
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

IMPACT STATEMENT

NdLinear replaces each dense linear layer with an N -mode rank-1 factorization, cutting parameters
and FLOPs by up to two orders of magnitude on the benchmarks evaluated in this paper. The resulting
drop in compute and memory lowers energy use and enables on-device inference and federated
fine-tuning, broadening access to large-model capabilities for researchers and organizations with
limited hardware. The authors will release full reference code to facilitate reproducible adoption.
Because cheaper deployment also reduces the barrier for misuse, future work should evaluate privacy,
robustness, and bias in models that adopt this compressed design.

LIMITATIONS AND FUTURE DIRECTIONS

While NdLinear shows strong empirical efficiency, several promising research paths remain: (i) relax
the rank-1 Tucker structure by permitting higher multilinear ranks or adding cross-mode residual
connections to capture richer inter-mode interactions; (ii) develop memory-aware kernels that preserve
compute and bandwidth efficiency as the number of modes N or hidden size grows; (iii) learn or adapt
the ordering of mode transforms to exploit data-driven structure; (iv) benchmark the layer in larger
models (> 10B parameters), new modalities such as 3-D medical imaging, streaming time-series, and
edge devices, measuring accuracy, latency, and memory trade-offs; (v) derive approximation-error,
sample-complexity, and optimization guarantees; and (vi) investigate privacy, robustness, and fairness
when NdLinear enables lightweight federated deployment. Progress on these fronts will broaden
NdLinear’s applicability and deepen our understanding.

LLM USAGE DISCLOSURE

We used large language models (LLMs) to aid and polish writing, such as improving clarity, grammar,
and conciseness. We also used LLMs for retrieval and discovery, for example exhausting literature to
identify potential missing related work. All technical content, proofs, experiments, and results are
original contributions by the authors.

A DETAILED COMPARISON WITH RELATED METHODS

NdLinear’s design as a structure-preserving, parameter-efficient linear layer for N-D tensors is
informed by, yet distinct from, several established concepts in machine learning and tensor algebra.
We detail these relationships below.

A.1 TENSOR DECOMPOSITION METHODS

NdLinear’s core mechanism employs mode-wise tensor-matrix products prominent in Tucker decom-
position (Tucker, 1966; Kolda and Bader, 2009). However, unlike classical tensor decomposition
methods that primarily analyze or compress static data or pre-existing weight tensors (Novikov et al.,
2015; Newman et al., 2024), NdLinear integrates these mode-wise operations as a learnable, dynamic
layer within a network. Its purpose is efficient forward transformation of activations while preserving
N-D structure, not data analysis or post-hoc model compression.

NdLinear can be viewed as a hand-crafted factorization of a fully-connected weight matrix. Specifi-
cally, the full weight matrix Wfull implicitly has a Kronecker product structure derived from mode-wise
matrices {W1, . . . ,Wn}. This corresponds to a rank-1 Tucker decomposition without a core tensor
(or equivalently, a core of rank 1 in each mode).

The main trade-off is expressiveness vs. efficiency. NdLinear’s decomposition is low-rank in a
multilinear sense—it cannot represent arbitrary non-factorizable interactions between dimensions.
More flexible decompositions (full Tucker or higher-rank tensor decompositions) capture more
interactions but require significantly more parameters compared to NdLinear’s simple sum

P
i
DiHi

and can be more challenging to train, sometimes needing special initialization or multi-stage training.

If needed, one can extend NdLinear by increasing the factorization rank (e.g., learning multiple Wi

matrices per mode and summing their effects, analogous to a rank-R core). However, our experiments

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

show the simple rank-1 version already performs well. Each Wi clearly indicates how dimension
i is transformed, providing better interpretability than general tensor decomposition methods that
disperse transformations across multiple factors.

A.2 FACTORIZED CONVOLUTIONS AND AXIAL OPERATIONS

Neural nets have long exploited axis-wise structure to cut parameters and impose useful priors. In
CNNs, an image tensor X 2 RH⇥W⇥C is not flattened; instead, convolutions slide local kernels
over the two spatial axes (H,W ) while mixing channels C. In sequence models, a tensor X 2

RL⇥C (length L, features C) is processed along the sequence axis L (e.g., attention/conv) while
mixing feature channels C within positions. Below we recap common factorized operators and their
limitations.

Definitions. Channels are feature maps carried alongside a position-like axis (e.g., RGB planes
or intermediate filters in CNNs; hidden features per token in sequences). Sequence (or spatial)
dimensions are position-like axes along which locality or ordering matters (e.g., time L, image height
H , width W ).

Grouped convolutions. Grouped convs restrict each filter to operate on a subset of channels,
partitioning C into groups to reduce parameters and FLOPs (Krizhevsky et al., 2012; Xie et al., 2017).
Limitation: channel mixing is constrained within groups; cross-group interactions require additional
layers, and the grouping choice is a manual architectural prior.

Depthwise separable convolutions. Depthwise separable convs factor a full conv into a depthwise
spatial conv per channel followed by a 1⇥1 (pointwise) conv that mixes channels (Chollet, 2017b;
Howard et al., 2017). This yields large FLOP/parameter savings with strong accuracy. Limitations:
the factorization is tied to 2D spatial structure; expressivity hinges on the pointwise mixer; extending
beyond standard spatial axes typically needs custom kernels.

Axial (factorized) attention. Axial attention decomposes 2D/3D attention into a sequence of 1D
attentions applied along one axis at a time (e.g., height then width), cutting quadratic costs while
preserving long-range interactions along each axis (Ho et al., 2019; Wang et al., 2020; Yan et al.,
2023). Limitations: axis order becomes an architectural prior; full joint interactions across axes
emerge only after stacking, and costs can still be high for very long axes.

CNNs. CNNs are the canonical instance of axis-aware processing: they exploit spatial locality (fac-
torization in (H,W )) and defer heavy channel mixing to 1⇥1 pointwise layers. Grouped/depthwise
variants intensify this factorization to further reduce compute.

NdLinear in this landscape. NdLinear generalizes the factorization principle beyond conv/attention
mechanics: given an n-D activation X2RD1⇥···⇥Dn , it systematically factorizes a linear map into
mode-wise transforms Di ! Hi and applies them sequentially, producing a structured output
Y 2RH1⇥···⇥Hn . Thus, instead of a single dense matrix R

Q
i Di !R

Q
i Hi , NdLinear uses n small

matrices with
P

i
DiHi parameters, preserving the N-D shape throughout. Unlike grouped/depthwise

convs (tied to spatial kernels) or axial attention (tied to attention mechanics and axis ordering),
NdLinear: (i) applies to arbitrary N-D tensors (images, videos, spectrograms, multivariate time series,
tabular tensors), (ii) naturally supports both compression and expansion per mode (Hi 7 Di), (iii)
creates insertion points for normalization/activation between mode maps, and (iv) preserves a clear
axis-wise inductive bias without requiring handcrafted groups or convolutional kernels.

Known failure modes and how NdLinear relates. Axis-factorized operators can underperform
when tasks require strong entangled cross-axis interactions (e.g., patterns tied jointly to (H,W )
rather than separably to each). Grouped/depthwise convs may also struggle if the chosen grouping
misaligns with semantics; axial attention can be sensitive to axis order and depth. NdLinear shares
the core trade-off (axis-wise separability vs. full expressivity) but makes it explicit and tunable by
per-mode widths/ranks or stacking; it inherits the efficiency benefits of factorization while remaining
N-D agnostic in form.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3 TENSOR CONTRACTION AND REGRESSION LAYERS

Tensor Contraction Layers (TCL). TCLs (Cichocki, 2014; Novikov et al., 2015) implement a
one-shot multilinear map by contracting an input tensor X2RD1⇥···⇥Dm with a set of mode matrices
{V

(k)
2 RRk⇥Dk}

m

k=1, yielding a reduced tensor X ⇥1 V
(1)

⇥2 · · ·⇥m V
(m)

2 RR1⇥···⇥Rm . The
goal is typically dimensionality reduction (feature compression) via tensor contractions prior to
downstream layers; intermediate positions for normalization/activation and per-mode biases are
usually not part of the basic formulation (Cichocki, 2014; Novikov et al., 2015).

Tensor Regression Layers (TRL). TRLs (Kossaifi et al., 2020) cast prediction as supervised
regression/classification with a fixed tensor format for the weight (e.g., Tucker-/TT-structured).
Given an input tensor X , a TRL fits a low-rank tensor W (plus optional bias) such that hW,Xi

(or a nonlinear variant) matches targets. The emphasis is on learning with low-rank weights for
sample/parameter efficiency; the tensor format (ranks/cores) is chosen a priori and does not expose
interleaved normalization/activation between modes (Kossaifi et al., 2020).

NdLinear vs. TCL/TRL. NdLinear is a structure-preserving, learnable linear layer that applies
sequential mode-wise maps to activations, Y = X ⇥1 W1 ⇥2 · · ·⇥m Wm 2 RH1⇥···⇥Hm , with an
implicit rank-1 Tucker/Kronecker weight and

P
k
DkHk parameters. This design differs in intent

and mechanics:

• Goal. TCL primarily contracts modes for reduction (Cichocki, 2014; Novikov et al., 2015);
TRL fixes a low-rank regression format (Kossaifi et al., 2020); NdLinear is a drop-in linear
alternative for N-D activations that preserves the full tensor shape and supports expansion
or compression per mode (Hk ? Dk).

• Execution. TCL performs a single contraction; NdLinear performs sequential per-mode
maps, creating natural insertion points for LayerNorm/Dropout/activations and allowing
per-mode biases. TRL optimizes a fixed low-rank weight but does not expose interleaved,
mode-by-mode transforms during the forward pass.

• Expressivity/control. All three impose structured priors; NdLinear’s axis-wise separability
can be tuned via widths/ranks or stacked blocks, interpolating between strong separability
and near-dense behavior while retaining N-D outputs.

TCL as a special case of NdLinear. Under the joint constraints (i) Hk=Rk for all k (no expansion
beyond the contracted size), (ii) no per-mode biases, and (iii) no interleaved operations between mode
maps (i.e., a single, commutative product), the one-shot TCL contraction coincides with NdLinear
(Cichocki, 2014; Novikov et al., 2015). Outside this narrow corner, NdLinear is strictly more general
and practical: it preserves N-D structure through sequential maps, supports per-mode biases and
interleaving (stability), and flexibly expands or compresses each mode.

A.4 STRUCTURED LINEAR LAYERS

NdLinear sits within the broader family of structured linear layers for parameter efficiency (Denil et al.,
2013; Wei et al., 2024). Classic approaches constrain a large dense weight W 2R(

Q
i Di)⇥(

Q
i Hi)

by imposing algebraic structure on W itself —e.g., low-rank factorizations (Sainath et al., 2013),
block/Butterfly/Monarch-style sparse–fast transforms (Dao et al., 2022), or other learned structured
matrices (Sindhwani et al., 2015; Potapczynski et al., 2024). These methods decouple the parameteri-
zation of W from the native organization of the activations, often yielding strong compression but
requiring the model to implicitly discover how that structure aligns with the data.

In contrast, NdLinear derives its structure from the N-D layout of the input. Given X2RD1⇥···⇥Dn ,
NdLinear replaces the dense map R

Q
i Di !R

Q
i Hi with sequential mode-wise transforms Di!Hi,

preserving tensor shape and inducing an explicit Kronecker (rank-1 Tucker) weight with onlyP
i
DiHi parameters. This data-centric factorization (i) makes the axis-wise inductive bias trans-

parent and tunable (via per-mode widths/ranks or stacking), (ii) supports per-mode expansion or
compression (Hi ? Di), and (iii) exposes natural insertion points for normalization/activation be-
tween modes—while retaining the efficiency benefits typical of structured linear layers (Denil et al.,
2013; Wei et al., 2024; Sainath et al., 2013; Dao et al., 2022; Sindhwani et al., 2015; Potapczynski
et al., 2024).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.5 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) address data with irregular connectivity by propagating information
over edges via message passing (Scarselli et al., 2008; Micheli, 2009; Bronstein et al., 2017; Zhou
et al., 2020; Wu et al., 2020). Concretely, a GNN updates node features by aggregating messages
from neighbors and applying learnable transforms (Gilmer et al., 2017; Kipf and Welling, 2017;
Hamilton et al., 2017). Stacking layers increases the receptive field and enables global interaction,
but typically requires multiple rounds of propagation to mix distant nodes (Battaglia et al., 2018).

While an N-D grid (e.g., image or tensor lattice) can be modeled as a graph (one node per cell,
edges to local neighbors), this introduces unnecessary overhead on regular grids: message passing
is inherently local, so achieving global mixing along each axis often demands many layers, with
added memory/compute and potential optimization issues (e.g., depth-related bottlenecks). Moreover,
parameter sharing in GNNs is tied to edge types and neighborhood schemas, not directly to axis-wise
tensor structure.

NdLinear takes the complementary route for regular tensor grids. Given X2RD1⇥···⇥Dn , it applies
global, mode-wise linear maps Di !Hi in a single layer, mixing information along entire axes
without constructing a graph or iterating local messages. This preserves the N-D layout, yieldsP

i
DiHi parameters via an implicit Kronecker (rank-1 Tucker) structure, and exposes insertion

points for normalization/activation between mode maps. In short: GNNs excel when connectivity is
irregular or non-Euclidean (Bronstein et al., 2017; Zhou et al., 2020), whereas NdLinear specializes
in axis-aware, structure-preserving transformations on regular tensors, providing simpler and often
faster global mixing along each dimension.

When to use which. Use GNNs for arbitrary graphs, heterogeneous edge types, and relational
reasoning on non-grid data (Scarselli et al., 2008; Micheli, 2009; Bronstein et al., 2017; Zhou et al.,
2020; Wu et al., 2020). Use NdLinear when data are naturally arranged as regular tensors and
you want efficient, axis-wise global interactions without flattening; its bias toward axis separability
provides parameter savings and predictable behavior on grid-structured domains.

A.6 OTHER SPECIALIZED APPROACHES

A variety of specialized architectures preserve structure without resorting to full flattening:

Slicing-based layers. Methods that slice inputs along spatial/temporal (or rotated) subdomains
process each slice with shared weights, then recombine (Shao et al., 2016; Dieleman et al., 2016).
This preserves locality and orientation information with modest compute. Limitations: boundaries
between slices can hinder cross-slice interaction; designs are task-/geometry-specific and often require
bespoke preprocessing.

Capsule Networks. Capsules use vector/matrix-valued units and routing to model part–whole
hierarchies and pose relationships (Hinton et al., 2011; Sabour et al., 2017; Hinton et al., 2018).
They maintain structured representations through learned agreement between capsules. Limitations:
routing adds iterative, nontrivial overhead; scaling to large resolutions and datasets has proven
challenging; design choices (routing, capsule size) are sensitive.

Hadamard/Fourier feature mixing. Fixed orthogonal or Fourier-like transforms provide global
mixing with O(N logN) or even O(N) cost (e.g., Random Features, Fastfood, FNet, Block-based
variants) (Rahimi and Recht, 2007; Le et al., 2013; Tancik et al., 2020; Lee-Thorp et al., 2022; Pan
et al., 2022). Limitations: transforms are fixed (non-learnable) or only weakly parameterized, so
alignment with data structure must be recovered by subsequent layers; expressivity depends on depth.

Relation to NdLinear. NdLinear applies learned, factorized linear maps along each tensor mode,
preserving the full N-D layout while enabling axis-wise global mixing with

P
i
DiHi parameters.

Unlike slicing (Shao et al., 2016; Dieleman et al., 2016), it does not require hand-crafted partitions;
unlike capsules (Hinton et al., 2011; Sabour et al., 2017; Hinton et al., 2018), it avoids iterative
routing; unlike fixed Hadamard/Fourier mixers (Rahimi and Recht, 2007; Le et al., 2013; Tancik
et al., 2020; Lee-Thorp et al., 2022; Pan et al., 2022), it learns mode-wise transforms end-to-end. This

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

yields a simple, geometry-agnostic mechanism for structure-preserving, parameter-efficient linear
transformation on regular tensors.

B MORE RELATED WORK

Modern neural networks contain substantial parameter redundancy: a large fraction of weights can be
predicted from a small subset, sometimes up to 95% with no loss in accuracy (Denil et al., 2013).
This has motivated a broad line of work on efficient parameterizations that preserve accuracy while
reducing storage and compute.

Structured tensor factorization. A major thread leverages high-order structure via tensor de-
compositions of weights. CP/Tucker-style compressions applied to convolutional kernels reduce
parameters and inference cost (Lebedev et al., 2015). Tensor Train (TT) layers compress fully-
connected mappings into compact tensorized operators (Novikov et al., 2015). Block-Term (BT)
tensor networks combine Tucker- and CP-like structure for additional flexibility (Ye et al., 2020).
These tensor-structured layers reduce parameters while retaining rich multi-way interactions by
factoring weights across modes.

Structured matrices and parameter sharing. Another approach imposes algebraic structure on
large dense matrices, replacing them with families that admit fast transforms and fewer degrees of
freedom. Toeplitz-like and related structured operators provide strong compression with competitive
accuracy (Sindhwani et al., 2015); related families (e.g., circulant, block-circulant) and low-rank
factorizations likewise trade unrestricted expressivity for parameter/compute efficiency (Lebedev
et al., 2015).

Multi-space representations. Complementary to structural compression, multi-space learning
embeds features into multiple geometries to better capture hierarchy and long-range relations. For
example, jointly using Euclidean and hyperbolic spaces for LiDAR yields improved hierarchical
encoding and pose estimation (Wang et al., 2023). Such representations enhance expressivity without
necessarily increasing individual layer sizes.

Preserving high-order structure in practice. Operational layers that respect native tensor axes
often strike favorable accuracy–efficiency trade-offs. Depthwise separable convolutions split channel-
wise and spatial mixing to cut FLOPs while preserving inductive bias (Chollet, 2017b; Howard
et al., 2017). However, many fully-connected stages still flatten activations, discarding axis structure
learned upstream.

Positioning NdLinear. NdLinear aligns with these trends but differs in where structure is im-
posed: rather than factorizing weights after flattening, it performs mode-wise learned linear maps
directly on N-D activations, preserving tensor layout throughout. Conceptually, it is a rank-1 Tucker
(Kronecker) parameterization of the dense linear map, with parameters scaling as

P
i
DiHi rather

than
Q

i
Di

Q
i
Hi. This data-aligned factorization complements tensorized weights (Lebedev et al.,

2015; Novikov et al., 2015; Ye et al., 2020) and structured matrices (Sindhwani et al., 2015), and,
like depthwise separable convolutions (Chollet, 2017b; Howard et al., 2017), leverages axis-aware
inductive bias—without resorting to flattening.

C PROOFS AND TECHNICAL DETAILS

C.1 VC-DIMENSION ANALYSIS

We analyze the expressive capacity of NdLinear compared to standard linear layers. Following
Bartlett et al. (2019), any piecewise-linear feedforward network with P parameters has VC-dimension
⇥(P logP ).
Theorem C.1 (VC-Dimension of NdLinear). Consider input tensors of shape (B, a, b, c) transformed
to outputs of shape (B, d, d, d). Let:

• Nvanilla = dabc (parameters in vanilla linear layer)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• Nnd = d(a+ b+ c) (parameters in NdLinear)

Then:

1. As d ! 1 with a, b, c fixed: Nnd = ⇥(Nvanilla)

2. NdLinear’s VC-dimension is ⇥(Nnd logNnd)

Proof. For part (1), observe that:

Nnd = d(a+ b+ c) =
a+ b+ c

abc
· dabc =

a+ b+ c

abc
·Nvanilla (4)

Since a+b+c

abc
is a positive constant (for fixed a, b, c), we have:

Nnd = ⇥(Nvanilla) as d ! 1 (5)

For part (2), by the Bartlett et al. result, since NdLinear has Nnd parameters and maintains piecewise-
linear structure through ReLU activations:

VCdimNdLinear = ⇥(Nnd logNnd) (6)

Interpretation: While NdLinear uses fewer parameters for finite d, as the hidden dimension grows,
its parameter count becomes proportional to vanilla linear layers, preserving the same VC-dimension
scaling.
Theorem C.2 (Parameter Count Lower Bound). For positive integers a, b, c, d:

d(a+ b+ c) > log(dabc) (7)

Proof. We have:

log(dabc) = log d+ log a+ log b+ log c (8)
 (d� 1) + (a� 1) + (b� 1) + (c� 1) (using log x  x� 1) (9)
= d+ a+ b+ c� 4 (10)

Therefore:

d(a+ b+ c)� log(dabc) � d(a+ b+ c)� (d+ a+ b+ c� 4) (11)
= (d� 1)(a+ b+ c)� d+ 1 + 4 (12)
= (d� 1)(a+ b+ c� 1) + 4 (13)
� 4 > 0 (14)

since d � 1 and a+ b+ c � 3 for non-trivial tensors.

C.2 PEAK ACTIVATION MEMORY ANALYSIS

Proposition C.1 (Peak Memory Overhead Bound). For an input tensor with m modes of sizes
(d1, . . . , dm) where

Q
m

i=1 di = D, and output sizes ki  di, the peak additional activation memory
for backpropagation satisfies:

extra activation memory
baseline activation memory


maxi(ki/di) ·mini di

m ·mini di


1

m
(15)

For typical 3D tensors (m=3), this overhead is at most 33%.

Proof. During forward pass, NdLinear sequentially transforms each mode. For backpropagation, we
store intermediate activations after each mode transformation.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

After transforming j modes, the tensor has shape:

(B, k1, . . . , kj , dj+1, . . . , dm) (16)

The peak extra memory occurs at the stage with the largest intermediate tensor. Since ki  di, each
intermediate tensor has at most BD elements. The baseline memory is also BD elements.

In the worst case where all ki = di, we have at most (m� 1) intermediate tensors to store, but only
one is needed at any given time during backprop (due to sequential processing). Therefore:

Peak overhead =
BD ·maxi(ki/di)

BD


1

m
(17)

C.3 COMPUTATIONAL COMPLEXITY

Proposition C.2 (Exact FLOP Count). NdLinear transforming X 2 RB⇥D1⇥···⇥DN to Y 2

RB⇥H1⇥···⇥HN requires:

FLOPsNdLinear = 2B
NX

k=1

2

4

0

@
k�1Y

j=1

Hj

1

A

0

@
NY

j=k+1

Dj

1

ADkHk

3

5 (18)

where the factor of 2 accounts for multiply-add operations.

This is typically O(BND
N+1) for Di = Hi = D, compared to O(BD

2N ) for vanilla linear
layers—yielding orders of magnitude savings as N increases.

D IMPLEMENTATION DETAILS AND TRAINING PROTOCOL

Here we present implementation details and training protocol of NdLinear (Algorithm 1). Implement-
ing NdLinear in practice involves careful attention to efficiency and compatibility with existing deep
learning frameworks. We outline key considerations in the following.

Memory Efficiency. Despite handling high-dimensional tensors, NdLinear is memory-efficient due to
its factorized parameterization. The forward pass requires allocating intermediate tensors during each
mode transformation (after each linear operation, the tensor has one updated dimension). However,
these intermediate allocations are of the same order as the input/output size and significantly smaller
than the memory required for a gigantic flattened weight matrix. Modern tensor libraries (PyTorch,
TensorFlow) facilitate implementing transpose-reshape-multiply steps without excessive data copying.
We ensure in-place operations where possible (e.g., using view in PyTorch). Operations primarily
reuse the input buffer for output as each mode is transformed, ensuring modest peak memory usage.

Parameter Initialization. Each weight matrix Wi can be initialized using standard strategies for
linear layers (Xavier/Glorot (Glorot and Bengio, 2010) or Kaiming (He et al., 2015) initialization
based on fan-in and fan-out). Since Wi has fan-in Di and fan-out Hi, the initialization follows
Uni(�

q
6

Di+Hi
,

q
6

Di+Hi
) for Xavier uniform, or analogous formulas for other initializations. This

helps maintain stable gradients across modes. One subtle point is that if n is large, each mode’s weight
is relatively small, mitigating the risk of extremely large fan-in. We observed no initialization-specific
difficulties; indeed, NdLinear’s parameter reduction may help avoid gradient explosion or vanishing
issues in deep networks.

Computational Overhead. Factorized operations (multiple transpose and reshape operations with
smaller matrix multiplications) are highly optimized in modern BLAS libraries. Practically, runtime
is comparable to or faster than fully-connected layers with similar outputs, due to reduced total
FLOPs. Python-level overhead is minimal; the algorithm can be implemented in a single forward
function looping over modes. For moderate n (up to 4 or 5 dimensions), this loop is short. Explicit
loops or unrolling (NdLinear2d, NdLinear3d, etc.) are feasible, but a simple loop suffices. Autograd
engines handle tensor operations seamlessly, allowing standard backpropagation. Each Wi receives
gradients normally from upstream gradients.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Training Protocols. NdLinear layers can be trained end-to-end with standard optimization algorithms
(SGD, Adam) just like standard linear layers. Loss functions depend on the task (cross-entropy,
MSE, etc.) and are unaffected by NdLinear. However, because NdLinear significantly reduces
parameters compared to fully-connected layers, it tends to overfit less, possibly needing less aggressive
regularization. Common techniques remain useful: weight decay (L2 regularization) on weights Wi,
and optionally dropout between layers. Dropout can be applied before or after NdLinear; entries in
the output tensor Y can be dropped as usual. Specialized regularizers for factorized weights (norm
regularization, orthogonality) may help further restrict solution spaces, though not required.

Optimization and Convergence. Practically, each Wi is updated based on a portion of the overall
error gradient (due to sequential mode transforms). In experiments, all Wi matrices learned smoothly
with default optimizer settings. If dimensionality varies significantly across modes, gradient clipping
or adaptive learning rates per mode may be beneficial. Throughout our numerical investigations,
training dynamics are stable overall — NdLinear layers integrated seamlessly into models without
requiring special tuning. Standard protocols (learning rate schedules, early stopping criteria, etc.)
used for equivalent models with dense layers apply here.

E FULL EXPERIMENTAL DETAILS AND RESULTS

We present full experimental details and more results on LoRA fine-tuning in appendix E.1;
language-model pretraining (OPT and BERT) in appendix E.1; time-series prediction (RNN and
Transformer) in appendix E.2; tabular data in appendix E.3; and vision tasks (CNN, ViT, and
DiT) in appendix E.4. The complete experiment code is available at https://github.com/
cyclone-trout/ndlinear_neurips.

E.1 PARAMETER-EFFICIENT FINETUNING WITH LORA AND NDLINEAR-LORA

In our study, we utilized state-of-the-art transformer architectures to investigate the impact of targeted
modu le adaptation. We selected two base models, Qwen3-1.7B-Base (Yang et al., 2025) and Meta-
Llama-3-8B (Dubey et al., 2024), recognized for their robust performance across various tasks.
To focus our adaptations, we targeted specific modules within these models, including q_proj,
k_proj, v_proj, o_proj, gate_proj, up_proj, and down_proj. This approach allowed
us to enhance model capacity and efficiency selectively.

For the adaptation process, we employed Low-Rank Adaptation (LoRA) techniques (Hu et al., 2022),
specifically using both NdLinear LoRA and classic LoRA configurations. We explored a range of
alpha values (1, 4, and 8) and rank settings (1, 4, and 8) to determine the optimal configuration for
our models. This exploration was critical for understanding how different levels of parameter sharing
and scaling affect model performance and generalization.

The training process was conducted using the AdamW optimizer, a choice informed by its effec-
tiveness in managing the complexities of transformer models. We set the learning rate to 1⇥ 10�4,
which provided a suitable balance between convergence speed and training stability. The batch size
was set to 1, a decision that facilitated the use of gradient accumulation to optimize GPU memory
usage. To ensure the models could handle a wide variety of inputs, we set the maximum sequence
length to 512 tokens. The models were trained over 2 epochs, a duration found to be sufficient for
achieving significant performance improvements without excessive computational cost. To ensure
reproducibility, we used a random seed of 42 across all experiments.

Our models were fine-tuned using two datasets: Math10K and CommonsenseQA. These datasets
were chosen for their ability to challenge the models with both mathematical reasoning and common-
sense understanding. For evaluation, we employed a diverse set of benchmark datasets, including
GSM8K, MultiArith, ARC-C, ARC-E, and BoolQ. This selection allowed us to assess the models’
generalization capabilities across different types of reasoning tasks.

The entire implementation was carried out on a single NVIDIA H100 GPU, using Hugging Face’s
AutoModelForCausalLM framework1, integrated with our custom NdLinear adapter layer.
Datasets were tokenized using the default tokenizer for each model, with padding applied to the
eos_token. We employed label masking to exclude prompt tokens from loss computation, ensuring

1https://huggingface.co/docs/transformers/en/model_doc/auto

22

https://github.com/cyclone-trout/ndlinear_neurips
https://github.com/cyclone-trout/ndlinear_neurips
https://huggingface.co/docs/transformers/en/model_doc/auto


1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

that training focused on the relevant portions of the input. Our implementation leveraged PyTorch,
along with Hugging Face Transformers, PEFT, and Accelerate, to facilitate efficient model training
and adaptation. Evaluation was performed in a zero-shot setting using greedy decoding, which
provided a consistent measure of model performance without the variability introduced by sampling
methods.

Open Pretrained Transformer (OPT) (Zhang et al., 2022). For OPT-Small, which originally
contains 124M parameters, replacing the standard linear layers with NdLinear reduces the parameter
count to 119M. Similarly, for OPT-Mid, the parameter count decreases from 350M to 337M after the
substitution.

Table 5: Perplexity comparison for OPT-Small and OPT-Mid models with Linear vs. NdLinear layers.

Linear NdLinear

OPT-Small (Params) 15.970 (124M) 15.755 (119M)
OPT-Mid (Params) 12.926 (350M) 12.565 (337M)

In Table 5, both the OPT-Small and OPT-Mid models achieve lower perplexity scores after replacing
standard linear layers with NdLinear layers, despite having fewer parameters. Moreover, the per-
formance improvement becomes more significant as model size increases, with the perplexity gap
widening from 0.215 in OPT-Small to 0.361 in OPT-Mid. Figure 2 shows that OPT models with
NdLinear feedforward layers achieve lower final training and evaluation losses compared to their
counterparts using standard linear feedforward layers.

(a) Training Loss during Pre-Training. (b) Evaluation Loss during Pre-Training.

Figure 2: Training and evaluation loss curves during OPT model pretraining. NdLinear variants consistently
achieve lower loss values. x-axis represents the number of training steps.
Zero-shot Tasks. We also evaluate the OPTs’ pretraining on 10 zero-shot NLP tasks:

• Natural Language Inference Tasks: CB (De Marneffe et al., 2019)
• Coreference Resolution Tasks: Winogrande (Sakaguchi et al., 2021)
• Sentence Completion Tasks: COPA (Roemmele et al., 2011), HellaSwag (Zellers et al., 2019)
• Word Sense Disambiguation Tasks: WiC (Pilehvar and Camacho-Collados, 2018)
• Question Answering Tasks: ARC-Easy, ARC-Challenge (Clark et al., 2018), OpenBookQA

(Mihaylov et al., 2018), BoolQ (Clark et al., 2019)
• Commonsense Reasoning Tasks: PIQA (Bisk et al., 2020)

During evaluation, we cast all of the above tasks into a multiple-choice format. Namely, the goal
is to select the correct completion from a set of candidate options. For each option, we compute
the language model (LM) likelihood of the full input consisting of the context concatenated with
the candidate completion. To account for differences in the lengths of candidate completions, we
compute the average per-token log-likelihood for each option, following (Brown et al., 2020). The
model’s prediction is taken to be the option with the highest per-token likelihood.

BERT (Devlin et al., 2019). We replace the conventional two-layer linear classification head in
BERT with an NdLinear layer followed by a classification layer. The NdLinear transforms have

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 6: Perplexity Score and Zero-Shot Performance on OPT Model with and without NdLinear.

OPT-Small OPT-Mid

Linear NdLinear Linear NdLinear

Num of Params 124M 119M 350M 337M

Perplexity 15.970 15.755 12.926 12.565

CB 0.32 0.38 0.50 0.52

Winogrande 0.49 0.51 0.50 0.50

COPA 0.58 0.53 0.54 0.56

HellaSwag 0.26 0.26 0.28 0.29

WiC 0.51 0.50 0.50 0.49

ARC-Easy 0.29 0.30 0.29 0.29

ARC-Challenge 0.24 0.25 0.24 0.23

OpenBookQA 0.32 0.35 0.34 0.34

BoolQ 0.49 0.59 0.60 0.56

PIQA 0.53 0.50 0.53 0.53

hidden dimensions of (2, 2). Each model is trained for 200 epochs with a batch size of 32, a hidden
layer size of 128, and a learning rate of 0.005.

Table 7: BERT text classification performance on CoLA and SST-2 datasets. NdLinear improves accuracy and
ROC AUC with ⇡85% fewer parameters in the classification head.

Dataset Method Params (Head) Accuracy ROC AUC

CoLA Linear 1,544 0.7790 ± 0.0143 0.7127 ± 0.0264
NdLinear 222 0.7906 ± 0.0142 0.7405 ± 0.0209

SST-2 Linear 1,544 0.8872 ± 0.0079 0.8867 ± 0.0080
NdLinear 222 0.8933 ± 0.0093 0.8932 ± 0.0073

E.2 TIME SERIES

Time Series Forecasting. In our experiments using RNNs, we used a sequence length of 24 and
a forecast horizon of 12 for all models. The models were trained for 100 epochs using the Adam
optimizer with a learning rate of 0.02 and a batch size of 128. The dataset was split into training,
validation, and evaluation sets with proportions of 60%, 20%, and 20%, respectively. We set the
hidden size to 96, used a single recurrent layer, and applied a dropout rate of 0.3.

For Transformer-based Forecasting tasks, the experiments were conducted using a time series
transformer model with a model dimension and hidden dimension both set to 32, a single transformer
layer, and a dropout rate of 0.1. The GELU activation function was employed throughout, and the
models were trained for 10 epochs with a batch size of 128 and a learning rate of 0.001. All models
optimized using Adam and mean squared error as the loss function.

Time Series Classification. We set the hidden size of all RNN layers to 128 and used 3 recurrent
layers, with a batch size of 32 and a learning rate of 0.005. Models were trained for 200 epochs using
the Adam optimizer and cross-entropy loss.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E.3 TABULAR DATA

We compare the performance of the Linear and NdLinear models. The Linear Model uses two linear
layers for feature extraction, while the NdLinear Model replaces them with NdLinear layers.

Classification. Target labels were one-hot encoded. The Linear Model utilized fully connected
layers with input dimension [11] and hidden dimension [128], followed by ReLU and a final linear
output layer. The NdLinear Model used custom NdLinear layers with input dimensions [11, 1] and
hidden dimensions [11, 64], also followed by ReLU and a final linear output layer. Both models are
trained over 40 epochs with a batch size of 32 and a learning rate of 0.0001 using AdamW optimizer.
Data was randomly shuffled and split into 80% training and 20% testing sets. Cross-entropy loss is
used for training, and classification accuracy is used for model evaluation.

Regression. Target labels were kept as continuous values. The Linear Model utilized fully connected
layers with input dimension [14] and hidden dimension [128], followed by ReLU and a final linear
output layer. The NdLinear Model used custom NdLinear layers with input dimensions [14, 1] and
hidden dimensions [32, 64], also followed by ReLU and a final linear output layer. Both models are
trained over 40 epochs with a batch size of 32 and a learning rate of 0.0002 using AdamW optimizer.
Data was randomly shuffled and split into 80% training and 20% testing sets. MSE loss is used for
both training and model evaluation.

Table 8: NdLinear with MLPs on tabular datasets. For classification (Cardio Disease), the metric is Accuracy
(higher is better). For regression (Delivery Time), the metric is MSE (lower is better).

Dataset Task Method #Params Metric

Cardio Disease Classif.
(Accuracy)

Linear 18 306 0.7265
NdLinear 5 962 0.7321

Delivery Time
Regress.
(MSE)

Linear 18 561 70.508
NdLinear 7 873 67.824

E.4 VISION

Image Classification with CNN. The NdLinear version uses three transforms with hidden dimen-
sions of (64, 8, 8), while the Linear version uses a single hidden dimension of 256. Models were
trained for 50 epochs using Adam optimizer (learning rate 0.001), batch size 64, cross-entropy loss,
and mixed-precision training on CUDA when available.

Table 9: Image classification with CNNs on CIFAR-10 (top-1 Acc.) and CIFAR-100 (top-5 Acc.). NdLinear
achieves higher accuracy with fewer parameters.

Dataset #Params Method Accuracy

CIFAR-10 1.07M Linear 0.7426 ± 0.0025
65k NdLinear 0.7689 ± 0.0060

CIFAR-100 1.09M Linear 0.6587 ± 0.0075
433k NdLinear 0.7096 ± 0.0121

Vision Transformers (ViT) (Dosovitskiy et al., 2021). Training used a batch size of 512, AdamW
optimizer, learning rate 2.75⇥ 10�4 for 30 epochs, and a distillation temperature of 3. Input images
(224⇥ 224) were augmented with random cropping and horizontal flipping.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 3: NdLinear’s efficiency. Reduced ViT model parameter counts on CIFAR-10 and CIFAR-100 for a
distillation task.

Figure 4: DiT achieving lower (better) FID scores for image generation on ImageNet-100 when
trained from scratch with comparable parameters.

Table 10: NdViT vs. Naive ViT: Accuracy and parameter efficiency on CIFAR-10 (Acc@1) and CIFAR-100
(Acc@5). NdViT shows improved accuracy with fewer parameters.

Dataset Num. of
Transformers

NdViT (Ours) Naive
200 300 400 500

CIFAR10
3 Blocks 65.77 ± 0.47 67.53 ± 0.70 69.00 ± 1.27 62.09 ± 0.40
6 Blocks 68.48 ± 0.75 70.20 ± 0.73 72.03 ± 0.46 65.19 ± 0.64
9 Blocks 70.27 ± 0.35 71.50 ± 0.58 72.53 ± 0.54 68.52 ± 1.24

CIFAR100
3 Blocks 70.78 ± 1.36 73.10 ± 1.06 74.14 ± 1.66 69.34 ± 0.88
6 Blocks 73.60 ± 0.83 75.07 ± 0.14 76.37 ± 0.71 73.84 ± 0.39
9 Blocks 74.24 ± 0.32 75.52 ± 0.73 76.61 ± 0.26 75.60 ± 0.70

Diffusion Transformers (DiT) (Peebles and Xie, 2023). We used a learning rate of 1⇥ 10�4 for
256⇥ 256 images, mixed-precision (bfloat16) training, automatic gradient accumulation, and a
batch size of 256, varying model depth and attention heads.

Table 11: FID-10k scores for DiT models: Pre-trained vs. NdLinear variants with fewer parameters.

NdLinear NdLinear Baseline

Parameter Count 619M 563M 674M
FID-10k 5.4876 5.9420 5.4109

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

F DETAILED ABLATION STUDIES

F.1 PER-MODE BIAS IMPACT

We ablate per-mode bias terms across widths on the Radius Bump task.

We generate 1,000 train and 200 test samples. Hidden widths {16, 32, 64, 128}. We have NdLinear-
MLPs replacing Linear blocks with NdLinear, using per-axis hidden shapes {(4,4), (8,8), (16,16),
(32,32)} matched to the hidden widths above. For all models, training uses Adam (learning rate
10�3) for 4,000 epochs under identical schedules, with early stopping when training loss < 10�4;
loss is mean squared error (MSE). We report parameter count and test MSE (mean ± std).

The benefit of per-mode bias grows with width, reaching +15.2% MSE improvement at width 128.

Table 12: Per-mode bias ablation on Radius Bump

Width Bias MSE (mean) MSE (std) Params
16 False 0.00332264 0.00173532 36
16 True 0.00335201 0.00157289 46
32 False 0.00332793 0.00170700 72
32 True 0.00318228 0.00163146 90
64 False 0.00336938 0.00160766 144
64 True 0.00305152 0.00145630 178

128 False 0.00339010 0.00173152 288
128 True 0.00287480 0.00139560 354

F.2 AXIS ORDERING SENSITIVITY

We permute axes (original, reverse, random) and measure CIFAR-100 performance retention. Finding:
robustness to ordering ( 4 pp spread).

Table 13: Axis ordering sensitivity (CIFAR-100)

Variant (axes) Accuracy vs. baseline
Original order 100%
Reverse 99% ± 1%
Random 96% ± 1%

F.3 RADIUS BUMP: LAST-LAYER ENTROPY, PERFORMANCE, AND COMPRESSION

We evaluate Dense MLP vs. NdLinear on the Radius Bump task across three difficulty levels (shell
thickness � 2 {0.10, 0.20, 0.30}). Inputs are x 2 [�1, 1]10 with i.i.d. coordinates xi ⇠ U(�1, 1);
the target is y = exp

�
�(kxk � 0.8)2/(2�2)

�
. For each � we generate 1,000 train and 200 test

samples. Architectures: (i) Dense MLP baselines with hidden widths {16, 32, 64, 128} and depths {2,
3}; (ii) NdLinear-MLPs replacing Linear blocks with NdLinear, using per-axis hidden shapes {(4,4),
(8,8), (16,16), (32,32)} matched to the dense widths above and depths {2, 3}. For all models, training
uses Adam (learning rate 10�3) for 4,000 epochs under identical schedules, with early stopping when
training loss < 10�4; loss is mean squared error (MSE). We report parameter count, forward-pass
FLOPs (from analytical op counts), test MSE (mean ± std), and last-layer average output entropy
(AveEntropy).

Across all �, NdLinear variants consistently exhibit lower AveEntropy than parameter-matched dense
models at similar widths/depths, while using markedly fewer parameters and FLOPs. At � = 0.20
and � = 0.30, depth-3 NdLinear achieves the lowest test errors (e.g., 0.00071± 0.00019 at width 64,
and 0.00029± 0.00021 at width 64) together with lower entropies (0.344 and 0.341, respectively)
than dense counterparts (0.00128 ± 0.00190 with entropy 0.518; 0.00152 ± 0.00029 with entropy
0.521). For the hardest setting (� = 0.10), NdLinear matches dense test error while maintaining

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 5: ↵ = 0.1 (hard): Narrow bump, very challenging.

Figure 6: ↵ = 0.2 (medium): Moderate difficulty.

Figure 7: ↵ = 0.3 (easy): Wide bump, easier to approximate.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 14: Radius Bump (� = 0.10; thin / hardest). Lower AveEntropy indicates more compact last-layer
representations.

Width Kind Depth Hidden Shape Params Train MSE Test MSE ± Std FLOPs (·109) AveEntropy
16 dense 2 (16) 193 1.17e-5 0.00086 ± 0.00176 2.78 0.476
16 dense 3 (16) 465 1.37e-6 0.00087 ± 0.00189 6.70 0.625
16 nd 2 (4, 4) 46 1.19e-5 0.00086 ± 0.00186 0.66 0.405
16 nd 3 (4, 4) 86 1.18e-5 0.00086 ± 0.00186 1.24 0.518
32 dense 2 (32) 385 1.18e-5 0.00086 ± 0.00169 5.54 0.459
32 dense 3 (32) 1,441 2.93e-6 0.00084 ± 0.00188 20.75 0.560
32 nd 2 (8, 8) 90 1.20e-5 0.00086 ± 0.00182 1.30 0.321
32 nd 3 (8, 8) 234 1.16e-5 0.00086 ± 0.00178 3.37 0.426
64 dense 2 (64) 769 1.19e-5 0.00086 ± 0.00169 11.07 0.407
64 dense 3 (64) 4,929 1.59e-8 0.00085 ± 0.00196 70.98 0.507
64 nd 2 (16, 16) 178 1.12e-5 0.00086 ± 0.00175 2.56 0.292
64 nd 3 (16, 16) 722 1.12e-5 0.00086 ± 0.00180 10.40 0.377

128 dense 2 (128) 1,537 5.79e-6 0.00089 ± 0.00253 22.13 0.363
128 dense 3 (128) 18,049 1.84e-9 0.00089 ± 0.00158 259.91 0.469
128 nd 2 (32, 32) 354 1.12e-5 0.00086 ± 0.00158 5.10 0.295
128 nd 3 (32, 32) 2,466 8.71e-6 0.00086 ± 0.00204 35.51 0.286

Table 15: Radius Bump (� = 0.20; medium). NdLinear often attains both lower error and lower last-layer
entropy.

Width Kind Depth Hidden Shape Params Train MSE Test MSE ± Std FLOPs (·109) AveEntropy
16 dense 2 (16) 193 7.75e-4 0.00256 ± 0.00235 2.78 0.493
16 dense 3 (16) 465 1.29e-5 0.00166 ± 0.00118 6.70 0.592
16 nd 2 (4, 4) 46 9.91e-4 0.00273 ± 0.00273 0.66 0.410
16 nd 3 (4, 4) 86 1.01e-3 0.00275 ± 0.00272 1.24 0.521
32 dense 2 (32) 385 6.03e-4 0.00266 ± 0.00234 5.54 0.461
32 dense 3 (32) 1,441 5.92e-6 0.00180 ± 0.00117 20.75 0.560
32 nd 2 (8, 8) 90 9.92e-4 0.00273 ± 0.00232 1.30 0.323
32 nd 3 (8, 8) 234 1.19e-4 0.00192 ± 0.00089 3.37 0.428
64 dense 2 (64) 769 3.17e-4 0.00368 ± 0.00344 11.07 0.403
64 dense 3 (64) 4,929 1.84e-8 0.00128 ± 0.00190 70.98 0.518
64 nd 2 (16, 16) 178 8.35e-4 0.00252 ± 0.00216 2.56 0.293
64 nd 3 (16, 16) 722 9.56e-6 0.00071 ± 0.00019 10.40 0.344

128 dense 2 (128) 1,537 2.53e-5 0.00454 ± 0.00330 22.13 0.364
128 dense 3 (128) 18,049 2.01e-10 0.00159 ± 0.00102 259.91 0.471
128 nd 2 (32, 32) 354 6.07e-4 0.00233 ± 0.00211 5.10 0.296
128 nd 3 (32, 32) 2,466 2.33e-6 0.00081 ± 0.00019 35.51 0.284

lower entropy and large reductions in parameters and FLOPs. These patterns support the claim that
lower last-layer entropy paired with equal-or-better error corresponds to better compression.

F.4 HYPERPARAMETER SENSITIVITY

Grid search over learning rate, hidden size, and batch size on CIFAR-100. Finding: stable efficiency
metrics and competitive accuracy across settings.
Note: GPU memory usage constant at 34.04-34.40 MB across all configurations.

F.5 SAMPLE EFFICIENCY

Fix task structure and vary data size; measure samples needed to reach target error at different
entanglement levels.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 16: Radius Bump (� = 0.30; thick / easiest). NdLinear depth-3 variants achieve the lowest errors with
the lowest entropies.

Width Kind Depth Hidden Shape Params Train MSE Test MSE ± Std FLOPs (·109) AveEntropy
16 dense 2 (16) 193 3.65e-3 0.00716 ± 0.00157 2.78 0.505
16 dense 3 (16) 465 1.87e-4 0.00210 ± 0.00084 6.70 0.627
16 nd 2 (4, 4) 46 5.91e-3 0.00827 ± 0.00261 0.66 0.406
16 nd 3 (4, 4) 86 2.73e-3 0.00710 ± 0.00345 1.24 0.527
32 dense 2 (32) 385 2.03e-3 0.00636 ± 0.00209 5.54 0.461
32 dense 3 (32) 1,441 1.42e-5 0.00166 ± 0.00063 20.75 0.588
32 nd 2 (8, 8) 90 3.53e-3 0.00564 ± 0.00190 1.30 0.323
32 nd 3 (8, 8) 234 6.78e-5 0.00045 ± 0.00021 3.37 0.424
64 dense 2 (64) 769 8.76e-4 0.00968 ± 0.00175 11.07 0.406
64 dense 3 (64) 4,929 1.34e-5 0.00152 ± 0.00029 70.98 0.521
64 nd 2 (16, 16) 178 3.01e-3 0.00502 ± 0.00142 2.56 0.293
64 nd 3 (16, 16) 722 9.46e-6 0.00029 ± 0.00021 10.40 0.341

128 dense 2 (128) 1,537 1.66e-4 0.01057 ± 0.00324 22.13 0.362
128 dense 3 (128) 18,049 2.03e-10 0.00249 ± 0.00051 259.91 0.474
128 nd 2 (32, 32) 354 1.78e-3 0.00460 ± 0.00096 5.10 0.296
128 nd 3 (32, 32) 2,466 3.41e-5 0.00041 ± 0.00014 35.51 0.278

Table 17: Hyperparameter sensitivity sweep (CIFAR-100)

LR Hidden Size Batch GFLOPs Latency (s) Params Acc@5 (%)
0.001 128,4,4 128 0.848 0.001415 232,876 72.75
0.001 256,2,2 64 0.901 0.001451 138,760 74.30
0.001 128,4,4 64 0.848 0.001381 232,876 72.67
0.001 128,4,4 32 0.848 0.001409 232,876 72.48
0.001 256,2,2 32 0.901 0.001388 138,760 73.80
0.001 256,2,2 128 0.901 0.001400 138,760 74.75
0.01 128,4,4 128 0.848 0.001318 232,876 71.62
0.01 128,4,4 64 0.848 0.001376 232,876 66.73
0.01 128,4,4 32 0.848 0.001364 232,876 66.56
0.01 256,2,2 64 0.901 0.001257 138,760 64.86
0.01 256,2,2 128 0.901 0.001312 138,760 70.20
0.01 256,2,2 32 0.901 0.001323 138,760 63.75

• Nearly-separable tasks (↵ = 0.1): NdLinear reached target MSE with only 2,000 samples;
parameter-matched linear model required over 10,000 samples.

• Highly-entangled tasks (↵ = 0.9): Standard linear model achieved target MSE with 15,000
samples; NdLinear struggled to match this performance even with 25,000 samples.

F.6 TRAINING AND MEMORY OVERHEAD

Measure peak activation memory and per-epoch training time after replacing a single dense GEMM
with mode-wise GEMMs. Finding: empirical overheads are small (< 3% memory, < 2% time) as
seen in Table 18.

Table 18: Empirical overheads across architectures

Model Peak Mem (MB) Epoch Time (s)
CIFAR-100 CNN 35.17 ! 36.91 (+2.0%) 47.2 ! 47.8 (+0.6%)
ETTh1 RNN 32.58 ! 33.41 (+1.2%) 12.3 ! 12.6 (+1.2%)
Vision Transformer 127.3 ! 130.1 (+1.1%) 179 ! 185 (+1.6%)

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

F.7 COMPARISON WITH ALTERNATIVE STRUCTURED LAYERS

CNN head on CIFAR-100 comparing NdLinear to TRL/TCL and TT. Finding: NdLinear achieves
higher Acc@5 with fewer params, lower FLOPs, and lower latency.

Table 19: NdLinear vs. TRL/TCL vs. TT (CIFAR-100 Acc@5)

Method Mem (MB) Acc@5 Latency (s) FLOPs (G) Params
NdLinear 35.16 0.7133 0.000976 0.843 433,588
TRL/TCL 35.60 0.6935 0.001116 3.97 548,032
TT 100.44 0.5617 0.005871 5.25 769,316

31


	Introduction
	Related Work
	Linear Transformation Preserving N-dimensional Information
	Preserving The Expressiveness of Vanilla Linear Layers
	Fewer Learnable Parameters And Wall-Clock Speedups
	Inductive Bias and Domain Alignment
	Quantifying the Trade-off: Dial-a-Bias Experiment

	Experimental Results
	Natural Language Processing
	Parameter-Efficient Finetuning with NdLinear-LoRA
	Language Model Pretraining
	Text Classification

	Time Series Analysis
	Tabular Data
	Computer Vision
	Vision Transformer Distillation
	CNN Image Classification
	Generative Modeling with Diffusion Transformers (DiT)

	Ablation Studies
	Design Choices
	Practical Considerations


	Conclusion
	Detailed Comparison with Related Methods
	Tensor Decomposition Methods
	Factorized Convolutions and Axial Operations
	Tensor Contraction and Regression Layers
	Structured Linear Layers
	Graph Neural Networks
	Other Specialized Approaches

	More Related Work
	Proofs and Technical Details
	VC-Dimension Analysis
	Peak Activation Memory Analysis
	Computational Complexity

	Implementation Details and Training Protocol
	Full Experimental Details and Results
	Parameter-Efficient Finetuning with LoRA and NdLinear-LoRA
	Time Series
	Tabular Data
	Vision

	Detailed Ablation Studies
	Per-Mode Bias Impact
	Axis Ordering Sensitivity
	Radius Bump: Last-Layer Entropy, Performance, and Compression
	Hyperparameter Sensitivity
	Sample Efficiency
	Training and Memory Overhead
	Comparison with Alternative Structured Layers


