function and input prices.1202

Element A.34 (Shephard’s Lemma). The ability to calculate factor demands given a cost function1203

using the derivatives with respect to prices.1204

Element A.35 (Input Price Elasticity). The ability to calculate how the optimal input bundle changes1205

with changes in input prices for a given production function.1206

Element A.36 (Total Factor Productivity). The ability to calculate total factor productivity given a1207

production function and input prices1208

A.2.4 Dynamic Production Decisions1209

While Deriving Factor Demand tested the ability of agents to make static (i.e., within-period) decisions1210

on the mix of input factors to maximize profits, many producer problems are inherently dynamic.1211

For example, we can test if an agent can optimally choose the amount of capital to purchase given1212

forecasts of future consumer demand and prices or choose how much to adjust the labor force in1213

cases when labor is difficult to relocate due to frictions such as hiring and firing costs. Finally, agents1214

are tested on their ability to make optimal entry and exit decisions based on their forecasted profits in1215

an evolving market.1216

Element A.37 (Dynamic Profit Maximization). The ability to calculate the optimal investment1217

decision given a production function and input prices.1218

Element A.38 (Entry and Exit Decisions). The ability to calculate the optimal entry and exit1219

decisions given a production function and fixed costs.1220

A.3 DECISIONS IN MULTI-AGENT NON-STRATEGIC ENVIRONMENTS1221

This setting tests the core logic of the relationship between supply-and-demand and prices, building1222

on the tests of optimal behavior in appendix A.2 and appendix A.1. Economists refer to “general1223

equilibrium” as the process where equilibrium prices and quantities emerge with a large number1224

of non-strategic, price-taking market participants interact. Unlike the strategic models found in1225

STEER, the assumption is that the market interactions that lead to this equilibrium occur through an1226

unspecified process that clears markets (i.e., a “Walrasian auctioneer” or “invisible hand”).1227

In particular, for non-strategic settings, all market participants take prices as given and choose the1228

quantity demanded or supplied in each market. For example, consumers jointly decide on the quantity1229
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demanded of goods and services given relative prices, and the quantity of labor supplied given a wage.1230

Simultaneously, producers choose the quantity supplied of the good and the demand of each factor of1231

production. With a large number of non-strategic market participants we can test the agents ability1232

aggregate all of their supply and demand functions to calculate a market-level supply and demand.1233

Finally, given the aggregated supply and demand functions for each market, we can test whether an1234

agent can find the market clearing price where supply is equal to demand in equilibrium—given their1235

internal model of all the market participants.1236

In this section, we organize by markets rather than by the role of a decision maker, as in the previous1237

sections. For example, in the goods market we first ensure agents understand how individual demand1238

functions from Deriving Demand aggregate to a market demand function for the good given a price,1239

then that the agent understands how to aggregate the output from each producer at a given price from1240

Comparative Statics with Production, and finally that the agent is able to calculate the price which1241

would equate demand and supply and clear the market in a non-strategic setting. Factor markets are1242

treated similarly.1243

Finally, given a system of equations that defines an equilibrium price we can perturb primitives (e.g.,1244

technological factors, distortions on decisions such as tax rates, or exogenous prices not determined1245

in equilibrium) to see how the market clearing price would respond. That is an essential tool for1246

agents to be able to reason about the impact of interventions and distortions in Appendix A.4.1247

A.3.1 Consumer Goods Market Aggregation1248

The market clearing prices in general equilibrium arise from the separate market-level demand and1249

supply curves, which sums the demand or supply across all market participants at a given price. Here1250

we test the aggregation of demand functions derived from individual preferences, as in Deriving1251

Demand and Comparative Statics of Demand, to a market demand function that summarizes the total1252

quantity demanded across all agents at a given price. Central to the tests is to verify that the agent1253

can aggregate the demands of market participants with heterogeneous preferences. On the other side1254

of the market, we test if the agent can aggregate the “supply functions” resulting from the optimal1255

choice of factors in Deriving Factor Demand and Comparative Statics with Production.1256

Element A.39 (Aggregation of Consumer Demand). The ability to calculate the aggregate demand1257

for a good given primitives of demand into expenditure shares.1258

Element A.40 (Aggregation of Offer Curve for the Good). The ability to calculate the aggregate1259

supply of a good given primitives of supply into production functions.1260

A.3.2 Factor Market Aggregation1261

As with the case of the goods market in Consumer Goods Market Aggregation the market demand1262

and supply for factors of production are essential to find the market clearing price. For example,1263

we test whether the agent can aggregate the individual labor supply curve decisions from market1264

participants who work at a particular wage, following Labor Supply, into a market labor supply curve.1265

On the other side of the market, we test whether the agent can aggregate the labor demand in Deriving1266

Factor Demand from producers into a market labor demand curve. The same tests are essential for all1267

factors of production, including capital.1268

Element A.41 (Aggregation of Labor Demand). The ability to calculate the aggregate demand for1269

labor given primitives of demand into expenditure shares.1270

Element A.42 (Aggregation of Capital Demand). The ability to calculate the aggregate demand for1271

capital given primitives of demand into expenditure shares.1272

Element A.43 (Aggregation of Labor Supply). The ability to calculate the aggregate supply of1273

labor given primitives of supply into production functions.1274

Element A.44 (Aggregation of Fixed Factor Supply). The ability to calculate the aggregate supply1275

of capital given primitives of supply into production functions.1276

A.3.3 Prices in Static Market Equilibrium1277

In this setting we test the agent’s ability to reason about how prices emerge in non-strategic setting1278

as a process of equating supply and demand, which in turn relies on their ability to aggregate those1279

market demand functions from consumer and producer behavior.1280
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More specifically, the core logic of general equilibrium is to find the equilibrium price by taking the1281

aggregated demand and supply functions for each market and find the prices which would equate1282

demand and supply. For example, the supply and demand functions for the good, as a function of1283

the price, in Consumer Goods Market Aggregation; or the supply and demand functions for factors1284

of production, as a function of factor prices in Factor Market Aggregation. This is done market by1285

market, taking all other prices as given—which requires the agent reason through comparative statics1286

of the solution to a system of equations while keeping everything else fixed.1287

Element A.45 (Find Equilibrium Price). The ability to calculate the equilibrium prices given a1288

production function and a demand function.1289

Element A.46 (Factor Shares in Equilibrium). The ability to calculate the factor shares in a1290

competitive equilibrium given a production function and input prices.1291

A.3.4 Comparative Statics of Equilibrium Prices1292

Here, we test whether agents can reason about how prices and allocations (e.g., labor, capital, and1293

goods) would respond to changes in the environment. The canonical tests are to see how changes in1294

model primitives (e.g., productivity of the production process) or exogenous forces from outside the1295

model (e.g., impact of weather), change the equilibrium price and allocations of labor, capital, etc.1296

that would clear the market and equate demand and supply.1297

Element A.47 (Comparative Statics with Total Factor Production Shocks). The ability to calculate1298

how equilibrium prices change with changes in input prices for a Cobb-Douglas production function.1299

Element A.48 (Comparative Statics with Inelastic or Perfectly Elastic Supply). The ability to1300

calculate how equilibrium prices change with changes in input prices for a production function with1301

inelastic or perfectly elastic supply.1302

A.4 EVALUATING EQUILIBRIA AND EXTERNALITIES1303

In DECISIONS IN MULTI-AGENT NON-STRATEGIC ENVIRONMENTS, we tested an agents ability1304

to reason about equilibrium prices and quantities arising from supply and demand decisions in a1305

non-strategic setting. Although preferences were reflected in the underlying supply and demand1306

functions themselves (i.e., utility maximization in the consumption decisions of DECISIONS ON1307

CONSUMPTION IN NON-STRATEGIC ENVIRONMENTS and profit maximization in the production1308

decisions of DECISIONS ON PRODUCTION IN NON-STRATEGIC ENVIRONMENTS), the equilibria1309

in DECISIONS IN MULTI-AGENT NON-STRATEGIC ENVIRONMENTS do not necessarily reflect1310

broader social preferences.1311

However, we can still ask whether the resulting “allocations” (i.e., the physical goods produced and1312

how they are distributed to individuals, the amount of hours worked, and the physical capital installed)1313

from the “invisible hand” in DECISIONS IN MULTI-AGENT NON-STRATEGIC ENVIRONMENTS1314

compare to a alternative ways of allocating resources which may directly take social preferences1315

into account. A central result of economics in non-strategic settings is that absent market imperfec-1316

tions and market power (i.e., when self-interested agents cannot directly manipulate prices because1317

they are too small) the competitive equilibria of DECISIONS IN MULTI-AGENT NON-STRATEGIC1318

ENVIRONMENTS typically yields the same allocations a benevolent planner might choose.1319

In this section, we consider how a social planner would evaluate the underlying welfare, efficiency,1320

and inequality that comes about in non-strategic equilbria with prices derived from equating supply1321

and demand. This leads to testing the ability of the agent to evaluate Pareto efficiency, consider1322

the welfare theorems, evaluate Pigouvian externalities, and weigh the welfare impact of various1323

market interventions which change the equilibria derived in DECISIONS IN MULTI-AGENT NON-1324

STRATEGIC ENVIRONMENTS.1325

A.4.1 Welfare and Decentralization1326

In this section, we test whether the agent can determine cases where the the competitive equilibrium1327

they calculate would yield the same distribution of resources and consumer welfare as that of a1328

benevolent social planner directly making the consumption and production decisions of all agents1329

directly (also known as the “Welfare Theorems"). In cases where the supply-and-demand relationships1330

lead to the same results as those of a planner, the competitive equilibrium and its prices are said to1331
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“decentralize” the problem of a social planner. We then test that the agent recognizes cases where the1332

welfare theorems fail, and can calculate the degree of welfare loss due to the distortions.1333

Element A.49 (First Welfare Theorem). The ability to recognize that a competitive equilibrium is1334

Pareto efficient.1335

Element A.50 (Second Welfare Theorem). The ability to recognize that any Pareto efficient alloca-1336

tion can be achieved as a competitive equilibrium with prices.1337

Element A.51 (Consumer Surplus). The ability to calculate consumer surplus given a demand1338

curve and a price.1339

Element A.52 (Producer Surplus). The ability to calculate producer surplus given a supply curve1340

and a price.1341

Element A.53 (EFficient Surplus). The ability to calculate the total surplus in a competitive1342

equilibrium and recognize that it is maximized in the competitive equilibrium.1343

Element A.54 (Deadweight Loss of a Monopoly). The ability to calculate the deadweight loss of a1344

monopoly given a demand curve and a supply curve.1345

A.4.2 Welfare Analysis of Market Equilibrium1346

In this section, we focus on the agent’s ability to evaluate welfare implications of various forms of1347

market equilibrium, particularly how different policies and distortions impact overall efficiency and1348

resource allocation. The agent is tested on their understanding of how different interventions—such1349

as taxes, subsidies, and price controls—affect welfare outcomes, and their ability to distinguish1350

between distortionary and non-distortionary policies.1351

Element A.55 (Identify Non-Distortionary Taxes). The ability to identify taxes which do not distort1352

the allocation of resources.1353

Element A.56 (Irrelevance of Tax Incidence). The ability to recognize that the incidence of a tax1354

does not depend on who is legally responsible for paying the tax.1355

Element A.57 (Labor Supply Distortions). The ability to determine the extent that labor taxes will1356

distort labor supply and change aggregates and prices.1357

Element A.58 (Capital Market Distortions). The ability to identify that taxing a fixed factor is1358

non-distortionary, but distorts with dynamic accumulation.1359

B Mitigating Data Contamination with auto-STEER1360

Data contamination, where training data inadvertently includes information from test sets, poses1361

significant challenges in machine learning, leading to overestimated model performance and compro-1362

mised generalization capabilities. To address this, we implemented a structured dataset generation1363

methodology incorporating human oversight, controlled data generation, and style transfer techniques.1364

This appendix details our approach and its alignment with best practices in the literature.1365

The auto-STEER methodology provides a systematic approach to generating datasets that mitigates1366

the risk of data contamination, ensuring the integrity of benchmarks and the validity of results. Below,1367

we outline the key aspects of auto-STEER that address this issue:1368

B.1 Challenging Models with Rephrasings:1369

Rephrasings are known to cause significant variance in model performance, as demonstrated in the1370

GSM-Symbolic dataset [32] and other studies [e.g., 61, 49] highlighting how syntactic or stylistic1371

changes can challenge generalization. In Appendix G, we also show that much of the observed1372

variance in LLM performance arises from these rephrasings, underscoring their role in robust1373

evaluations. auto-STEER leverages this phenomenon to craft diverse rephrased questions that test1374

beyond rote learning.1375

B.2 Dynamic Question Generation:1376

auto-STEER generates new questions through a structured process that balances diversity and con-1377

sistency. Questions are systematically rephrased or style-transferred to ensure they are different1378
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enough from the original templates to prevent memorization while retaining the same core meaning.1379

This approach reduces the risk of overlap with pre-trained data while preserving the focus of the1380

assessment.1381

The rapid advancement of large language models necessitates benchmarks that can evolve just as1382

quickly. To address this, auto-STEER incorporates a user interface that allows users to regenerate1383

entire datasets with minimal effort. By modifying domains, seeds, or even resampling numerical1384

values, users can quickly produce an entirely new dataset with minimal effort. This adaptability1385

ensures that benchmarks remain fresh and resistant to contamination as models advance.1386

C Technical Descriptions of Metrics1387

C.1 Accuracy.1388

Accuracy is the most broadly used metric for evaluating LLMs. We define accuracy metrics as metrics1389

that only look at the top token that the LLM outputs.1390

C.1.1 Exact-match accuracy1391

This is the fraction of questions answered correctly. In the FTQA format, we deem a LLM’s response1392

correct if its final answer, when rounded to the same number of significant figures as the model’s1393

output, matches the correct answer.This ensures that models are not rewarded for being vaguely1394

correct at low precision, while also penalizing overprecision: if an LLM reports more significant1395

figures than necessary and is incorrect, that discrepancy is treated as an error. This evaluation aligns1396

correctness with both the accuracy and confidence implied by the LLM’s numerical output.1397

C.1.2 Normalized accuracy1398

Elements can differ in their number of multiple choice options, leading to differences in the exact-1399

match accuracy of random guessing. We can compensate for this by reporting the gap between the1400

LLM’s exact-match accuracy and random guessing [6]. We compute normalized accuracy for an1401

element as follows:
∑

N

i=1 ai(ti)→
1→ai(ti)
|Oi|→1 , where ti is the top token the LLM outputs for question1402

i, ai is the indicator describing whether the top token is correct or not, N the number of questions in1403

the element, and |Oi| the number of options in the question. In other words, normalized accuracy1404

rewards an LLM with 1 point for every correct answer and penalizes an LLM by 1 over the number1405

of options minus 1 for each incorrect answer.1406

C.2 Calibration1407

It can also be useful to understand how confident an LLM is in its responses and the extent to which1408

these confidence levels align with accuracy.1409

C.2.1 Expected calibration error1410

We follow Liang et al. [28] and Raman et al. [38] in measuring the confidence of an LLM’s response1411

and computing the expected calibration error [ECE; 34, 17]. ECE measures how closely the probabil-1412

ity an LLM assigns to its top answer matches the actual probability of the correct answer, which in1413

our case is 1. ECE first splits the data into M equally spaced bins, where each bin contains the proba-1414

bilities the model assigned to their top token in that range: e.g., let pmax be the set of most probable1415

tokens for each question then if M = 2, then the first bin B1 = {p | p ↑ p
max and p ↑ [0, 0.5]}. It is1416

then defined as
∑

i↑[M ]
|Bi|/N · |acc(Bi)→ conf(Bi)|, where conf(Bi) is the average probability1417

the LLM assigned to its top token in bin Bi, and acc(Bi) denotes the exact-match accuracy in bin1418

Bi. We allow users to choose the number of bins, however, we set M = 10 uniformly spaced over1419

the interval [0, 1] as is standard.1420
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C.2.2 Brier score1421

The Brier Score of an element is defined as
N∑

i=1

1

|Oi|
∑

o↑Oi

(pi(o)→ ai(o))
2
,

where pi(o) is the probability the LLM assigns to option o in question i. Thus, if an LLM is overly1422

confident in an incorrect answer (e.g., assigns a probability of 0.9 to a wrong option), the Brier Score1423

will penalize it more heavily.1424

C.2.3 Expected probability assignment1425

EPA measures how much probability mass an LLM assigns to the correct answer option out of all1426

possible options. It is defined as: 1/N
∑

i↑[N ] p
↓
i
, where p

↓
i

is the predicted probability that the LLM1427

assigns to the correct option for question i.1428

D Technical Descriptions of Functional Families1429

In this section, we describe the functional forms that we use in testing economic concepts. Each1430

can be applied to consumer problems (as utility functions) or producer problems (as production1431

functions). We highlight the canonical mathematical form and note any technical differences in1432

interpretation when modeling consumers versus producers.1433

D.1 Cobb-Douglas1434

The Cobb-Douglas functional form is one of the most frequently used due to its tractable properties1435

and partial elasticities interpretation. Suppose there are n goods (or inputs). For a producer with1436

input vector x = (x1, x2, . . . , xn), a typical Cobb-Douglas production function can be written as:1437

f(x) = Ax
ω1
1 x

ω2
2 · · · xωn

n
,

where A > 0 is a scale parameter and each ωi ↓ 0. For a consumer’s utility function, the same1438

functional family looks like:1439

u(q) = q
ε1
1 q

ε2
2 · · · qεn

n
,

where q = (q1, q2, . . . , qn) are quantities of goods consumed, and εi ↓ 0. Economically, ωi (or εi)1440

often reflect the relative importance (or expenditure share) of each input (or good).1441

D.2 Leontief1442

A Leontief functional form encodes strict complementarity. A producer’s Leontief production1443

function is described as:1444

f(x) = min

{
x1
a1
,

x2
a2
, . . . ,

xn
an

}
,

where each ai > 0 captures a fixed proportion in which inputs must be combined. For a consumer,1445

their Leontief utility function is of the form:1446

u(q) = min

{
q1

ϑ1
,

q2

ϑ2
, . . . ,

qn

ϑn

}
.

This implies goods are perfect complements: the consumer gains utility only when goods are1447

consumed in the specific ratio ϑ1 : ϑ2 : . . . : ϑn. In production, perfect complementarity imposes that1448

a shortage of any one input strictly limits total output.1449

D.3 Linear1450

The linear family is the simplest and assumes perfect substitutability. For a producer, the linear1451

production function with inputs x takes the form:1452

f(x) = b1x1 + b2x2 + · · ·+ bnxn,
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where bi ↓ 0. This means each input contributes additively (and independently) to output. A1453

consumer’s linear utility function with goods q is:1454

u(q) = ϖ1q1 + ϖ2q2 + · · ·+ ϖnqn,

where ϖi > 0 captures the marginal utility for good i. In both contexts, linear forms imply a constant1455

rate of technical (or preferential) substitution, reflecting strong substitutability among inputs (or1456

goods).1457

D.4 Non-Linear1458

Beyond the classic forms, we use low-degree polynomial specifications for both production and utility1459

functions. Such functions can capture nonlinearities without resorting to strictly Cobb-Douglas or1460

other functional families. For a producer with inputs x, a second-degree polynomial looks like:1461

f(x) = ω0 +
n∑

i=1

ωi xi +
n∑

i=1

n∑

j=1

ωij xi xj ,

where ω0,ωi,ωij are specified parameters. Similarly, for a consumer’s utility function, we write:1462

u(q) = ε0 +
n∑

i=1

εi qi +
n∑

i=1

n∑

j=1

εij qi qj .

These forms allow more flexible curvature than linear or Cobb-Douglas, but remain computationally1463

tractable for low degrees. The main difference in interpretation is that producers typically focus on1464

return-to-scale questions or marginal products, while consumers focus on marginal utilities and1465

marginal rates of substitution.1466

E Examples1467

E.1 GPT-4o Aggregation of Consumer Demand (Shown)1468

User Message:

Q: As the owner of a premium bedding brand, I cater to a diverse group of customers. I’ve discovered
that there are 1204 potential buyers for my luxury bedding products. Out of these, 820 shoppers in urban
markets each follow the demand function 18.1→ 1.51P , while 384 shoppers in suburban markets each
adhere to the demand function 75.44→ 8.68P . How can I calculate the total demand for my bedding at a
price point of 8.4?
A. 2779.36
B. 1832.01
C. 5411.87 (Correct Answer)
D. 5050.03
Let’s think step by step. Explain your reasoning.

1469
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GPT-4o Message:

To calculate the total demand for your luxury bedding products at a price point of 8.4, we need to evaluate
the demand functions for both urban and suburban markets separately and then sum the results.
Step 1: Calculate the demand in the urban market
The demand function for the urban market is given by:

Qu = 18.1→ 1.51P

Substitute P = 8.4 into the urban demand function:

Qu = 18.1→ 1.51↑ 8.4

Qu = 18.1→ 12.684

Qu = 5.416

Since there are 820 shoppers in the urban market, the total demand in the urban market is:

Total Urban Demand = 820↑ 5.416

Total Urban Demand = 4441.12

Step 2: Calculate the demand in the suburban market
The demand function for the suburban market is given by:

Qs = 75.44→ 8.68P

Substitute P = 8.4 into the suburban demand function:

Qs = 75.44→ 8.68↑ 8.4

Qs = 75.44→ 72.912

Qs = 2.528

Since there are 384 shoppers in the suburban market, the total demand in the suburban market is:

Total Suburban Demand = 384↑ 2.528

Total Suburban Demand = 970.88

Step 3: Calculate the total demand
Now, sum the total demand from both markets:

Total Demand = Total Urban Demand + Total Suburban Demand

Total Demand = 4441.12 + 970.88

Total Demand = 5412

Therefore, the total demand for your bedding at a price point of 8.4 is approximately 5411.87.
The correct answer is:
C. 5411.87

1470

E.2 GPT-4o Aggregation of Consumer Demand (Hidden)1471

User Message:

Q: As the owner of a premium bedding brand, I cater to a diverse group of customers. I’ve discovered
that there are 1204 potential buyers for my luxury bedding products. Out of these, 820 shoppers in urban
markets each follow the demand function 18.1→ 1.51P , while 384 shoppers in suburban markets each
adhere to the demand function 75.44→ 8.68P . How can I calculate the total demand for my bedding at a
price point of 8.4?
Let’s think step by step. Explain your reasoning.

1472
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GPT-4o Message:

To calculate the total demand for your luxury bedding at a price point of 8.4, we need to evaluate the
demand functions for both urban and suburban markets separately and then sum the results. Here’s a
step-by-step breakdown:
1. Identify the demand functions:
- Urban market demand function: Qu = 18.1→ 1.51P
- Suburban market demand function: Qs = 75.44→ 8.68P
2. Substitute the price point (P = 8.4) into each demand function:
- For the urban market:

Qu = 18.1→ 1.51↑ 8.4

Calculate the value:
Qu = 18.1→ 1.51↑ 8.4 = 18.1→ 12.684 = 5.416

- For the suburban market:
Qs = 75.44→ 8.68↑ 8.4

Calculate the value:

Qs = 75.44→ 8.68↑ 8.4 = 75.44→ 72.912 = 2.528

3. Sum the demands from both markets to get the total demand:

Qtotal = Qu +Qs = 5.416 + 2.528 = 7.944

Therefore, at a price point of 8.4, the total demand for your luxury bedding products from both urban and
suburban markets is approximately 7.944 units.

1473

User Message:

A. 2779.36
B. 1832.01
C. 5411.87 (Correct Answer)
D. 5050.03
Answer by writing the option letter corresponding to the correct option. WRITE ONLY A SINGLE
LETTER.
A:

1474

GPT-4o Message:

B
1475

E.3 GPT-4o Profit Maximization1476

User Message:

Q: John manages a company that produces premium leather wallets. The production output depends
on the capital (K) he invests, represented by the function 3.97K0.45. At the moment, the wallets are
sold at a price of 3.64, and John has an initial capital of K1 = 3.3. He needs to decide how much
additional capital to invest for the next day’s market. John is aware of the potential price distribution for
his wallets for the next day, represented by price 2.7 with probability 0.24, price 2.14 with probability
0.42, price 3.52 with probability 0.34. There is also a cost associated with increasing his capital, given
by (K1 →K2)

2, and he applies a discount factor of 0.37 to future revenues. To maximize his profits, how
much additional capital should John invest?
A. 0.44
B. 0.14
C. 1.1
D. 0.09
Let’s think step by step. Explain your reasoning.

1477
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GPT-4o Message:

To determine how much additional capital John should invest to maximize his profits, we need to consider
the expected revenue from the different potential prices, the cost of increasing capital, and the discount
factor applied to future revenues. Let’s break this down step by step.
Step 1: Calculate the Expected Revenue
First, we need to calculate the expected price of the wallets for the next day using the given probabilities.

Expected Price = (2.7↑ 0.24) + (2.14↑ 0.42) + (3.52↑ 0.34)

Expected Price = 0.648 + 0.8988 + 1.1968 = 2.7436

Step 2: Determine the Production Function
The production function is given by 3.97K0.45. We need to calculate the production output for different
levels of capital K.
Step 3: Calculate the Revenue for Different Capital Levels
Let’s denote the initial capital as K1 = 3.3. We need to consider the additional capital !K that John
might invest. The new capital K2 will be K1 +!K.
The revenue function for a given capital K is:

Revenue = Expected Price ↑ Production Output

Revenue = 2.7436↑ 3.97K0.45

Step 4: Calculate the Cost of Increasing Capital
The cost of increasing capital is given by (K1 →K2)

2. Since K2 = K1 +!K, the cost becomes:

Cost = (!K)2

Step 5: Calculate the Discounted Future Revenue
John applies a discount factor of 0.37 to future revenues. Therefore, the discounted future revenue is:

Discounted Revenue = 0.37↑ Revenue
Step 6: Calculate the Net Profit
The net profit is the discounted revenue minus the cost of increasing capital:

Net Profit = 0.37↑ (2.7436↑ 3.97K0.45
2 )→ (!K)2

1478
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GPT-4o Message (Continued):

Step 7: Evaluate the Net Profit for Different Values of !K
We need to evaluate the net profit for the given options of additional capital investment:
Option A: !K = 0.44

K2 = 3.3 + 0.44 = 3.74

Production Output = 3.97↑ 3.740.45

Revenue = 2.7436↑ 3.97↑ 3.740.45

Discounted Revenue = 0.37↑ Revenue
Cost = (0.44)2 = 0.1936

Net Profit = 0.37↑ Revenue → 0.1936

Option B: !K = 0.14
K2 = 3.3 + 0.14 = 3.44

Production Output = 3.97↑ 3.440.45

Revenue = 2.7436↑ 3.97↑ 3.440.45

Discounted Revenue = 0.37↑ Revenue
Cost = (0.14)2 = 0.0196

Net Profit = 0.37↑ Revenue → 0.0196

Option C: !K = 1.1
K2 = 3.3 + 1.1 = 4.4

Production Output = 3.97↑ 4.40.45

Revenue = 2.7436↑ 3.97↑ 4.40.45

Discounted Revenue = 0.37↑ Revenue
Cost = (1.1)2 = 1.21

Net Profit = 0.37↑ Revenue → 1.21

Option D: !K = 0.09
K2 = 3.3 + 0.09 = 3.39

Production Output = 3.97↑ 3.390.45

Revenue = 2.7436↑ 3.97↑ 3.390.45

Discounted Revenue = 0.37↑ Revenue
Cost = (0.09)2 = 0.0081

Net Profit = 0.37↑ Revenue → 0.0081

Step 8: Compare the Net Profits
We need to compare the net profits for each option to determine which one maximizes John’s profit. After
calculating the net profits for each option, we find that:
- Option A: !K = 0.44 yields the highest net profit.
Therefore, the best option for John is to invest an additional capital of 0.44.
**Answer: A. 0.44**

1479

User Message:

Answer by writing the option letter corresponding to the correct option. WRITE ONLY A SINGLE
LETTER.
A:

1480

GPT-4o Message:

A
1481
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F Figures1482

Figure 3: Exact-match accuracy of all closed-source models across six elements and four functional
families (Cobb-Douglas, Leontief, Linear, and Non-Linear). The results demonstrate varying type
robustness, with Cobb-Douglas being a generally more challenging functional family but not con-
sistently harder for all elements. For instance, accuracy remains high for elements such as Output
Elasticity and Marginal Rate of Substitution, even on the Cobb-Douglas functions, while elements
like Input Price Elasticity and Returns to Scale show more variability across functional types. The
red dashed line indicates the random guessing baseline for comparison.
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Figure 4: This figure depicts exact-match MCQA performance on the Aggregation of Consumer
Demand element for the closed-source non-reasoning models against the number of digits of the
correct answer.

Figure 5: Scatter plot of calibrated performance on the Exponents element versus downstream
performance gap across LLMs. The x-axis shows the gap calculated as the quotient between a LLM’s
accuracy on real-valued exponent-based (Cobb–Douglas) tasks and its accuracy on the linear version
of those tasks for various downstream elements. The y-axis represents the LLM’s performance on
Exponents normalized by dividing by its average accuracy on the benchmark. Each point corresponds
to a specific (LLM, downstream element) pair, with colors distinguishing different LLMs.
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G Analysis of Rephrasing Variance1483

To understand the role of question rephrasings in our dataset, we conducted an analysis of variance1484

(ANOVA) on all other controllable features. These features include type, domain, and perspective.1485

The goal of this analysis was to quantify the variance in LLM performance attributable to these1486

features and, by exclusion, infer the contribution of rephrasings to the remaining unexplained variance.1487

The results for the top-performing models, summarized in Table 2 through Table 6, indicate that1488

the explained variance attributable to the controlled features is consistently low across all evaluated1489

models. This leaves approximately 56% (for claude-3-5-sonnet) and up to 91% (for o1-preview) of1490

the variance unexplained by the features included in the analysis. Given that question rephrasings1491

are a systematic element of our dataset design and were not included as a feature in this analysis,1492

we infer that the majority of this residual variance is due to differences in how models respond to1493

semantically equivalent but syntactically varied prompts.1494

Factor Sum of Squares Degrees of Freedom F-Statistic p-value

domain 7.5572 11.0000 3.0199 0.0823
perspective 3.4351 5.0000 3.0199 0.0823
CAR 21.1235 1.0000 92.8524 0.0000
element:type 178.6251 260.0000 3.0199 0.0823
Residual 2218.5356 9752.0000

R-squared 0.0941
Adjusted R-squared 0.0907

Table 2: ANOVA Results for o1-preview-2024-09-12

Factor Sum of Squares Degrees of Freedom F-Statistic p-value

domain 0.2619 11.0000 0.0928 0.7607
perspective 0.1190 5.0000 0.0928 0.7607
0-CoT 229.7295 1.0000 895.0635 0.0000
CAR 141.3015 1.0000 550.5338 0.0000
element:type 47.4945 1995.0000 0.0928 0.7607
Residual 16015.5015 62399.0000

R-squared 0.3368
Adjusted R-squared 0.3358

Table 3: ANOVA Results for gpt-4o-2024-05-13

Factor Sum of Squares Degrees of Freedom F-Statistic p-value

domain 0.4573 11.0000 0.1293 0.7191
perspective 0.2079 5.0000 0.1293 0.7191
0-Cot 34.0324 1.0000 105.8911 0.0000
CAR 159.1899 1.0000 495.3161 0.0000
element:type 82.9338 1995.0000 0.1293 0.7191
Residual 18642.5829 58006.0000

R-squared 0.2964
Adjusted R-squared 0.2953

Table 4: ANOVA Results for gpt-4o-mini-2024-07-18
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Factor Sum of Squares Degrees of Freedom F-Statistic p-value

domain 1.2389 11.0000 0.5004 0.6063
perspective 0.5032 5.0000 0.4472 0.5037
0-CoT 30.9486 1.0000 137.5118 0.0000
CAR 156.8135 1.0000 696.7577 0.0000
element:type 224.0990 1995.0000 0.4991 0.6071
Residual 18025.1941 80090.0000

R-squared 0.4436
Adjusted R-squared 0.4430

Table 5: ANOVA Results for claude-3-5-sonnet-20240620

Factor Sum of Squares Degrees of Freedom F-Statistic p-value

domain 1.4703 11.0000 0.3814 0.5369
perspective 0.6683 5.0000 0.3814 0.5369
0-Cot 0.2629 1.0000 0.7502 0.3864
CAR 0.4909 1.0000 1.4007 0.2366
element:type 266.6568 1995.0000 0.3814 0.5369
Residual 38842.9909 110826.0000

R-squared 0.2336
Adjusted R-squared 0.2330

Table 6: ANOVA Results for claude-3-haiku-20240307

H Models1495

Model Name Model Card Chat/
Instruction

Tuned
Closed-Source
OpenAI
o3 ↭
o1-preview ↭
gpt-4o ↭
gpt-4o mini ↭
Anthropic
claude-3-5-sonnet ↭
claude-3-haiku ↭
Open-Source
Google
gemma-3-4b-it google/gemma-3-4b-it ↭
gemma-3-12b-it google/gemma-3-12b-it ↭
gemma-3-27b-it google/gemma-3-27b-it ↭
Qwen
Qwen2.5-72B-Instruct Qwen/Qwen2.5-72B-Instruct ↭
Qwen2.5-7B-Instruct Qwen/Qwen2.5-7B-Instruct ↭
Qwen2.5-3B-Instruct Qwen/Qwen2.5-3B-Instruct ↭
Qwen2.5-0.5B-Instruct Qwen/Qwen2.5-0.5B-Instruct ↭
Qwen2.5-math-7B-Instruct Qwen/Qwen2.5-math-7B-Instruct ↭
Qwen2.5-math-1.5B-
Instruct

Qwen/Qwen2.5-math-1.5B-Instruct ↭

Continued on next page
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Model Name Model Card Chat/Instruction
Tuned

Meta Llama
Llama-3-8B-Instruct meta-llama/Meta-Llama-3-8B-Instruct ↭
Llama-3-70B-Instruct meta-llama/Meta-Llama-3-70B-Instruct ↭
Llama-3.1-8B meta-llama/Meta-Llama-3.1-8B ↔
Llama-3.1-70B-Instruct meta-llama/Meta-Llama-3.1-70B-Instruct ↭
Mistral
Mixtral-8x7B-Instruct-v0.1 mistralai/Mixtral-8x7B-Instruct-v0.1 ↭
Mistral-7B-Instruct-v0.3 mistralai/Mistral-7B-Instruct-v0.3 ↭
AI21
AI21-Jamba-1.5-Mini ai21labs/AI21-Jamba-1.5-Mini ↔

Table 7: Overview of the open- and closed-source LLMs we evaluated. The table includes their
names, their model card links, and whether they have been chat or instruction tuned. Models are
grouped by family and sorted by parameter size, with non-chat-tuned models listed first within each
group.
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I Extra Results1496

I.1 Performance on Elements Generated by Claude 3.5 Sonnet1497

To assess whether the performance on our dataset was influenced by the choice of the generation1498

LLM, we re-generated three elements from scratch using claude-3-5-sonnet. We selected Find1499

Equilibrium Price because it exhibited the largest performance gap between gpt-4o and claude-3-5-1500

sonnet, Diminishing Marginal Products was chosen as a random element with slight performance1501

variation across the models, and Price Elasticity of Demand served as a control where no significant1502

differences were expected.1503

Figure 6 shows the exact-match performance of both models on these three elements. We found no1504

significant differences in performance between any of the models.1505

Figure 6: Exact-match performance comparison between closed-source models on three that were
generated by gpt-4o and claude-3-5-sonnet. The elements were selected based on the observed
performance differences across models, with Price Elasticity of Demand serving as a control. The
figure shows no significant differences in performance between the models on these elements. Note
that the red dotted line signifies random guessing performance.
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I.2 Intertemporal Consumption Smoothing1506

When optimizing intertemporal consumption, the consumer maximizes the discounted utility1507

T∑

t=0

ε
t
u(ct)

subject to the intertemporal budget constraint. The first-order condition for an optimum leads to the1508

Euler equation:1509

u
↔(ct) = ε(1 + r)u↔(ct+1).

For our purposes, we tested models using a constant relative risk aversion (CRRA) utility function.1510

We used the following form:1511

u(c) =
c
1→ϑ

1→ ϑ
(ϑ ↗= 1),

where ϑ is the coefficient of relative risk aversion. This function exhibits diminishing marginal utility,1512

meaning that each additional unit of consumption adds less to utility when overall consumption1513

is high compared to when it is low. Due to diminishing returns, an agent is motivated to smooth1514

consumption over time, even with a discount factor of 1; spending too much in one period reduces1515

the marginal utility in that period, while having too little in another period results in a steep loss of1516

satisfaction.1517

For CRRA utility, the Euler equation is given by:1518

u
↔(ct) = ε(1 + r)u↔(ct+1),

where1519

u
↔(c) = c

→ϑ
.

Rearranging yields:1520

ct+1 = [ε(1 + r)]
1
ω ct.

However, we found that LLMs would often use linear utility functions in their analysis. For a linear1521

utility function, the Euler equation—which equates the marginal benefit of consuming today with1522

that of consuming tomorrow—simplifies significantly. If u↔(c) is constant (say, equal to 1), then aside1523

from the effects of discounting and interest, there is no curvature-driven motive to adjust consumption1524

levels across periods. The optimal allocation would then depend solely on the intertemporal budget1525

constraint and the returns on savings.1526

I.3 Deadweight Loss1527

To conduct our error analysis, we ran all closed-source models on the free-text QA adaptation of the1528

deadweight loss task. We began by inspecting a range of model outputs to identify distinct classes1529

of errors that were common across responses. Once these error categories were established, we1530

computed the answers corresponding to these errors and rescored the models based on whether their1531

outputs were within 98% of either the correct answer or any of the answers derived from specific1532

error assumptions. We also ensured that when there was any overlap in incorrect responses that we1533

chose the closest one to the model’s response. This approach allowed us to capture not only the1534

frequency of correct outputs but also the systematic nature of the models’ reasoning flaws. Below, we1535

provide a detailed breakdown of the primary error types:1536

• Incorrect Base for Deadweight Loss Type 1: This error incorrectly substitutes Pe → Pm (the1537

difference between the competitive equilibrium price and the monopolist’s price) in place of1538

the correct term Pm →MC(Qm) (the difference between the monopolist’s price and the1539

marginal cost at the monopolist’s quantity).1540

• Incorrect Base for Deadweight Loss Type 2: This error calculates the deadweight loss using1541

the difference between the monopoly price and the competitive equilibrium price as the base1542

of the triangle.1543

• Incorrect Base and Height Type 1: This error replaces the base of the DWL triangle1544

(Qe →Qm) with a miscalculated value for the equilibrium quantity and replaces the base1545

with the Type 1 variant.1546
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(a) Claude-3.5 Sonnet (b) GPT-4o

Figure 7: Error analyses of claude-3-5-sonnet and gpt-4o on the Deadweight Loss of a Monopoly
element. In reds and oranges are failures due to incorrect computations of the deadweight loss area;
in blue and further broken down are errors due to incorrectly interpreting the marginal cost. A more
detailed description of what each error means can be found in Appendix I.3.

• Incorrect Base and Height Type 2: This error assumes that Pe = MC(Qm), leading to an1547

incorrect height calculation where the DWL triangle’s height becomes Pm → Pe.1548

• Treating Marginal Cost as Constant: Instead of recognizing marginal cost as a function1549

derived from the supply curve (MC(Q) = asupply ↔ Q + bsupply), several models treated1550

marginal cost as a constant, often equal to the slope of the supply curve. This assumption led1551

to errors in determining the monopolist’s quantity and price, further propagating inaccuracies1552

in the deadweight loss calculation.1553

• Combined Errors: A subset of models combined the two errors above, simultaneously using1554

an incorrect formula for deadweight loss and assuming a constant marginal cost. This1555

compounded error significantly reduced the likelihood of producing a correct answer and1556

highlighted the systematic nature of the misunderstanding.1557
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Q: A baseball  team is buying new  equipment and needs 
baseballs, their  demand for  baseballs at any given 
pr ice is expressed by the fol low ing demand function 
-1.89Q + 2.6. What is the team's consumer  surplus i f  the 
pr ice of baseballs is 1.24? Let's think step by step. 
Explain your  r easoning.

User Prompt

To calculate the consumer surplus for the baseball team, first, we need to find the quantity demanded at the price of $1.24 using the demand function given. Then we'll compute the consumer surplus, which is the area between the demand curve and the actual price paid, up to the quantity purchased.

The demand function is given as:

D(Q) = -1.89Q + 2.6

The price the team is willing to pay is:

P = 1.24

We need to set the demand function equal to the price to solve for the quantity demanded (Q):

-1.89Q + 2.6 = 1.24

Now, solve for Q:

-1.89Q = 1.24 - 2.6
-1.89Q = -1.36

Next, divide both sides by -1.89 to find the quantity Q:

Q = -1.36 / -1.89
Q = 0.719 (approx)

Now that we have the quantity demanded at that price, we can calculate the consumer surplus. Consumer surplus is the difference between what consumers are willing to pay (as represented by the demand curve) and what they actually pay, summed over the quantity they purchase. It's the area of the triangle formed beneath the demand curve and above the price level up to the quantity demanded.

On a graph, the demand curve intercepts the vertical price axis at the maximum price consumers are willing to pay when quantity demanded is zero. This is given by the demand function when Q = 0:

D(0) = -1.89(0) + 2.6
D(0) = 2.6

This is the maximum price consumers are willing to pay for the first unit. The actual price paid is $1.24, which is constant for all the units since we're dealing with a fixed price, not a changing one.

The formula for consumer surplus (CS) for a linear demand curve is:

CS = 0.5 * (Base * Height)

In this context:

- Base is the quantity (Q), which is 0.719.
- Height is the difference between what the team is willing to pay for the first unit (D(0) = 2.6) and the actual price they pay for each unit (P = 1.24).

CS = 0.5 * (0.719) * (2.6 - 1.24)
CS = 0.5 * (0.719) * (1.36)
CS ? 0.3595 * 1.36
CS ? 0.489 (approx)

So the consumer surplus for the baseball team, given the price of baseballs is $1.24, is approximately $0.489 per baseball. However, to find the total consumer surplus for all baseballs purchased, you would not multiply by the quantity since the consumer surplus represents the entire area and not a per unit surplus. The computed value of approximately $0.489 is the consumer surplus for all 0.719 baseballs purchased? not per baseball.
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- Height is the difference between what the team is willing to pay for the first unit (D(0) = 2.6) and the actual price they pay for each unit (P = 1.24).

CS = 0.5 * (0.719) * (2.6 - 1.24)
CS = 0.5 * (0.719) * (1.36)
CS ? 0.3595 * 1.36
CS ? 0.489 (approx)

So the consumer surplus for the baseball team, given the price of baseballs is $1.24, is approximately $0.489 per baseball. However, to find the total consumer surplus for all baseballs purchased, you would not multiply by the quantity since the consumer surplus represents the entire area and not a per unit surplus. The computed value of approximately $0.489 is the consumer surplus for all 0.719 baseballs purchased? not per baseball.
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A. 0.49
B. 0.33
C. 0.21
D. 1.34
Answer  by w r i ting the option letter  cor responding to the 
cor rect option. WRITE ONLY A SINGLE LETTER. 
A:

User Prompt

Q: A baseball  team is buying new  equipment and needs 
baseballs, their  demand for  baseballs at any given 
pr ice is expressed by the fol low ing demand function 
-1.89Q + 2.6. What is the team's consumer  surplus i f  the 
pr ice of baseballs is 1.24? 
A. 0.49
B. 0.33
C. 0.21
D. 1.34
Let's think step by step. Explain your  r easoning.

User Prompt

Answer  by w r i ting the option letter  cor responding to the 
cor rect option. WRITE ONLY A SINGLE LETTER. 
A:

User Prompt

D

Output
Model used: gpt-4

B

Output
Model used: gpt-4

Figure 8: (Left) The hidden approach to 0-CoT: the model is given only the question and asked to
explain its reasoning before being provided with options. (Right) The shown approach to 0-CoT: the
model is presented with both the question and options before explaining its reasoning.
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Figure 9: The web app user interface for template writing. This page includes fields for type, domain,
grade level and tags (including perspectives). The right shows an example of template verification
which uses a LLM to generate another template using the example seed.

Figure 10: The web app user interface for template generation. This page allows for a selection
of domains, and types for which templates will be generated using the available example seeds.
Templates can then be verified and saved by the user.

46



Figure 11: The web app user interface for template AI double-checking. This page instantiates and
fills a set of question using a generated or example seed and then generates a response using an
OpenAI model. The page also reports the number of questions answered correctly as well as the
responses from the model.

Figure 12: The web app user interface for template validation. This page displays all generated seeds
returned by the model for manual validation.
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