Under review as a conference paper at ICLR 2026

IMPACT STATEMENT

NdLinear replaces each dense linear layer with an N-mode rank-1 factorization, cutting parameters
and FLOPs by up to two orders of magnitude on the benchmarks evaluated in this paper. The resulting
drop in compute and memory lowers energy use and enables on-device inference and federated
fine-tuning, broadening access to large-model capabilities for researchers and organizations with
limited hardware. The authors will release full reference code to facilitate reproducible adoption.
Because cheaper deployment also reduces the barrier for misuse, future work should evaluate privacy,
robustness, and bias in models that adopt this compressed design.

LIMITATIONS AND FUTURE DIRECTIONS

While NdLinear shows strong empirical efficiency, several promising research paths remain: (i) relax
the rank-1 Tucker structure by permitting higher multilinear ranks or adding cross-mode residual
connections to capture richer inter-mode interactions; (ii) develop memory-aware kernels that preserve
compute and bandwidth efficiency as the number of modes N or hidden size grows; (iii) learn or adapt
the ordering of mode transforms to exploit data-driven structure; (iv) benchmark the layer in larger
models (> 10B parameters), new modalities such as 3-D medical imaging, streaming time-series, and
edge devices, measuring accuracy, latency, and memory trade-offs; (v) derive approximation-error,
sample-complexity, and optimization guarantees; and (vi) investigate privacy, robustness, and fairness
when NdLinear enables lightweight federated deployment. Progress on these fronts will broaden
NdLinear’s applicability and deepen our understanding.

LLM USAGE DISCLOSURE

We used large language models (LLMs) to aid and polish writing, such as improving clarity, grammar,
and conciseness. We also used LLMs for retrieval and discovery, for example exhausting literature to
identify potential missing related work. All technical content, proofs, experiments, and results are
original contributions by the authors.

A DETAILED COMPARISON WITH RELATED METHODS

NdLinear’s design as a structure-preserving, parameter-efficient linear layer for N-D tensors is
informed by, yet distinct from, several established concepts in machine learning and tensor algebra.
We detail these relationships below.

A.1 TENSOR DECOMPOSITION METHODS

NdLinear’s core mechanism employs mode-wise tensor-matrix products prominent in Tucker decom-
position (Tucker, [1966; Kolda and Bader, [2009). However, unlike classical tensor decomposition
methods that primarily analyze or compress static data or pre-existing weight tensors (Novikov et al.|
2015; Newman et al.,[2024), NdLinear integrates these mode-wise operations as a learnable, dynamic
layer within a network. Its purpose is efficient forward transformation of activations while preserving
N-D structure, not data analysis or post-hoc model compression.

NdLinear can be viewed as a hand-crafted factorization of a fully-connected weight matrix. Specifi-
cally, the full weight matrix Wy, implicitly has a Kronecker product structure derived from mode-wise
matrices {W7,..., W, }. This corresponds to a rank-1 Tucker decomposition without a core tensor
(or equivalently, a core of rank 1 in each mode).

The main trade-off is expressiveness vs. efficiency. NdLinear’s decomposition is low-rank in a
multilinear sense—it cannot represent arbitrary non-factorizable interactions between dimensions.
More flexible decompositions (full Tucker or higher-rank tensor decompositions) capture more
interactions but require significantly more parameters compared to NdLinear’s simple sum) . D; H;
and can be more challenging to train, sometimes needing special initialization or multi-stage training.

If needed, one can extend NdLinear by increasing the factorization rank (e.g., learning multiple W;
matrices per mode and summing their effects, analogous to a rank- R core). However, our experiments

15

Under review as a conference paper at ICLR 2026

show the simple rank-1 version already performs well. Each W; clearly indicates how dimension
1 is transformed, providing better interpretability than general tensor decomposition methods that
disperse transformations across multiple factors.

A.2 FACTORIZED CONVOLUTIONS AND AXIAL OPERATIONS

Neural nets have long exploited axis-wise structure to cut parameters and impose useful priors. In
CNNs, an image tensor X € R *WxC g nor flattened; instead, convolutions slide local kernels
over the two spatial axes (H, W) while mixing channels C. In sequence models, a tensor X €
REXC (length L, features C) is processed along the sequence axis L (e.g., attention/conv) while
mixing feature channels C' within positions. Below we recap common factorized operators and their
limitations.

Definitions. Channels are feature maps carried alongside a position-like axis (e.g., RGB planes
or intermediate filters in CNNs; hidden features per token in sequences). Sequence (or spatial)
dimensions are position-like axes along which locality or ordering matters (e.g., time L, image height
H, width W).

Grouped convolutions. Grouped convs restrict each filter to operate on a subset of channels,
partitioning C' into groups to reduce parameters and FLOPs (Krizhevsky et al.} 2012; Xie et al., 2017).
Limitation: channel mixing is constrained within groups; cross-group interactions require additional
layers, and the grouping choice is a manual architectural prior.

Depthwise separable convolutions. Depthwise separable convs factor a full conv into a depthwise
spatial conv per channel followed by a 1x1 (pointwise) conv that mixes channels (Chollet, 2017bj
Howard et al.,2017). This yields large FLOP/parameter savings with strong accuracy. Limitations:
the factorization is tied to 2D spatial structure; expressivity hinges on the pointwise mixer; extending
beyond standard spatial axes typically needs custom kernels.

Axial (factorized) attention. Axial attention decomposes 2D/3D attention into a sequence of 1D
attentions applied along one axis at a time (e.g., height then width), cutting quadratic costs while
preserving long-range interactions along each axis (Ho et al., 2019; |Wang et al., 2020; [Yan et al.,
2023). Limitations: axis order becomes an architectural prior; full joint interactions across axes
emerge only after stacking, and costs can still be high for very long axes.

CNNs. CNNs are the canonical instance of axis-aware processing: they exploit spatial locality (fac-
torization in (H, W)) and defer heavy channel mixing to 1x 1 pointwise layers. Grouped/depthwise
variants intensify this factorization to further reduce compute.

NdLinear in this landscape. NdLinear generalizes the factorization principle beyond conv/attention
mechanics: given an n-D activation X € RP1**DPn it systematically factorizes a linear map into
mode-wise transforms D; — H; and applies them sequentially, producing a structured output
Y e RFrxxHn Thuys, instead of a single dense matrix RIT: Pi — RII: #: NdLinear uses n small
matrices with) . D; H; parameters, preserving the N-D shape throughout. Unlike grouped/depthwise
convs (tied to spatial kernels) or axial attention (tied to attention mechanics and axis ordering),
NdLinear: (i) applies to arbitrary N-D tensors (images, videos, spectrograms, multivariate time series,
tabular tensors), (i) naturally supports both compression and expansion per mode (H; < D), (iii)
creates insertion points for normalization/activation between mode maps, and (iv) preserves a clear
axis-wise inductive bias without requiring handcrafted groups or convolutional kernels.

Known failure modes and how NdLinear relates. Axis-factorized operators can underperform
when tasks require strong entangled cross-axis interactions (e.g., patterns tied jointly to (H, W)
rather than separably to each). Grouped/depthwise convs may also struggle if the chosen grouping
misaligns with semantics; axial attention can be sensitive to axis order and depth. NdLinear shares
the core trade-off (axis-wise separability vs. full expressivity) but makes it explicit and tunable by
per-mode widths/ranks or stacking; it inherits the efficiency benefits of factorization while remaining
N-D agnostic in form.

16

Under review as a conference paper at ICLR 2026

A.3 TENSOR CONTRACTION AND REGRESSION LAYERS

Tensor Contraction Layers (TCL). TCLs (Cichocki} 2014; Novikov et al.,2015) implement a
one-shot multilinear map by contracting an input tensor X € RP1*"XYm with a set of mode matrices
{VF) ¢ RExxDrym yielding a reduced tensor X x1 V1) xq ..o x,,, V) € REVCXEm The
goal is typically dimensionality reduction (feature compression) via tensor contractions prior to
downstream layers; intermediate positions for normalization/activation and per-mode biases are
usually not part of the basic formulation (Cichocki, 2014; Novikov et al., 2015).

Tensor Regression Layers (TRL). TRLs (Kossaifi et al., [2020) cast prediction as supervised
regression/classification with a fixed tensor format for the weight (e.g., Tucker-/TT-structured).
Given an input tensor X, a TRL fits a low-rank tensor W (plus optional bias) such that (W, X)
(or a nonlinear variant) matches targets. The emphasis is on learning with low-rank weights for
sample/parameter efficiency; the tensor format (ranks/cores) is chosen a priori and does not expose
interleaved normalization/activation between modes (Kossaifi et al., 2020).

NdLinear vs. TCL/TRL. NdLinear is a structure-preserving, learnable linear layer that applies
sequential mode-wise maps to activations, Y = X x; Wy Xo -+ X, W,,, € REXXHm wyith an
implicit rank-1 Tucker/Kronecker weight and), Dy H), parameters. This design differs in intent
and mechanics:

* Goal. TCL primarily contracts modes for reduction (Cichocki, 2014} Novikov et al., 2015);
TRL fixes a low-rank regression format (Kossaifi et al.|[2020); NdLinear is a drop-in linear
alternative for N-D activations that preserves the full tensor shape and supports expansion
or compression per mode (Hy, =2 Dy,).

* Execution. TCL performs a single contraction; NdLinear performs sequential per-mode
maps, creating natural insertion points for LayerNorm/Dropout/activations and allowing
per-mode biases. TRL optimizes a fixed low-rank weight but does not expose interleaved,
mode-by-mode transforms during the forward pass.

* Expressivity/control. All three impose structured priors; NdLinear’s axis-wise separability
can be tuned via widths/ranks or stacked blocks, interpolating between strong separability
and near-dense behavior while retaining N-D outputs.

TCL as a special case of NdLinear. Under the joint constraints (i) Hy= R, for all £ (no expansion
beyond the contracted size), (ii) no per-mode biases, and (iii) no interleaved operations between mode
maps (i.e., a single, commutative product), the one-shot TCL contraction coincides with NdLinear
(Cichocki, [2014; Novikov et al., 2015). Outside this narrow corner, NdLinear is strictly more general
and practical: it preserves N-D structure through sequential maps, supports per-mode biases and
interleaving (stability), and flexibly expands or compresses each mode.

A.4 STRUCTURED LINEAR LAYERS

NdLinear sits within the broader family of structured linear layers for parameter efficiency (Denil et al.,
2013; Wei et al., 2024). Classic approaches constrain a large dense weight W e R(IL Di)x(11; #:)
by imposing algebraic structure on W itself—e.g., low-rank factorizations (Sainath et al., 2013),
block/Butterfly/Monarch-style sparse—fast transforms (Dao et al.,[2022), or other learned structured
matrices (Sindhwani et al., 2015; |Potapczynski et al.,2024). These methods decouple the parameteri-
zation of W from the native organization of the activations, often yielding strong compression but
requiring the model to implicitly discover how that structure aligns with the data.

In contrast, NdLinear derives its structure from the N-D layout of the input. Given X € RP1XXDn,

NdLinear replaces the dense map RIL: Pi — RIL: #: with sequential mode-wise transforms D; — H;,
preserving tensor shape and inducing an explicit Kronecker (rank-1 Tucker) weight with only
>, DiH; parameters. This data-centric factorization (i) makes the axis-wise inductive bias trans-
parent and tunable (via per-mode widths/ranks or stacking), (ii) supports per-mode expansion or
compression (H; = D;), and (iii) exposes natural insertion points for normalization/activation be-
tween modes—while retaining the efficiency benefits typical of structured linear layers (Denil et al.|
2013;|Wei et al., 2024; |Sainath et al.,[2013;|Dao et al., [2022;|Sindhwani et al., 2015; [Potapczynski
et al., [2024).

17

Under review as a conference paper at ICLR 2026

A.5 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) address data with irregular connectivity by propagating information
over edges via message passing (Scarselli et al., | 2008; |Micheli, 2009; |Bronstein et al.,2017; [Zhou
et al., [2020; [Wu et al., 2020). Concretely, a GNN updates node features by aggregating messages
from neighbors and applying learnable transforms (Gilmer et al., |[2017; |Kipf and Welling, [2017;
Hamilton et al.|[2017). Stacking layers increases the receptive field and enables global interaction,
but typically requires multiple rounds of propagation to mix distant nodes (Battaglia et al., 2018)).

While an N-D grid (e.g., image or tensor lattice) can be modeled as a graph (one node per cell,
edges to local neighbors), this introduces unnecessary overhead on regular grids: message passing
is inherently local, so achieving global mixing along each axis often demands many layers, with
added memory/compute and potential optimization issues (e.g., depth-related bottlenecks). Moreover,
parameter sharing in GNNss is tied to edge types and neighborhood schemas, not directly to axis-wise
tensor structure.

NdLinear takes the complementary route for regular tensor grids. Given X € RP1*xDn it applies
global, mode-wise linear maps D; — H; in a single layer, mixing information along entire axes
without constructing a graph or iterating local messages. This preserves the N-D layout, yields
>; DiH; parameters via an implicit Kronecker (rank-1 Tucker) structure, and exposes insertion
points for normalization/activation between mode maps. In short: GNNs excel when connectivity is
irregular or non-Euclidean (Bronstein et al., 2017; Zhou et al., 2020), whereas NdLinear specializes
in axis-aware, structure-preserving transformations on regular tensors, providing simpler and often
faster global mixing along each dimension.

When to use which. Use GNNs for arbitrary graphs, heterogeneous edge types, and relational
reasoning on non-grid data (Scarselli et al., 2008}; [Micheli, |2009; Bronstein et al.|[2017; Zhou et al.
2020; [Wu et al., [2020). Use NdLinear when data are naturally arranged as regular tensors and
you want efficient, axis-wise global interactions without flattening; its bias toward axis separability
provides parameter savings and predictable behavior on grid-structured domains.

A.6 OTHER SPECIALIZED APPROACHES

A variety of specialized architectures preserve structure without resorting to full flattening:

Slicing-based layers. Methods that slice inputs along spatial/temporal (or rotated) subdomains
process each slice with shared weights, then recombine (Shao et al.,[2016; Dieleman et al.,[2016).
This preserves locality and orientation information with modest compute. Limitations: boundaries
between slices can hinder cross-slice interaction; designs are task-/geometry-specific and often require
bespoke preprocessing.

Capsule Networks. Capsules use vector/matrix-valued units and routing to model part—whole
hierarchies and pose relationships (Hinton et al., |2011; [Sabour et al., 2017; |Hinton et al., 2018).
They maintain structured representations through learned agreement between capsules. Limitations:
routing adds iterative, nontrivial overhead; scaling to large resolutions and datasets has proven
challenging; design choices (routing, capsule size) are sensitive.

Hadamard/Fourier feature mixing. Fixed orthogonal or Fourier-like transforms provide global
mixing with O(N log N) or even O(N) cost (e.g., Random Features, Fastfood, FNet, Block-based
variants) (Rahimi and Recht| |[2007; Le et al.||2013; [Tancik et al., 2020; Lee-Thorp et al.| 2022; Pan
et al.,[2022). Limitations: transforms are fixed (non-learnable) or only weakly parameterized, so
alignment with data structure must be recovered by subsequent layers; expressivity depends on depth.

Relation to NdLinear. NdLinear applies learned, factorized linear maps along each tensor mode,
preserving the full N-D layout while enabling axis-wise global mixing with). D; H; parameters.
Unlike slicing (Shao et al., [2016} |Dieleman et al.| [2016)), it does not require hand-crafted partitions;
unlike capsules (Hinton et al.| 2011} [Sabour et al., 2017; |Hinton et al.| |2018), it avoids iterative
routing; unlike fixed Hadamard/Fourier mixers (Rahimi and Recht, 2007; |Le et al.| 2013; Tancik
et al.| [2020; |Lee-Thorp et al.; 2022} |Pan et al., 2022), it learns mode-wise transforms end-to-end. This

18

Under review as a conference paper at ICLR 2026

yields a simple, geometry-agnostic mechanism for structure-preserving, parameter-efficient linear
transformation on regular tensors.

B MORE RELATED WORK

Modern neural networks contain substantial parameter redundancy: a large fraction of weights can be
predicted from a small subset, sometimes up to 95% with no loss in accuracy (Denil et al.,[2013).
This has motivated a broad line of work on efficient parameterizations that preserve accuracy while
reducing storage and compute.

Structured tensor factorization. A major thread leverages high-order structure via tensor de-
compositions of weights. CP/Tucker-style compressions applied to convolutional kernels reduce
parameters and inference cost (Lebedev et al.| [2015). Tensor Train (TT) layers compress fully-
connected mappings into compact tensorized operators (Novikov et al.,[2015). Block-Term (BT)
tensor networks combine Tucker- and CP-like structure for additional flexibility (Ye et al.| [2020).
These tensor-structured layers reduce parameters while retaining rich multi-way interactions by
factoring weights across modes.

Structured matrices and parameter sharing. Another approach imposes algebraic structure on
large dense matrices, replacing them with families that admit fast transforms and fewer degrees of
freedom. Toeplitz-like and related structured operators provide strong compression with competitive
accuracy (Sindhwani et al., 2015); related families (e.g., circulant, block-circulant) and low-rank
factorizations likewise trade unrestricted expressivity for parameter/compute efficiency (Lebedev,
et al.,[2015).

Multi-space representations. Complementary to structural compression, multi-space learning
embeds features into multiple geometries to better capture hierarchy and long-range relations. For
example, jointly using Euclidean and hyperbolic spaces for LIDAR yields improved hierarchical
encoding and pose estimation (Wang et al.,2023). Such representations enhance expressivity without
necessarily increasing individual layer sizes.

Preserving high-order structure in practice. Operational layers that respect native tensor axes
often strike favorable accuracy—efficiency trade-offs. Depthwise separable convolutions split channel-
wise and spatial mixing to cut FLOPs while preserving inductive bias (Chollet, |2017b; Howard
et al.,2017). However, many fully-connected stages still flatten activations, discarding axis structure
learned upstream.

Positioning NdLinear. NdLinear aligns with these trends but differs in where structure is im-
posed: rather than factorizing weights after flattening, it performs mode-wise learned linear maps
directly on N-D activations, preserving tensor layout throughout. Conceptually, it is a rank-1 Tucker
(Kronecker) parameterization of the dense linear map, with parameters scaling as » .. D; H; rather
than [, D; [, H;. This data-aligned factorization complements tensorized weights (Lebedev et al.,
2015; Novikov et al., 2015; Ye et al.,|[2020) and structured matrices (Sindhwani et al., [2015), and,
like depthwise separable convolutions (Chollet,|2017b;|Howard et al.,[2017), leverages axis-aware
inductive bias—without resorting to flattening.

C PROOFS AND TECHNICAL DETAILS

C.1 VC-DIMENSION ANALYSIS

We analyze the expressive capacity of NdLinear compared to standard linear layers. Following
Bartlett et al. (2019), any piecewise-linear feedforward network with P parameters has VC-dimension
©(Plog P).

Theorem C.1 (VC-Dimension of NdLinear). Consider input tensors of shape (B, a, b, ¢) transformed
to outputs of shape (B,d,d,d). Let:

* Nyanitia = dabc (parameters in vanilla linear layer)

19

Under review as a conference paper at ICLR 2026

* Ny = d(a+ b+ c) (parameters in NdLinear)
Then:
1. As d — oo with a, b, ¢ fixed: Nuyg = O(Nyanitia)
2. NdLinear’s VC-dimension is ©(N,log Nyg)

Proof. For part (1), observe that:

atbte dabe — atbte - Noyanitia (4)

Noa = dla+b+c) = abc abc

a+b+c
abc

is a positive constant (for fixed a, b, ¢), we have:

Npg = 6(]Vvanilla) asd — oo (5)

Since

For part (2), by the Bartlett et al. result, since NdLinear has N,g parameters and maintains piecewise-
linear structure through ReLLU activations:

VCdimndLinear = @(Nnd 10g Nnd) (6)
O

Interpretation: While NdLinear uses fewer parameters for finite d, as the hidden dimension grows,
its parameter count becomes proportional to vanilla linear layers, preserving the same VC-dimension
scaling.

Theorem C.2 (Parameter Count Lower Bound). For positive integers a, b, c, d:

d(a+ b+ c) > log(dabe) @)

Proof. We have:
log(dabc) = logd +loga + logb + log ¢ (8)
<(d-1)+(a—1)+(b—-1)+(c—1) (using logz <z —1))
=d+a+b+c—4 (10)

Therefore:

d(a+b+c) —log(dabe) >d(a+b+c¢c)—(d+a+b+c—4) (11)
=d-1)(a+b+c)—d+1+4 (12)
=d-1)(a+b+c—1)+4 (13)
>4>0 (14)
since d > 1 and a + b + ¢ > 3 for non-trivial tensors. O]

C.2 PEAK ACTIVATION MEMORY ANALYSIS

Proposition C.1 (Peak Memory Overhead Bound). For an input tensor with m modes of sizes
(di,...,dm) where [\, d; = D, and output sizes k; < d;, the peak additional activation memory
for backpropagation satisfies:

extra activation memory < max;(k;/d;) - min; d;

1
- — < - < —
baseline activation memory m - min; d; m

(15)

For typical 3D tensors (m=3), this overhead is at most 33%.

Proof. During forward pass, NdLinear sequentially transforms each mode. For backpropagation, we
store intermediate activations after each mode transformation.

20

Under review as a conference paper at ICLR 2026

After transforming j modes, the tensor has shape:

(B,k1,....kj,djt1,...,dm) (16)
The peak extra memory occurs at the stage with the largest intermediate tensor. Since k; < d;, each
intermediate tensor has at most B.D elements. The baseline memory is also BD elements.

In the worst case where all k; = d;, we have at most (m — 1) intermediate tensors to store, but only
one is needed at any given time during backprop (due to sequential processing). Therefore:

BD - maxz(kl/dl) < i
BD - m

Peak overhead = (17)

O

C.3 COMPUTATIONAL COMPLEXITY

Proposition C.2 (Exact FLOP Count). NdLinear transforming X € RBXDP1rxXDn 15y ¢
REBXH1xXHN poqyires:

N

k—1 N
FLOPsyazinear = 2B | |] H; 11 D | DuH: (18)
k=1 j=1 j=k+1

where the factor of 2 accounts for multiply-add operations.

This is typically O(BNDN*!) for D; = H; = D, compared to O(BD?") for vanilla linear
layers—yielding orders of magnitude savings as N increases.

D IMPLEMENTATION DETAILS AND TRAINING PROTOCOL

Here we present implementation details and training protocol of NdLinear (Algorithm [I). Implement-
ing NdLinear in practice involves careful attention to efficiency and compatibility with existing deep
learning frameworks. We outline key considerations in the following.

Memory Efficiency. Despite handling high-dimensional tensors, NdLinear is memory-efficient due to
its factorized parameterization. The forward pass requires allocating intermediate tensors during each
mode transformation (after each linear operation, the tensor has one updated dimension). However,
these intermediate allocations are of the same order as the input/output size and significantly smaller
than the memory required for a gigantic flattened weight matrix. Modern tensor libraries (PyTorch,
TensorFlow) facilitate implementing transpose-reshape-multiply steps without excessive data copying.
We ensure in-place operations where possible (e.g., using view in PyTorch). Operations primarily
reuse the input buffer for output as each mode is transformed, ensuring modest peak memory usage.

Parameter Initialization. Each weight matrix W, can be initialized using standard strategies for
linear layers (Xavier/Glorot (Glorot and Bengio, [2010) or Kaiming (He et al.| 2015) initialization
based on fan-in and fan-out). Since W, has fan-in D; and fan-out H;, the initialization follows

. 6 6 . . o ee . . .
Uni(—,/ D\ D Hi) for Xavier uniform, or analogous formulas for other initializations. This

helps maintain stable gradients across modes. One subtle point is that if n is large, each mode’s weight
is relatively small, mitigating the risk of extremely large fan-in. We observed no initialization-specific
difficulties; indeed, NdLinear’s parameter reduction may help avoid gradient explosion or vanishing
issues in deep networks.

Computational Overhead. Factorized operations (multiple transpose and reshape operations with
smaller matrix multiplications) are highly optimized in modern BLAS libraries. Practically, runtime
is comparable to or faster than fully-connected layers with similar outputs, due to reduced total
FLOPs. Python-level overhead is minimal; the algorithm can be implemented in a single forward
function looping over modes. For moderate n (up to 4 or 5 dimensions), this loop is short. Explicit
loops or unrolling (NdLinear2d, NdLinear3d, etc.) are feasible, but a simple loop suffices. Autograd
engines handle tensor operations seamlessly, allowing standard backpropagation. Each W; receives
gradients normally from upstream gradients.

21

Under review as a conference paper at ICLR 2026

Training Protocols. NdLinear layers can be trained end-to-end with standard optimization algorithms
(SGD, Adam) just like standard linear layers. Loss functions depend on the task (cross-entropy,
MSE, etc.) and are unaffected by NdLinear. However, because NdLinear significantly reduces
parameters compared to fully-connected layers, it tends to overfit less, possibly needing less aggressive
regularization. Common techniques remain useful: weight decay (L2 regularization) on weights W,
and optionally dropout between layers. Dropout can be applied before or after NdLinear; entries in
the output tensor Y can be dropped as usual. Specialized regularizers for factorized weights (norm
regularization, orthogonality) may help further restrict solution spaces, though not required.

Optimization and Convergence. Practically, each W; is updated based on a portion of the overall
error gradient (due to sequential mode transforms). In experiments, all W; matrices learned smoothly
with default optimizer settings. If dimensionality varies significantly across modes, gradient clipping
or adaptive learning rates per mode may be beneficial. Throughout our numerical investigations,
training dynamics are stable overall — NdLinear layers integrated seamlessly into models without
requiring special tuning. Standard protocols (learning rate schedules, early stopping criteria, etc.)
used for equivalent models with dense layers apply here.

E FULL EXPERIMENTAL DETAILS AND RESULTS

We present full experimental details and more results on LoRA fine-tuning in appendix
language-model pretraining (OPT and BERT) in appendix time-series prediction (RNN and
Transformer) in appendix [E.2} tabular data in appendix [E.3} and vision tasks (CNN, ViT, and
DiT) in appendix The complete experiment code is available at https://github.com/
cyclone—-trout/ndlinear_neurips.

E.1 PARAMETER-EFFICIENT FINETUNING WITH LORA AND NDLINEAR-LORA

In our study, we utilized state-of-the-art transformer architectures to investigate the impact of targeted
modu le adaptation. We selected two base models, Qwen3-1.7B-Base (Yang et al.,2025) and Meta-
Llama-3-8B (Dubey et al., [2024), recognized for their robust performance across various tasks.
To focus our adaptations, we targeted specific modules within these models, including g_pro7,
k_proj,v_proj,o_proj,gate_proj, up_proj, and down_proj. This approach allowed
us to enhance model capacity and efficiency selectively.

For the adaptation process, we employed Low-Rank Adaptation (LoRA) techniques (Hu et al.| [2022),
specifically using both NdLinear LoRA and classic LoRA configurations. We explored a range of
alpha values (1, 4, and 8) and rank settings (1, 4, and 8) to determine the optimal configuration for
our models. This exploration was critical for understanding how different levels of parameter sharing
and scaling affect model performance and generalization.

The training process was conducted using the AdamW optimizer, a choice informed by its effec-
tiveness in managing the complexities of transformer models. We set the learning rate to 1 x 1074,
which provided a suitable balance between convergence speed and training stability. The batch size
was set to 1, a decision that facilitated the use of gradient accumulation to optimize GPU memory
usage. To ensure the models could handle a wide variety of inputs, we set the maximum sequence
length to 512 tokens. The models were trained over 2 epochs, a duration found to be sufficient for
achieving significant performance improvements without excessive computational cost. To ensure
reproducibility, we used a random seed of 42 across all experiments.

Our models were fine-tuned using two datasets: Math10K and CommonsenseQA. These datasets
were chosen for their ability to challenge the models with both mathematical reasoning and common-
sense understanding. For evaluation, we employed a diverse set of benchmark datasets, including
GSMSK, MultiArith, ARC-C, ARC-E, and BoolQ. This selection allowed us to assess the models’
generalization capabilities across different types of reasoning tasks.

The entire implementation was carried out on a single NVIDIA H100 GPU, using Hugging Face’s
AutoModelForCausallM framewor integrated with our custom NdLinear adapter layer.
Datasets were tokenized using the default tokenizer for each model, with padding applied to the
eos_token. We employed label masking to exclude prompt tokens from loss computation, ensuring

'https://huggingface.co/docs/transformers/en/model_doc/auto

22

https://github.com/cyclone-trout/ndlinear_neurips
https://github.com/cyclone-trout/ndlinear_neurips
https://huggingface.co/docs/transformers/en/model_doc/auto

Under review as a conference paper at ICLR 2026

that training focused on the relevant portions of the input. Our implementation leveraged PyTorch,
along with Hugging Face Transformers, PEFT, and Accelerate, to facilitate efficient model training
and adaptation. Evaluation was performed in a zero-shot setting using greedy decoding, which
provided a consistent measure of model performance without the variability introduced by sampling
methods.

Open Pretrained Transformer (OPT) (Zhang et al., 2022). For OPT-Small, which originally
contains 124M parameters, replacing the standard linear layers with NdLinear reduces the parameter
count to 119M. Similarly, for OPT-Mid, the parameter count decreases from 350M to 337M after the
substitution.

Table 5: Perplexity comparison for OPT-Small and OPT-Mid models with Linear vs. NdLinear layers.

Linear NdLinear

OPT-Small (Params) 15.970 (124M) 15.755 (119M)
OPT-Mid (Params) 12.926 (350M) 12.565 (337M)

In Table[5} both the OPT-Small and OPT-Mid models achieve lower perplexity scores after replacing
standard linear layers with NdLinear layers, despite having fewer parameters. Moreover, the per-
formance improvement becomes more significant as model size increases, with the perplexity gap
widening from 0.215 in OPT-Small to 0.361 in OPT-Mid. Figure 2 shows that OPT models with
NdLinear feedforward layers achieve lower final training and evaluation losses compared to their
counterparts using standard linear feedforward layers.

40 3.0
OPT-Small Linear
3.8 —— OPT-Small NdLinear
—— OPT-Mid Linear 29
36| OPT-Mid NdLinear 4
9 N
B34 828
- c
o i)
£°2 87
£ 3
=30 L‘I.Ig
26 OPT-Small Linear
28 —&— OPT-Small NdLinear
—#— OPT-Mid Linear
2.6 25) :
: OPT-Mid NdLinear
0 20000 40000 60000 80000 100000 120000 20000 40000 60000 80000 100000 120000
(a) Training Loss during Pre-Training. (b) Evaluation Loss during Pre-Training.

Figure 2: Training and evaluation loss curves during OPT model pretraining. NdLinear variants consistently
achieve lower loss values. x-axis represents the number of training steps.

Zero-shot Tasks. We also evaluate the OPTs’ pretraining on 10 zero-shot NLP tasks:

* Natural Language Inference Tasks: CB (De Marneffe et al., 2019)

* Coreference Resolution Tasks: Winogrande (Sakaguchi et al.,|2021)

* Sentence Completion Tasks: COPA (Roemmele et al., 2011), HellaSwag (Zellers et al., 2019)
* Word Sense Disambiguation Tasks: WiC (Pilehvar and Camacho-Collados} 2018)

* Question Answering Tasks: ARC-Easy, ARC-Challenge (Clark et al.,2018), OpenBookQA
(Mihaylov et al.,[2018)), BoolQ (Clark et al., 2019)

¢ Commonsense Reasoning Tasks: PIQA (Bisk et al., 2020)

During evaluation, we cast all of the above tasks into a multiple-choice format. Namely, the goal
is to select the correct completion from a set of candidate options. For each option, we compute
the language model (LM) likelihood of the full input consisting of the context concatenated with
the candidate completion. To account for differences in the lengths of candidate completions, we
compute the average per-token log-likelihood for each option, following (Brown et al.,|2020). The
model’s prediction is taken to be the option with the highest per-token likelihood.

BERT (Devlin et al., 2019). We replace the conventional two-layer linear classification head in
BERT with an NdLinear layer followed by a classification layer. The NdLinear transforms have

23

Under review as a conference paper at ICLR 2026

Table 6: Perplexity Score and Zero-Shot Performance on OPT Model with and without NdLinear.

OPT-Small | OPT-Mid
Linear NdLinear ‘ Linear NdLinear

Num of Params 124M 119M 350M 337M

Perplexity 15.970 15.755 12.926 12.565
CB 0.32 0.38 0.50 0.52
Winogrande 0.49 0.51 0.50 0.50
COPA 0.58 0.53 0.54 0.56
HellaSwag 0.26 0.26 0.28 0.29
WiC 0.51 0.50 0.50 0.49
ARC-Easy 0.29 0.30 0.29 0.29
ARC-Challenge 0.24 0.25 0.24 0.23
OpenBookQA 0.32 0.35 0.34 0.34
BoolQ 0.49 0.59 0.60 0.56
PIQA 0.53 0.50 0.53 0.53

hidden dimensions of (2, 2). Each model is trained for 200 epochs with a batch size of 32, a hidden
layer size of 128, and a learning rate of 0.005.

Table 7: BERT text classification performance on CoLA and SST-2 datasets. NdLinear improves accuracy and
ROC AUC with ~85% fewer parameters in the classification head.

Dataset Method Params (Head) Accuracy ROC AUC

CoLA Linear 1,544 0.7790 + 0.0143 0.7127 + 0.0264
NdLinear 222 0.7906 + 0.0142 0.7405 + 0.0209

SST2 Linear 1,544 0.8872 £ 0.0079 0.8867 + 0.0080
NdLinear 222 0.8933 + 0.0093 0.8932 + 0.0073

E.2 TIME SERIES

Time Series Forecasting. In our experiments using RNNs, we used a sequence length of 24 and
a forecast horizon of 12 for all models. The models were trained for 100 epochs using the Adam
optimizer with a learning rate of 0.02 and a batch size of 128. The dataset was split into training,
validation, and evaluation sets with proportions of 60%, 20%, and 20%, respectively. We set the
hidden size to 96, used a single recurrent layer, and applied a dropout rate of 0.3.

For Transformer-based Forecasting tasks, the experiments were conducted using a time series
transformer model with a model dimension and hidden dimension both set to 32, a single transformer
layer, and a dropout rate of 0.1. The GELU activation function was employed throughout, and the
models were trained for 10 epochs with a batch size of 128 and a learning rate of 0.001. All models
optimized using Adam and mean squared error as the loss function.

Time Series Classification. We set the hidden size of all RNN layers to 128 and used 3 recurrent
layers, with a batch size of 32 and a learning rate of 0.005. Models were trained for 200 epochs using
the Adam optimizer and cross-entropy loss.

24

Under review as a conference paper at ICLR 2026

E.3 TABULAR DATA

We compare the performance of the Linear and NdLinear models. The Linear Model uses two linear
layers for feature extraction, while the NdLinear Model replaces them with NdLinear layers.

Classification. Target labels were one-hot encoded. The Linear Model utilized fully connected
layers with input dimension [11] and hidden dimension [128], followed by ReLU and a final linear
output layer. The NdLinear Model used custom NdLinear layers with input dimensions [11, 1] and
hidden dimensions [11, 64], also followed by ReLU and a final linear output layer. Both models are
trained over 40 epochs with a batch size of 32 and a learning rate of 0.0001 using AdamW optimizer.
Data was randomly shuffled and split into 80% training and 20% testing sets. Cross-entropy loss is
used for training, and classification accuracy is used for model evaluation.

Regression. Target labels were kept as continuous values. The Linear Model utilized fully connected
layers with input dimension [14] and hidden dimension [128], followed by ReLU and a final linear
output layer. The NdLinear Model used custom NdLinear layers with input dimensions [14, 1] and
hidden dimensions [32, 64], also followed by ReLU and a final linear output layer. Both models are
trained over 40 epochs with a batch size of 32 and a learning rate of 0.0002 using AdamW optimizer.
Data was randomly shuffled and split into 80% training and 20% testing sets. MSE loss is used for
both training and model evaluation.

Table 8: NdLinear with MLPs on tabular datasets. For classification (Cardio Disease), the metric is Accuracy
(higher is better). For regression (Delivery Time), the metric is MSE (lower is better).

Dataset Task Method #Params Metric
Cardio Discase Classif. Linear 18306 0.7265
(Accuracy) NdLinear 5962 0.7321

Regress. Linear 18561 70.508

Delivery Time (MSE) NdLinear 7873 67.824

E.4 VISION

Image Classification with CNN. The NdLinear version uses three transforms with hidden dimen-
sions of (64, 8, 8), while the Linear version uses a single hidden dimension of 256. Models were
trained for 50 epochs using Adam optimizer (learning rate 0.001), batch size 64, cross-entropy loss,
and mixed-precision training on CUDA when available.

Table 9: Tmage classification with CNNs on CIFAR-10 (top-1 Acc.) and CIFAR-100 (top-5 Acc.). NdLinear
achieves higher accuracy with fewer parameters.

Dataset #Params Method Accuracy

1.07M Linear 0.7426 £+ 0.0025
65k NdLinear 0.7689 + 0.0060

1.09M Linear 0.6587 & 0.0075
433k NdLinear 0.7096 + 0.0121

CIFAR-10

CIFAR-100

Vision Transformers (ViT) (Dosovitskiy et al.,|2021). Training used a batch size of 512, AdamW
optimizer, learning rate 2.75 x 10~ for 30 epochs, and a distillation temperature of 3. Input images
(224 x 224) were augmented with random cropping and horizontal flipping.

25

Under review as a conference paper at ICLR 2026

CIFAR10 Model Size Comparisons CIFAR100 Model Size Comparisons

15 Il Ndlinear-200 15 Il Ndlinear-200

g Bl Ndlinear-300 g BN Ndlinear-300
‘GE'510 I Ndlinear-400 210 I Ndlinear-400
© I Naive-500 © I Naive-500
& &
o o
I I
s s

0 0

3 Blocks 6 Blocks

Transformer Blocks

9 Blocks

9 Blocks

3 Blocks

6 Blocks
Transformer Blocks

Figure 3: NdLinear’s efficiency. Reduced ViT model parameter counts on CIFAR-10 and CIFAR-100 for a

distillation task.

depth=12, heads=6 depth=12, heads=12

120
150 *‘*‘_‘
160
100
140 100 \\N_.\‘_*_*_

2 4 2 4 2 4
lterations 1e5 Iterations 1e5 lterations 1e5

depth=24, heads=16

Figure 4: DiT achieving lower (better) FID scores for image generation on ImageNet-100 when
trained from scratch with comparable parameters.

Table 10: NdViT vs. Naive ViT: Accuracy and parameter efficiency on CIFAR-10 (Acc@1) and CIFAR-100

(Acc@5). NdViT shows improved accuracy with fewer parameters.

Dataset Tri}l;rfré.r r(;lfe . NdViT (Ours) Naive
200 300 400 500
3Blocks 6577+ 047 67.53+0.70 69.00+ 127 62.09 + 0.40
CIFARIO g Blocks 6848 +0.75 7020+0.73 72.03+0.46 65.19 + 0.64
9Blocks 7027 +035 71.50 +058 7253+ 0.54 6852+ 1.24
3Blocks 7078 + 136 73.10+ 1.06 7414+ 1.66 69.34 + 0.88
CIFARIO0 “¢'Biocks 73.60 £ 0.83 7507 +0.14 7637 +0.71 73.84 + 0.39
9Blocks 7424 +032 7552+0.73 76.61+ 026 7560+ 0.70

Diffusion Transformers (DiT) (]Peebles and Xie, |2023). We used a learning rate of 1 x 10~% for
256 x 256 images, mixed-precision (bfloat16) training, automatic gradient accumulation, and a
batch size of 256, varying model depth and attention heads.

Table 11: FID-10k scores for DiT models: Pre-trained vs. NdLinear variants with fewer parameters.

NdLinear NdLinear Baseline
Parameter Count 619M 563M 674M
FID-10k 5.4876 5.9420 5.4109

26

Under review as a conference paper at ICLR 2026

F DETAILED ABLATION STUDIES

F.1 PER-MODE BIAS IMPACT

We ablate per-mode bias terms across widths on the Radius Bump task.

We generate 1,000 train and 200 test samples. Hidden widths {16, 32, 64, 128}. We have NdLinear-
MLPs replacing Linear blocks with NdLinear, using per-axis hidden shapes {(4,4), (8,8), (16,16),
(32,32)} matched to the hidden widths above. For all models, training uses Adam (learning rate
10~3) for 4,000 epochs under identical schedules, with early stopping when training loss < 10™%;
loss is mean squared error (MSE). We report parameter count and test MSE (mean =+ std).

The benefit of per-mode bias grows with width, reaching +15.2% MSE improvement at width 128.

Table 12: Per-mode bias ablation on Radius Bump

Width Bias MSE (mean) MSE (std) Params

16 False 0.00332264 0.00173532 36
16 True 0.00335201 0.00157289 46
32 False 0.00332793 0.00170700 72
32 True 0.00318228 0.00163146 90
64 False 0.00336938 0.00160766 144
64 True 0.00305152 0.00145630 178
128 False 0.00339010 0.00173152 288
128 True 0.00287480 0.00139560 354

F.2 AXIS ORDERING SENSITIVITY

We permute axes (original, reverse, random) and measure CIFAR-100 performance retention. Finding:
robustness to ordering (< 4 pp spread).

Table 13: Axis ordering sensitivity (CIFAR-100)

Variant (axes) Accuracy vs. baseline

Original order 100%
Reverse 9% + 1%
Random 96% =+ 1%

F.3 RADIUS BUMP: LAST-LAYER ENTROPY, PERFORMANCE, AND COMPRESSION

We evaluate Dense MLP vs. NdLinear on the Radius Bump task across three difficulty levels (shell
thickness o € {0.10,0.20,0.30}). Inputs are z € [—1,1]'* with i.i.d. coordinates z; ~ U(—1,1);
the target is y = exp(—(||z|| — 0.8)2/(20?)). For each ¢ we generate 1,000 train and 200 test
samples. Architectures: (i) Dense MLP baselines with hidden widths {16, 32, 64, 128} and depths {2,
3}; (ii) NdLinear-MLPs replacing Linear blocks with NdLinear, using per-axis hidden shapes {(4,4),
(8,8), (16,16), (32,32)} matched to the dense widths above and depths {2, 3}. For all models, training
uses Adam (learning rate 10~2) for 4,000 epochs under identical schedules, with early stopping when
training loss < 10~%; loss is mean squared error (MSE). We report parameter count, forward-pass
FLOPs (from analytical op counts), test MSE (mean =+ std), and last-layer average output entropy
(AveEntropy).

Across all o, NdLinear variants consistently exhibit lower AveEntropy than parameter-matched dense
models at similar widths/depths, while using markedly fewer parameters and FLOPs. At o = 0.20
and ¢ = 0.30, depth-3 NdLinear achieves the lowest test errors (e.g., 0.00071 = 0.00019 at width 64,
and 0.00029 % 0.00021 at width 64) together with lower entropies (0.344 and 0.341, respectively)
than dense counterparts (0.00128 £ 0.00190 with entropy 0.518; 0.00152 £ 0.00029 with entropy
0.521). For the hardest setting (¢ = 0.10), NdLinear matches dense test error while maintaining

27

Under review as a conference paper at ICLR 2026

Test MSE

Figure 5: o = 0.1 (hard): Narrow bump, very challenging.

Test MSE

Test MSE

Figure 7: o = 0.3 (easy): Wide bump, easier to approximate.

000018

000016

0.00014

000012

000010

0.00008

0,00006

Dense vs NdLinear: Architecture Comparison

)

&=

045
Average layer entropy

Dense vs NdLinear: Architecture Comparison

00018

0.0016

0.0014

00012

0.0010

00008

00006

0.0004

725

=
Pz

Average layer entropy

Architecture
® DEnsE
® o

Architecture
® DENSE
®

Figure 6: o = 0.2 (medium): Moderate difficulty.

Dense vs NdLinear: Architecture Comparison

00040
00035
00030 7753
00025
00020 e
0.0015 =
&
00010
753)
75
00005
0350 0375 0.400 0.425 0.450 0475 0500 0525

Average layer entropy

28

Architecture
® DENSE
®

Under review as a conference paper at ICLR 2026

Table 14: Radius Bump (¢ = 0.10; thin / hardest). Lower AveEntropy indicates more compact last-layer

representations.
Width Kind Depth Hidden Shape Params Train MSE Test MSE =+ Std FLOPs (-10°) AveEntropy
16 dense 2 (16) 193 1.17e-5 0.00086 + 0.00176 2.78 0.476
16 dense 3 (16) 465 1.37e-6 0.00087 = 0.00189 6.70 0.625
16 nd 2 4,4 46 1.19e-5 0.00086 £ 0.00186 0.66 0.405
16 nd 3 4,4) 86 1.18e-5 0.00086 + 0.00186 1.24 0.518
32 dense 2 (32) 385 1.18e-5 0.00086 + 0.00169 5.54 0.459
32 dense 3 (32) 1,441 2.93e-6 0.00084 £+ 0.00188 20.75 0.560
32 nd 2 (8, 8) 90 1.20e-5 0.00086 + 0.00182 1.30 0.321
32 nd 3 (8, 8) 234 1.16e-5 0.00086 = 0.00178 3.37 0.426
64 dense 2 (64) 769 1.19e-5 0.00086 £ 0.00169 11.07 0.407
64 dense 3 (64) 4,929 1.59¢-8 0.00085 = 0.00196 70.98 0.507
64 nd 2 (16, 16) 178 1.12e-5 0.00086 £ 0.00175 2.56 0.292
64 nd 3 (16, 16) 722 1.12e-5 0.00086 £ 0.00180 10.40 0.377
128 dense 2 (128) 1,537 5.79e-6 0.00089 + 0.00253 22.13 0.363
128 dense 3 (128) 18,049 1.84e-9 0.00089 £ 0.00158 259.91 0.469
128 nd 2 (32, 32) 354 1.12e-5 0.00086 £ 0.00158 5.10 0.295
128 nd 3 (32, 32) 2,466 8.71e-6 0.00086 £ 0.00204 35.51 0.286
Table 15: Radius Bump (o = 0.20; medium). NdLinear often attains both lower error and lower last-layer
entropy.
Width Kind Depth Hidden Shape Params Train MSE Test MSE =+ Std FLOPs (-10°) AveEntropy
16 dense 2 (16) 193 7.75e-4 0.00256 + 0.00235 2.78 0.493
16 dense 3 (16) 465 1.29e-5 0.00166 £ 0.00118 6.70 0.592
16 nd 2 4,4) 46 99le-4 0.00273 + 0.00273 0.66 0.410
16 nd 3 4,4 86 1.0le-3 0.00275 £ 0.00272 1.24 0.521
32 dense 2 (32) 385 6.03e-4 0.00266 + 0.00234 5.54 0.461
32 dense 3 (32) 1,441 5.92e-6 0.00180 = 0.00117 20.75 0.560
32 nd 2 8,8 90 9.92e-4 0.00273 £ 0.00232 1.30 0.323
32 nd 3 (8, 8) 234 1.19e-4 0.00192 + 0.00089 3.37 0.428
64 dense 2 (64) 769 3.17e-4 0.00368 + 0.00344 11.07 0.403
64 dense 3 (64) 4,929 1.84e-8 0.00128 +0.00190 70.98 0.518
64 nd 2 (16, 16) 178 8.35e-4 0.00252 + 0.00216 2.56 0.293
64 nd 3 (16, 16) 722 9.56e-6 0.00071 = 0.00019 10.40 0.344
128 dense 2 (128) 1,537 2.53e-5 0.00454 £ 0.00330 22.13 0.364
128 dense 3 (128) 18,049 2.01e-10 0.00159 + 0.00102 259.91 0.471
128 nd 2 (32, 32) 354 6.07e-4 0.00233 £ 0.00211 5.10 0.296
128 nd 3 (32, 32) 2,466 2.33e-6 0.00081 £ 0.00019 35.51 0.284

lower entropy and large reductions in parameters and FLOPs. These patterns support the claim that
lower last-layer entropy paired with equal-or-better error corresponds to better compression.

F.4 HYPERPARAMETER SENSITIVITY

Grid search over learning rate, hidden size, and batch size on CIFAR-100. Finding: stable efficiency
metrics and competitive accuracy across settings.

Note: GPU memory usage constant at 34.04-34.40 MB across all configurations.

F.5 SAMPLE EFFICIENCY

Fix task structure and vary data size; measure samples needed to reach target error at different

entanglement levels.

29

Under review as a conference paper at ICLR 2026

Table 16: Radius Bump (o = 0.30; thick / easiest). NdLinear depth-3 variants achieve the lowest errors with
the lowest entropies.

Width Kind Depth Hidden Shape Params Train MSE Test MSE =+ Std FLOPs (-10°) AveEntropy
16 dense 2 (16) 193 3.65e-3 0.00716 £ 0.00157 2.78 0.505
16 dense 3 (16) 465 1.87e-4 0.00210 £ 0.00084 6.70 0.627
16 nd 2 4,4 46 591e-3 0.00827 + 0.00261 0.66 0.406
16 nd 3 4,4) 86 2.73e-3 0.00710 £ 0.00345 1.24 0.527
32 dense 2 (32) 385 2.03e-3 0.00636 + 0.00209 5.54 0.461
32 dense 3 (32) 1,441 1.42e-5 0.00166 = 0.00063 20.75 0.588
32 nd 2 8,8 90 3.53e-3 0.00564 £+ 0.00190 1.30 0.323
32 nd 3 (8, 8) 234 6.78e-5 0.00045 + 0.00021 3.37 0.424
64 dense 2 (64) 769 8.76e-4 0.00968 = 0.00175 11.07 0.406
64 dense 3 (64) 4,929 1.34e-5 0.00152 £ 0.00029 70.98 0.521
64 nd 2 (16, 16) 178 3.01e-3 0.00502 = 0.00142 2.56 0.293
64 nd 3 (16, 16) 722 9.46e-6 0.00029 + 0.00021 10.40 0.341

128 dense 2 (128) 1,537 1.66e-4 0.01057 £ 0.00324 22.13 0.362
128 dense 3 (128) 18,049 2.03e-10 0.00249 + 0.00051 259.91 0.474
128 nd 2 (32, 32) 354 1.78e-3 0.00460 = 0.00096 5.10 0.296
128 nd 3 (32, 32) 2,466 3.4le-5 0.00041 £ 0.00014 35.51 0.278
Table 17: Hyperparameter sensitivity sweep (CIFAR-100)

LR Hidden Size Batch GFLOPs Latency (s) Params Acc@5 (%)

0.001 128.,4,4 128 0.848 0.001415 232,876 72.75

0.001 256,2,2 64 0.901 0.001451 138,760 74.30

0.001 128,44 64 0.848 0.001381 232,876 72.67

0.001 128,44 32 0.848 0.001409 232,876 72.48

0.001 256,2,2 32 0.901 0.001388 138,760 73.80

0.001 256,2,2 128 0.901 0.001400 138,760 74.75

0.01 128,44 128 0.848 0.001318 232,876 71.62

0.01 128,4,4 64 0.848 0.001376 232,876 66.73

0.01 128,44 32 0.848 0.001364 232,876 66.56

0.01 256,2,2 64 0.901 0.001257 138,760 64.86

0.01 256,2,2 128 0.901 0.001312 138,760 70.20

0.01 256,2,2 32 0.901 0.001323 138,760 63.75

* Nearly-separable tasks (oo = 0.1): NdLinear reached target MSE with only 2,000 samples;

parameter-matched linear model required over 10,000 samples.

* Highly-entangled tasks (o = 0.9): Standard linear model achieved target MSE with 15,000
samples; NdLinear struggled to match this performance even with 25,000 samples.

F.6 TRAINING AND MEMORY OVERHEAD

Measure peak activation memory and per-epoch training time after replacing a single dense GEMM
with mode-wise GEMMs. Finding: empirical overheads are small (< 3% memory, < 2% time) as
seen in Table

Table 18: Empirical overheads across architectures

Model

Peak Mem (MB)

Epoch Time (s)

CIFAR-100 CNN

ETThl

Vision Transformer

RNN

35.17 — 36.91 (+2.0%)
32.58 — 33.41 (+1.2%)
127.3 — 130.1 (+1.1%)

47.2 — 47.8 (+0.6%)
12.3 — 12.6 (+1.2%)
179 — 185 (+1.6%)

30

Under review as a conference paper at ICLR 2026

F.7 COMPARISON WITH ALTERNATIVE STRUCTURED LAYERS

CNN head on CIFAR-100 comparing NdLinear to TRL/TCL and TT. Finding: NdLinear achieves
higher Acc@5 with fewer params, lower FLOPs, and lower latency.

Table 19: NdLinear vs. TRL/TCL vs. TT (CIFAR-100 Acc@5)

Method Mem (MB) Acc@5 Latency(s) FLOPs(G) Params

NdLinear 35.16 0.7133 0.000976 0.843 433,588
TRL/TCL 35.60 0.6935 0.001116 3.97 548,032
TT 100.44 0.5617 0.005871 5.25 769,316

31

	Introduction
	Related Work
	Linear Transformation Preserving N-dimensional Information
	Preserving The Expressiveness of Vanilla Linear Layers
	Fewer Learnable Parameters And Wall-Clock Speedups
	Inductive Bias and Domain Alignment
	Quantifying the Trade-off: Dial-a-Bias Experiment

	Experimental Results
	Natural Language Processing
	Parameter-Efficient Finetuning with NdLinear-LoRA
	Language Model Pretraining
	Text Classification

	Time Series Analysis
	Tabular Data
	Computer Vision
	Vision Transformer Distillation
	CNN Image Classification
	Generative Modeling with Diffusion Transformers (DiT)

	Ablation Studies
	Design Choices
	Practical Considerations

	Conclusion
	Detailed Comparison with Related Methods
	Tensor Decomposition Methods
	Factorized Convolutions and Axial Operations
	Tensor Contraction and Regression Layers
	Structured Linear Layers
	Graph Neural Networks
	Other Specialized Approaches

	More Related Work
	Proofs and Technical Details
	VC-Dimension Analysis
	Peak Activation Memory Analysis
	Computational Complexity

	Implementation Details and Training Protocol
	Full Experimental Details and Results
	Parameter-Efficient Finetuning with LoRA and NdLinear-LoRA
	Time Series
	Tabular Data
	Vision

	Detailed Ablation Studies
	Per-Mode Bias Impact
	Axis Ordering Sensitivity
	Radius Bump: Last-Layer Entropy, Performance, and Compression
	Hyperparameter Sensitivity
	Sample Efficiency
	Training and Memory Overhead
	Comparison with Alternative Structured Layers

