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Abstract

Embedding vision–language models (VLMs)
are typically pretrained with short text win-
dows (<77 tokens), which forces the truncation
of long-format captions. Yet, the distribution
of biomedical captions from large-scale open
source literature reveals that a huge portion of
captions far exceed 77 tokens. To this end, we
investigate the impact of pretraining on long-
format biomedical captions by extending the
context length of text encoders in VLMs. We
find that longer context (thus, enabling addi-
tional supervision provided in long-format cap-
tions) correlates with better retrieval and clas-
sification performance. Given this finding, we
introduce BIOMEDICA-LongCAP, a dataset of
1M image–caption pairs enriched with context-
aware descriptions from full-text articles, pro-
viding longer and additional textual super-
vision. Using BIOMEDICA-LongCAP, we
train BMC-LongCLIP, a long-context biomed-
ical VLM with a text encoder supporting win-
dows of up to 512 tokens. Our model ex-
tends context capacity by 6.6×, reducing to-
ken waste from 55% to just 2.2%. On long-
caption retrieval benchmarks, BMC-LongCLIP
achieves up to +30% absolute gains in Recall@1
and +2% average improvements in classifica-
tion, while also converging faster than short-
context. Our results demonstrate that long-

context modeling is a promising direction for
advancing biomedical VLMs.

Keywords: Biomedical Vision-Language
Models, Long-context Modeling, Contrastive
Learning

Data and Code Availability For CLIP training,
we adapt OpenCLIP using our forked version with
BMC-LongCLIP config1. We train on the BIOMED-
ICA dataset Lozano et al. (2025b) and additionally
use MIMIC-CXR Johnson et al. (2019) for evalu-
ation (credentialed access via PhysioNet). Model
weights, BIOMEDICA-LongCAP dataset, and the
PMC benchmark will be released on Hugging Face2.

Institutional Review Board (IRB) This re-
search does not require IRB approval.

1. Introduction

Multimodal foundation models hold immense poten-
tial to advance medical practice and biological science
Moor et al. (2023). In particular, transformer-based
architectures trained on large image–text datasets
have set state-of-the-art performance in tasks such
as zero-shot image classification and cross-modal re-
trieval. Despite these advances, a key limitation re-

1. https://github.com/minwoosun/open_clip_bmc
2. https://huggingface.co/BIOMEDICA
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Parasagittal magnetic resonance image of the equine brain at the level of the external capsule.ab: 
amygdaloid body, ans: ansiform lobule, cla: claustrum, Dia: diagonal sulcus, Ecs: ectosylvian sulcus, 
ecs: ectosylvian gyrus, ex: extreme capsule, gg: Gasserian ganglion, ic: internal capsule, man: mandibular 
nerve, max: maxillary nerve, or: optic radiation, phg: parahippocampal gyrus, Prs: presylvian sulcus, Rfi: 
rhinal fissure, Syl: sylvian fissure. 

BMC-CLIP (& pre-model): 77 tokens; truncated

BMC-LongCLIP: 143 tokens; full
Parasagittal magnetic resonance image of the equine brain at the level of the external capsule.ab: 
amygdaloid body, ans: ansiform lobule, cla: claustrum, Dia: diagonal sulcus, Ecs: ectosylvian sulcus, 
ecs: ectosylvian gyrus, ex: extreme capsule, gg: Gasserian ganglion, ic: internal capsule, man: 
mandibular nerve, max: maxillary nerve, or: optic radiation, phg: parahippocampal gyrus, Prs: 
presylvian sulcus, Rfi: rhinal fissure, Syl: sylvian fissure.

The image depicts a parasagittal section of the equine brain, captured using magnetic resonance imaging 
(MRI). The focus is on the level of the external capsule, showcasing a detailed view of the brain's intricate 
anatomy. Several prominent structures are visible: Amygdaloid Body (ab): Located near the temporal lobe, 
this structure is involved in emotional processing and memory. Ansiform Lobule (ans): Part of the cerebellar 
hemispheres, characterized by its loop-like shape and vertical orientation, contributing to the equine 
cerebellum's distinctive rectangular appearance in transverse images. Diagonal Sulcus (Dia): A prominent 
sulcus that helps demarcate certain cortical regions. Ectosylvian Sulcus (Ecs) and Ectosylvian Gyrus (ecs): 
Structures associated with auditory processing, located on the lateral surface of the brain. Extreme Capsule 
(ex): A white matter tract that separates the insular cortex from the external capsule. Internal Capsule (ic): A 
white matter structure that serves as a relay point for various neural pathways, including the optic radiation. 
Optic Radiation (or): A bundle of axons that carry visual information from the lateral geniculate body to the 
primary visual cortex. Parahippocampal Gyrus (phg): A cortical structure involved in memory and spatial 
navigation. Presylvian Sulcus (Prs): A sulcus that helps define the boundaries of certain cortical areas. Rhinal 
Fissure (Rfi): A deep fissure that separates the hippocampus from the parahippocampal gyrus. Sylvian Fissure 
(Syl): A prominent fissure that divides the temporal lobe from the parietal and frontal lobes. While the image 
provides a comprehensive view of the equine brain's complex architecture, some structures such as the 
hypothalamus, pituitary gland, optic chiasm, and trigeminal nerve pathways are not directly visible in this 
particular section. The overall depiction emphasizes the connectivity and spatial arrangement of critical neural 
structures, offering valuable insights into equine neuroanatomy.

BMC-LongCLIP: 425 tokens; long
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Figure 1: (A) Distribution of BIOMEDICA-6M caption token usage with a cutoff of 77 tokens. The blue
histogram represents tokens visible to the model, while the pink histogram represents wasted tokens
truncated beyond the cutoff (corresponding to 434 million tokens or 55% of total tokens). (B)
Distribution with a cutoff of 512 tokens, showing substantially reduced token waste of 2.2% (17M
tokens). (C) Qualitative examples of BIOMEDICA-6M and BIOMEDICA-LongCAP captions,
showing truncated vs. full captions, as well as our enhanced captions.

mains: current multimodal embedding models (e.g.,
CLIP Radford et al. (2021)) are trained using a re-
stricted text context length—typically capped at 77
tokens—which is often insufficient to capture the
rich semantics and complexity of high-throughput
biomedical images Zhang et al. (2024). As a result,
it is common practice to truncate long-form textual
descriptions during training and inference, discard-
ing valuable information. For example, as shown
in Figure 1, at a 77 token cutoff, more than 434
million tokens are not used when pretraining with
the BIOMEDICA dataset Lozano et al. (2025b) (the
largest biomedical image caption dataset).

Beyond architectural limitations, capturing the se-
mantics of biomedical images through text remains
a major bottleneck. Prior work has leveraged open-
access scientific articles to curate large collections of
image–caption pairs Zhang et al. (2023); Lozano et al.
(2025b); however, these captions often fail to fully
convey the visual content present in an image. For in-
stance, critical descriptive details are frequently em-
bedded in inline references within the corresponding
scientific manuscript (such as the analysis of a figure)
and omitted from the corresponding image captions.

Given these challenges, the impact of pretraining
multimodal embedding models with highly descrip-
tive image captions remains largely unexplored. In
this work, we investigate the effects of pretraining
biomedical multimodal embedding models with long-
captions by introducing the following contributions:

• BIOMEDICA-LongCAP: We present a
dataset of 1M biomedical image–caption pairs,
with captions enriched through VLM-based
augmentation leveraging contextual information
from the corresponding source text.

• BMC-LongCLIP: We pretrain CLIP on
BIOMEDICA and BIOMEDICA-LongCAP us-
ing context lengths of 77, 154, and 512 tokens to
study how scaling text context length (thus re-
ducing token waste) impacts model convergence
and downstream zero-shot performance.

• Multimodal Long-Text Bench: We intro-
duce two novel biomedical benchmarks designed
to evaluate long-text multimodal retrieval.

Our empirical findings show that (1) pretraining
CLIP with longer context lengths accelerates con-
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Figure 2: Context-length ablation results of BMC-LongCLIP trained with 77, 154, and 512 tokens. (Left)
Average retrieval performance (Recall@K) on the PMC long-caption benchmark. (Middle) Average
retrieval performance on the CXR benchmark. (Right) Average zero-shot classification accuracy
across biomedical datasets. Longer context improves retrieval and classification, with the largest
gains on PMC.

vergence, (2) improves zero-shot classification perfor-
mance on short captions, and (3) unlocks real-world
long-context retrieval applications.

By extending the text encoder’s context window
by 6.6×, our model reduces token waste from 55%
to 2.2%, enabling substantially more supervision
from long biomedical captions. On long-caption re-
trieval benchmarks, BMC-LongCLIP achieves up to
30 point absolute gains in Recall@1, while also de-
livering 2 point average improvements in classifica-
tion accuracy. The model also converges faster than
short-context baselines, demonstrating the efficiency
benefits of longer context windows during training.
These findings highlight long-context modeling as
a promising direction for advancing biomedical vi-
sion–language models.

2. Methods

Datasets: We pretrain all models on the 6M biomed-
ical image–caption subset of the BIOMEDICA-
24M dataset Lozano et al. (2025b). In addition,
we construct a derived dataset, BIOMEDICA-
LongCAP, consisting of 1M image–caption pairs.
Each LongCAP caption is created by enriching the
original figure caption with contextual information
from the corresponding article (e.g. in-line mentions,
abstract text, and acronym expansions). A VLM-
based augmentation pipeline then refines these cap-
tions to retain only features that are visually sup-

ported by the image (see Appendix A for details).
We use BIOMEDICA-6M for all baseline pretrain-
ing, and BIOMEDICA-LongCAP specifically for the
BMC-LongCLIP+ variant. The average caption to-
ken length is 127 for BIOMEDICA-6M and 323 for
BIOMEDICA-LongCAP.

Modeling: We introduce BMC-LongCLIP, a
long-context biomedical VLM designed to align im-
ages with extended text descriptions. The model
pairs a ViT-L/14 CLIP vision encoder (304M) pre-
trained on DFN-2B Fang et al. (2023) with Bio-
Clinical ModernBERT (150M) Sounack et al. (2025),
a long-context text encoder pretrained on 53.5B
biomedical tokens with an 8,192-token context win-
dow.

2.1. Benchmarks

We build and evaluate on two complementary bench-
marks that stress different aspects of long-context re-
trieval.
MIMIC-CXR radiology report (CXR) We con-
structed a long-text benchmark from the MIMIC-
CXR dataset Johnson et al. (2019) by pairing chest
X-ray images with their full radiology reports. We
sampled 1,000 unique image–report pairs, where the
reports provide free-text descriptions.
PubMed Long-Caption (PMC) From 1,000
PMC-OA articles (restricted to recent 2025 publica-
tions), we construct long captions by concatenating
inline references with figure captions, testing retrieval
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Table 1: Text→Image (T2I) and Image→Text (I2T) retrieval on long-text CXR and PMC benchmarks,
reported as Recall@K (higher is better; bold = best, underline = second-best). Panel A shows the
context-length ablation for BMC-LongCLIP; Panel B benchmarks against prior models.

Benchmark Model T2I I2T

Name Context Batch R@1 R@5 R@10 R@1 R@5 R@10

Panel A: Context-length ablation
BMC-LongCLIP 77 8K 1.3 4.7 9.4 0.7 4.9 7.3

CXR BMC-LongCLIP 154 8K 1.7 5.9 10.7 1.4 5.5 9.3
BMC-LongCLIP 512 8K 1.8 5.6 10.3 1.4 5.5 9.8

BMC-LongCLIP 77 8K 37.2 59.8 66.4 42.5 63.8 70.8
PMC BMC-LongCLIP 154 8K 44.2 64.9 72.5 48.8 69.8 76.8

BMC-LongCLIP 512 8K 68.9 84.3 89.3 71.2 85.9 89.9

Panel B: Baseline comparison
PMC-CLIP 77 128 0.0 0.5 0.7 0.2 1.0 1.6
BiomedCLIP 256 4K 0.5 2.6 5.7 0.6 3.3 5.5

CXR BMC-CLIP 77 8K 0.1 1.1 2.9 0.3 1.9 3.4
BMC-LongCLIP 512 8K 1.8 5.6 10.3 1.4 5.5 9.8
BMC-LongCLIP 512 16K 2.1 9.5 12.1 2.5 9.1 14.2
BMC-LongCLIP+ 512 16K 1.9 7.1 12.2 3.0 9.5 14.5

PMC-CLIP 77 128 0.2 0.7 1.2 0.1 0.7 1.2
MedSigLIP 77 N/A 20.1 37.0 46.0 30.9 49.0 60.1
BiomedCLIP 256 4K 68.8 86.2 91.1 73.3 89.3 93.7

PMC BMC-CLIP 77 8K 49.0 67.6 74.0 40.8 60.4 68.4
BMC-LongCLIP 512 8K 68.9 84.3 89.3 71.2 85.9 89.9
BMC-LongCLIP 512 16K 80.0 92.3 95.1 80.8 91.2 93.5
BMC-LongCLIP+ 512 16K 80.8 91.2 94.4 79.7 90.6 93.8

in scientific literature where extended technical con-
text is essential.

Zero-shot Classification. For zero-shot image clas-
sification, we evaluate on 39 benchmarks spanning bi-
ology, radiology, dermatology, and pathology, as col-
lected and described in Lozano et al. (2025a) (see
Appendix section D for more details).

2.2. Baselines

To contextualize our results, we benchmark our mod-
els against several baselines, including: PMC-CLIP
Eslami et al. (2023), BiomedCLIP Zhang et al.
(2023), MedSigLIP Sellergren et al. (2025), and
BMC-CLIP Lozano et al. (2025b),

3. Experiments

3.1. Context-length ablation

We assess the impact of extending text context length
(thus reducing token waste) on downstream zero-shot
performance. To this end, models were trained with
context windows of 77, 154, and 512 tokens under
identical settings (batch size, learning rate, optimizer,
epochs; as described in appendix section F).

3.2. Batch size and BIOMEDICA-LongCAP

We investigate the effect of scaling training batch
size while holding other settings fixed, compar-
ing 8K and 16K global batches. In addition, we
trained BMC-LongCLIP on both BIOMEDICA-6M
and BIOMEDICA-LongCAP, a 1M image–caption
dataset with captions enriched from full-text context,
using a 16K batch size and 512-token context window.
We denote this model as BMC-LongCLIP+.

4. Results

4.1. Context-length ablation

Extending the text encoder context length consis-
tently improves retrieval performance and training
efficiency. Table 1 shows the zero-shot image-to-
text and text-to-image recall at k in the long context
benchmarks. Panel A shows that longer context im-
proves retrieval across recall levels for both CXR and
PMC. On CXR, gains are steady but relatively mod-
est. PMC benefits most, especially at stricter thresh-
olds, highlighting the value of long contexts for text-
heavy tasks. In addition, we observe that pretraining
CLIP with longer context lengths accelerates conver-
gence (appendix section G), indicating that context
extension improves not only downstream retrieval but
also training efficiency.
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Table 2: Zero-shot classification results of different vision–language models across six biomedical domains.
Numbers report average accuracy per domain (higher is better; bold = best, underline = second-
best). Panel A shows ablations of BMC-LongCLIP; Panel B benchmarks against prior models.

Model Biology Dermatology Microscopy Ophthalmology Pathology Radiology Avg

Name Context Batch

Panel A: Context-length ablation
BMC-LongCLIP 77 8K 40.82 40.69 46.04 59.80 42.28 59.42 48.18
BMC-LongCLIP 154 8K 37.21 51.34 55.76 49.88 47.32 59.47 50.16
BMC-LongCLIP 512 8K 34.95 55.16 53.37 55.41 42.87 63.20 50.16

Panel B: Baseline comparison
PMC-CLIP 77 128 7.75 12.59 10.91 23.26 19.11 38.64 18.71
MedSigLIP 77 N/A 33.98 20.13 34.56 38.23 39.74 53.03 36.61
BiomedCLIP 256 4K 34.07 36.01 49.71 37.36 38.40 56.05 41.93
BMC-CLIP 77 8K 34.08 65.81 50.09 36.74 41.21 59.15 47.85
BMC-LongCLIP 512 8K 34.95 55.16 53.37 55.41 42.87 63.20 50.16
BMC-LongCLIP 512 16K 34.98 38.80 23.16 48.79 46.25 52.79 40.79
BMC-LongCLIP+ 512 16K 34.34 55.54 37.30 53.05 47.65 66.99 49.48

4.2. Benchmarking against baselines

BMC-LongCLIP outperforms prior biomedical VLMs
on both long-text benchmarks. Table 1 Panel B
and Table 2 compare BMC-LongCLIP with exist-
ing biomedical VLMs, including PMC-CLIP, Biomed-
CLIP, MedSigLIP, and BMC-CLIP. We exclude Med-
SigLIP from the CXR benchmark comparison, as it
was trained on the same MIMIC-CXR image–report
pairs used to construct our benchmark.
On the CXR benchmark, baselines achieve <6%

Recall@10, while BMC-LongCLIP variants reach
10–14%, a more than two-fold improvement. On
PMC, BMC-LongCLIP achieves 89–95% R@10,
performing on par with or slightly better than
BiomedCLIP (91–94%) and outperforming Med-
SigLIP (46–60%). At the stricter R@1 thresh-
old, BMC-LongCLIP attains 69–81%, surpassing
BiomedCLIP (69–73%) and outperforming Med-
SigLIP (20–31%).
Beyond retrieval, BMC-LongCLIP also improves

zero-shot classification accuracy across six biomed-
ical domains (Table 2). While BiomedCLIP and
MedSigLIP achieve average accuracies of 41.9% and
36.6%, respectively, BMC-LongCLIP (8K) attains
50.2%, the best overall performance. These results
highlight that extending context length not only ben-
efits long-text retrieval but also provides improve-
ments in classification tasks.

4.3. Effect of batch size and long-caption
training

Long-context models benefit from enriched captions,
while larger batch sizes yield mixed results. Dou-
bling batch size with BMC-LongCLIP (16K) under-
performs in microscopy and dermatology. This sug-

gests that long context windows combined with large
batch sizes may not uniformly translate into perfor-
mance gains across domains. Prior works Keskar
et al. (2017); Hoffer et al. (2018) show that very
large batch sizes can reduce gradient noise and cause
convergence to sharp minima that generalize poorly.
While this effect is likely amplified in these domains
since many figures are multi-panel or visually simi-
lar, this specific interaction warrants further inves-
tigation. In contrast, BMC-LongCLIP+ (16K) with
BIOMEDICA-LongCAP data recovers this drop and
matches or exceeds the 8K batch size model. These
results indicate that long-context modeling is most
effective when paired with sufficient long-caption su-
pervision, though performance in microscopy remains
comparatively weak and needs further investigation.
Overall. Across all experiments, BMC-LongCLIP
outperforms prior biomedical VLMs in long-text re-
trieval and provides competitive advantages in zero-
shot classification.

5. Conclusion

Our results show that extending text context length
in biomedical VLMs delivers clear gains. On long-
text retrieval tasks, BMC-LongCLIP outperforms
prior baselines on both CXR and PMC benchmarks,
with the largest gains observed for PMC benchmark.
A key limitation is the scarcity of long-text bench-
marks across biomedical domains; expanding such
resources will be essential for a fuller evaluation of
long-context models. Taken together, these results
establish long-context modeling as a promising direc-
tion for advancing biomedical VLMs.

5



Leveraging Long Context in Biomedical Vision–Language Models

Acknowledgments

This research was supported by grants from NVIDIA
and utilized NVIDIA A100 GPUs. We gratefully ac-
knowledge additional support from the AIMI–AWS
Cloud Credit Program, which provided AWS cloud
computing.
We further acknowledge support from the Stan-

ford Data Science Scholars fellowship and ARPA-H
to M.S., and the Arc Institute Graduate Fellowship to
A.L. This work was also supported by NIH grant R01
GM134483 to R.T., the Hoffman-Yee Research Grant
to S.Y.L., and NSF grant 19DMS1208164. S.Y.L. is
a Chan Zuckerberg Biohub – San Francisco Investi-
gator.

References

Sedigheh Eslami, Christoph Meinel, and Gerard
De Melo. Pubmedclip: How much does clip benefit
visual question answering in the medical domain?
In Findings of the Association for Computational
Linguistics: EACL 2023, pages 1181–1193, 2023.

Alex Fang, Albin Madappally Jose, Amit Jain, Lud-
wig Schmidt, Alexander Toshev, and Vaishaal
Shankar. Data filtering networks, 2023. URL
https://arxiv.org/abs/2309.17425.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train
longer, generalize better: closing the generaliza-
tion gap in large batch training of neural networks,
2018. URL https://arxiv.org/abs/1705.08741.

Alistair E. W. Johnson, Tom J. Pollard, Seth J.
Berkowitz, Nathaniel R. Greenbaum, Matthew P.
Lungren, Chih ying Deng, Roger G. Mark,
Steven Horng, and et al. MIMIC-CXR, a de-
identified publicly available database of chest
radiographs with free-text reports. Scientific
Data, 6(1):317, December 2019. doi: 10.1038/
s41597-019-0322-0. URL https://doi.org/10.

1038/s41597-019-0322-0.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge
Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learn-
ing: Generalization gap and sharp minima, 2017.
URL https://arxiv.org/abs/1609.04836.

Alejandro Lozano, Min Woo Sun, James Burgess,
Liangyu Chen, Jeffrey J Nirschl, Jeffrey Gu, Ivan
Lopez, Josiah Aklilu, Austin Wolfgang Katzer,

Collin Chiu, Anita Rau, Xiaohan Wang, Yuhui
Zhang, Alfred Seunghoon Song, Robert Tibshi-
rani, and Serena Yeung-Levy. Biomedica: An
open biomedical image-caption archive, dataset,
and vision-language models derived from scientific
literature, 2025a. URL https://arxiv.org/abs/

2501.07171.

Alejandro Lozano, Min Woo Sun, James Burgess,
Liangyu Chen, Jeffrey J Nirschl, Jeffrey Gu, Ivan
Lopez, Josiah Aklilu, Anita Rau, Austin Wolf-
gang Katzer, et al. Biomedica: An open biomed-
ical image-caption archive, dataset, and vision-
language models derived from scientific literature.
In Proceedings of the Computer Vision and Pat-
tern Recognition Conference, pages 19724–19735,
2025b.

Michael Moor, Oishi Banerjee, Zahra Shakeri Hossein
Abad, Harlan M Krumholz, Jure Leskovec, Eric J
Topol, and Pranav Rajpurkar. Foundation models
for generalist medical artificial intelligence. Nature,
616(7956):259–265, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack
Clark, et al. Learning transferable visual mod-
els from natural language supervision. In Interna-
tional conference on machine learning, pages 8748–
8763. PmLR, 2021.

Andrew Sellergren, Sahar Kazemzadeh, Tiam
Jaroensri, Atilla Kiraly, Madeleine Traverse, Timo
Kohlberger, Shawn Xu, Fayaz Jamil, Ćıan Hughes,
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Appendix A. BIOMEDICA-LongCAP
details

BIOMEDICA-LongCAP data generation pipeline us-
ing Qwen2-VL-70B-Instruct:

1. Context-Aware Caption AugmentationWe
enhance the original figure caption by contextu-
alizing the image description with additional in-
formation from the full-text article. Specifically,
we collect the original caption, inline mentions
from the main text, the abstract, and acronyms
used throughout the aforementioned data. Then
a VLM is prompted to augment the original cap-
tion, by only leveraging the provided informa-
tion.

2. Feasibility Assessment. Given an image and
its augmented caption, we extract all atomic fea-
tures from the generated caption and prompt the
VLM to evaluate whether it is feasible to discern
each feature from the image alone—without re-
lying on external sources or any information not
visually present, unless explicitly overlaid with
feasibility text. The output is an XML file in
which each atomic feature is labeled as either
FEASIBLE or NOT FEASIBLE, along with a ratio-
nale explaining the label.

3. Caption Refinement via Feasibility Filter-
ing. Based on the feasibility assessment, we
generate a refined caption that preserves only
atomic features labeled as FEASIBLE. Features la-
beled as NOT FEASIBLE are removed or reworded
to ensure that the final image description reflects
only information that can be visually supported.

4. Acronym Expansion. While all previous steps
had access to acronym definitions, we explicitly
expand all acronyms based on a curated acronym
list derived from the full-text article. This en-
sures that the captions are readable and unam-
biguous.

Appendix B. CXR Benchmark

We evaluate cross-modal retrieval between chest ra-
diographs and their paired full-text reports. Let
D = {(xi, ti)}Ni=1 denote the dataset, where xi is an
image and ti its paired report. Each pair is treated
as a one-to-one ground-truth match.

Reports are tokenized with the CLIP tokenizer and
embedded via the text encoder Etext, while images
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are preprocessed and embedded via the vision en-
coder Eimg. We obtain

ztexti =
Etext(ti)

∥Etext(ti)∥
, zimg

i =
Eimg(xi)

∥Eimg(xi)∥
,

where all embeddings are L2-normalized.
For text→image retrieval, we rank all image em-

beddings {zimg
j } by cosine similarity with a query

ztexti ; the ground-truth match is zimg
i . Image→text

retrieval is defined analogously. Performance is re-
ported as Recall@{1, 5, 10, 100} for both directions.
We analyzed the token length distribution of

the 1,000 reports in our evaluation set using the
BioClinical-ModernBERT tokenizer. The reports
contained on average 168.3 tokens, with a median of
158 tokens. The shortest report had 49 tokens, while
the longest contained 427 tokens.

Appendix C. PMC Benchmark

We adopt the same retrieval formulation as CXR
Benchmark on biomedical articles from PubMed Cen-
tral. To construct the benchmark, we used the
PubMed Central FTP service to download media
bundles containing both .nxml full-text files and asso-
ciated image files for recently published 2025 articles.
From each article, we sampled exactly one unique im-
age–caption pair and did not reuse articles across the
benchmark, ensuring that each pair represents a dis-
tinct source document.
For the 1,000 PXR reports, tokenization with

BioClinical-ModernBERT yielded an average length
of 510 tokens, with a median of 460 tokens. Report
lengths ranged from 251 tokens at the lower end to
1,022 tokens at the upper bound.

Appendix D. Zero-shot classification
benchmark

For the detailed dataset provenance, including
dataset names, citations, modalities, and class
counts, please refer to BIOMEDICA Lozano et al.
(2025a), Table S8. Each dataset’s classification task
is reformulated into a closed-form VQA task. Labels
are mapped to short human-readable text descrip-
tions, and each image is paired with a multiple-choice
list of candidate answers (including distractors). The
correct label is randomly permuted among the op-
tions, and evaluation is performed by computing the
similarity between image and answer embeddings.

Appendix E. Compute details

GPU Model GPU Memory Quantity

NVIDIA H200 141 GB 8
NVIDIA A100 80 GB 16

Table 3: Compute resources used for training.

Appendix F. Training details

Model Hyperparameters

BMC-LongCLIP

context length: 77/154/512
batch size (per GPU): 1024
GPUs: 8×H100
effective batch size: 8192
learning rate: 5e−4
beta1: 0.9, beta2: 0.95
warmup: 1000
max epochs: 20
precision: FP32
grad. clip norm: 1.0
dataset type: WebDataset
dataset: Biomedica-6M
time per epoch: 4 hours

BMC-LongCLIP+

context length: 512
batch size (per GPU): 1024
GPUs: 16×A100
effective batch size: 16384
learning rate: 5e−4
beta1: 0.9, beta2: 0.95
warmup: 1000
max epochs: 20
precision: FP32
grad. clip norm: 1.0
dataset type: WebDataset
dataset: Biomedica-6M + LongCAP
time per epoch: 4 hours

Table 4: Hyperparameters used for pretraining.
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Appendix G. Training loss curves by
training context length

Figure 3: Training loss curves across context lengths,
illustrating that longer text windows accel-
erate convergence.

Appendix H. BIOMEDICA-6M data
details

Figure 4: Histogram of token length of captions from
BIOMEDICA-6M

Table 5: Image counts by imaging modality and cat-
egory.

Category Modality Img Count

Radiology

Clinical imaging 165,743
CT 402,437
Ultrasound 107,101
X-ray radiography 194,269

Microscopy

Confocal micro. 239,894
Electron micro. 170,985
Epifluorescence micro. 42,814
Fluorescence micro. 283,145
Light micro. 541,651
Microscopy (general) 855,825
Phase contrast micro. 8,912
Scanning electron micro. 59,995
Transm. electron micro. 19,705

Pathology
Immunocytochemistry 610
Immunohistochemistry 499,869

Dermatology Skin lesion 128,746
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Appendix I. Additional Experiments

Table 6: CXR retrieval performance (Recall@K) for
text-to-image (T2I) and image-to-text (I2T)
tasks comparing Bioclinical ModernBERT
against ModernBERT.

Model R@1 R@5 R@10

Text-to-Image (T2I)

Bioclinical ModernBERT 1.0 3.2 4.8
ModernBERT 0.6 2.3 4.5

Image-to-Text (I2T)

Bioclinical ModernBERT 1.0 3.4 6.0
ModernBERT 0.8 3.0 5.5

Table 7: Memory usage (in MB) for different con-
text lengths and batch sizes. We mea-
sured GPU memory usage for text embed-
dings using PyTorch’s peak memory statis-
tics. Measurements were taken across vary-
ing sequence lengths (77 and 512 tokens)
and batch sizes (1, 8, and 32). Increasing
the context length from 77 to 512 tokens
led to approximately an eightfold increase
in memory usage across all batch sizes

Context Len. n=1 n=8 n=32

77 2.12 MB 17.04 MB 66.84 MB
512 17.34 MB 124.44 MB 496.50 MB
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