SGD: The Role of Implicit Regularization, Batch-size
and Multiple Epochs

Satyen Kale Ayush Sekhari Karthik Sridharan
Google Research, NY Cornell University Cornell University
satyen@google.com as3663Qcornell.edu ks999@cornell.edu

Abstract

Multi-epoch, small-batch, Stochastic Gradient Descent (SGD) has been the method
of choice for learning with large over-parameterized models. A popular theory for
explaining why SGD works well in practice is that the algorithm has an implicit
regularization that biases its output towards a good solution. Perhaps the theoreti-
cally most well understood learning setting for SGD is that of Stochastic Convex
Optimization (SCO), where it is well known that SGD learns at a rate of O(1/+/n),
where n is the number of samples. In this paper, we consider the problem of SCO
and explore the role of implicit regularization, batch size and multiple epochs for
SGD. Our main contributions are threefold:

1. We show that for any regularizer, there is an SCO problem for which Regular-
ized Empirical Risk Minimzation fails to learn. This automatically rules out
any implicit regularization based explanation for the success of SGD.

2. We provide a separation between SGD and learning via Gradient Descent on
empirical loss (GD) in terms of sample complexity. We show that there is an
SCO problem such that GD with any step size and number of iterations can
only learn at a suboptimal rate: at least Q(1/n°/12).

3. We present a multi-epoch variant of SGD commonly used in practice. We
prove that this algorithm is at least as good as single pass SGD in the worst
case. However, for certain SCO problems, taking multiple passes over the
dataset can significantly outperform single pass SGD.

We extend our results to the general learning setting by showing a problem which is
learnable for any data distribution, and for this problem, SGD is strictly better than
RERM for any regularization function. We conclude by discussing the implications
of our results for deep learning, and show a separation between SGD and ERM for
two layer diagonal neural networks.

1 Introduction

We consider the problem of stochastic optimization of the form:

Minimize F(w) ()
where the objective F' : R? ++ R is given by F(w) = E..p[f(w;z)]. The goal is to perform
the minimization based only on samples S = {z1, ..., z, } drawn i.i.d. from some distribution D.

Standard statistical learning problems can be cast as stochastic optimization problems, with F'(w)
being the population loss and f(w, z) being the instantaneous loss on sample z for the model w.

Stochastic Convex Optimization (SCO). Perhaps the most well studied stochastic optimization
problem is that of SCO. We define a problem to be an instance of a SCO problem if,

Assumption I: Population loss F' is convex. 2)

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Notice above that we only require the population loss to be convex and do not impose such a condition
on the instantaneous loss functions f.

Algorithms like Stochastic Gradient Descent (SGD), Gradient Descent on training loss (GD), and
methods like Regularized Empirical Risk Minimization (RERM) that minimize training loss with
additional penalty in the form of a regularizer are all popular choices of algorithms used to solve the
above problem and have been analyzed theoretically for various settings of Stochastic Optimization
problems (convex and non-convex). We discuss below a mix of recent empirical and theoretical
insights about SGD algorithms that provide motivation for this work.

SGD and Implicit Regularization. A popular theory for why SGD generalizes so well when used
on large over-parameterized models has been that of implicit regularization. It has been oberved
that in large models, often there are multiple global minima for the empirical loss. However not
all of these empirical minima have low suboptimality at the population level. SGD when used as
the training algorithm often seems to find empirical (near) global minima that also generalize well
and have low test loss. Hence while a general Empirical Risk Minimization (ERM) algorithm might
fail, the implicit bias of SGD seems to yield a well-generalizing ERM. The idea behind implicit
regularization is that the solution of SGD is equivalent to the solution of a Regularized Empirical
Risk Minimizer (RERM) for an appropriate implicit regularizer.

The idea of implicit regularization of SGD has been extensively studied in recent years. In Gunasekar
et al. [2018a], Zou et al. [2021], the classical setting of linear regression (with square loss) is
considered and it was shown that when considering over-parameterized setting, the SGD algorithm is
equivalent to fitting with a linear predictor with the smallest euclidean norm. In Soudry et al. [2018],
Ji and Telgarsky [2018] linear predictors with logistic loss are considered and it was noted that SGD
for this setting can be seen as having an implicit regularization of /5 norm. Gunasekar et al. [2018b]
considered multi-layer convolutional networks with linear activation are considered and showned that
SGD for this model can be seen as having an implicit regularization of /5 ,;, norm (bridge penality
for depth L networks) of the Fourier frequencies corresponding to the linear predictor. Gunasekar
et al. [2018c¢] considered matrix factorization and showed that running SGD is equivalent to having a
nuclear norm based regularizer. More recent work of Arora et al. [2019], Razin and Cohen [2020]
shows that in particular in the deep matrix factorization setting, SGD cannot be seen as having any
norm based implicit regularizer but rather a rank based one. However, in all these cases, the behavior
of SGD corresponds to regularizers that are independent of the training data (e.g. rank, [,,-norm, etc).

One could surmise that a grand program for this line of research is that for problems where SGD
works well, perhaps there is a corresponding implicit regularization explanation. That is, there exists a
regularizer R such that SGD can been seen as performing exact or approximate RERM with respect to
this regularizer. In fact, one can ask this question specific to SCO problems. That is, for the problem
of SCO, is there an implicit regularizer R such that SGD can be seen as performing approximate
RERM? In fact, a more basic question one can ask: is it true that SCO problem is always learnable
using some regularized ERM algorithms? We answer both these questions in the negative.

SGD vs GD: Smaller the Batch-size Better the Generalization. It has been observed that in
practice, while SGD with small batch size, and performing gradient descent (GD) with empirical loss
as the objective function both minimize the training error equally well, the SGD solution generalizes
much better than the full gradient descent one [Keskar et al., 2016, Kleinberg et al., 2018]. However,
thus far, most existing literature on theorizing why SGD works well for over-parameterized deep
learning models also work for gradient descent on training loss [Allen-Zhu and Li, 2019, Allen-Zhu
et al., 2018a,b, Arora et al., 2018]. In this work, we construct a convex learning problem where single
pass SGD provably outperforms GD run on empirical loss, which converges to a solution that has
large excess risk. We thus provide a problem instance where SGD works but GD has strictly inferior
sample complexity (with or without early stopping).

Multiple Epochs Help. The final empirical observation we consider is the fact that multiple epochs
of SGD tends to further continually decrease not only the training error but also the test error [Zhang
et al., 2016, Ma et al., 2018, Bottou and Bousquet, 2011]. In this paper, we construct an SCO instance
for which multiple epochs of single sample mini-batched SGD significantly outperforms single pass
SGD, and for the same problem, RERM fails to converge to a good solution, and hence, so does GD
when run to convergence.

1.1 Our Contributions
We now summarize our main contributions in the paper:

1. SGD and RERM Separation. In Section 3, we demonstrate a SCO problem where a single pass
of SGD over n data points obtains a 1//n suboptimality rate. However, for any regularizer R,
regularized ERM does not attain a diminishing suboptimality. We show that this is true even if the
regularization parameter is chosen in a sample dependent fashion. Our result immediately rules
out the explanation that SGD is successful in SCO due to some some implicit regularization.

2. SGD and GD Separation. In Section 4, we provide a separation between SGD and GD on
training loss in terms of sample complexity for SCO. To the best of our knowledge, this is the
first! such separation result between SGD and GD in terms of sample complexity. In this work,
we show the existence of SCO problems where SGD with n samples achieves a suboptimality of
1/4/n, however, irrespective of what step-size is used and how many iterations we run for, GD
cannot obtain a suboptimality better than 1/(n5/12 log?(n)).

3. Single-pass vs Multi-pass SGD. In Section 5, we provide an adaptive multi-epoch SGD algorithm
that is provably at least as good as single pass SGD algorithm. On the other hand, we also show
that this algorithm can far outperform single pass SGD on certain problems where SGD only
attains a rate of 1/y/n. Also, on these problems RERM fails to learn, indicating that GD run to
convergence fails as well.

4. SGD and RERM Separation in the Distribution Free Agnostic PAC Setting. The separation
result between SGD and RERM introduced earlier was for SCO. However, it turns out that the
problem is not agnostically learnable for all distributions but only for distributions that make F'
convex. In Section 6, we provide a learning problem that is distribution-free learnable, and where
SGD provably outperforms any RERM.

5. Beyond Convexity (Deep Learning). The convergence guarantee for SGD can be easily extended
to stochastic optimization settings where the population loss F'(w) is linearizable, but may not be
convex. We formalize this in Section 7, and show that for two layer diagonal neural networks
with ReLU activations, there exists a distribution for which the population loss is linearizable and
thus SGD works, but ERM algorithm fails to find a good solution. This hints at the possibility
that the above listed separations between SGD and GD / RERM for the SCO setting, also extend
to the deep learning setting.

1.2 Preliminaries

A standard assumption made by most gradient based algorithms for stochastic optimization problems
is the following:
F'is L-Lipschitz (w.r.t. {5 norm)
Assumption II: Jw* € argmin,, F(w) s.t. |jw; —w*|| < B. 3)
sup,, E-up [|[Vf(w,2) — VE(w)|? < 02
In the above and throughout this work, the norm denotes the standard Euclidean norm and w; is some

initial point known to the algorithm. Next, we describe below more formally what the regularized
ERM, GD and SGD algorithms are.

(Regularized) Empirical Risk Minimization. Perhaps the simplest algorithm one could consider
is the Empirical Risk Minimization (ERM) algorithm where one returns a minimizer of training loss
(empirical risk)

Fs(w) = =3 fw;z).

That is, wgrm € argmin,, ¢y, Fs(w). A more common variant of this method is one where we
additionally penalize complex models using a regularizer function R : R? ~ R. That is, a Regularized
Empirical Risk Minimization (RERM) method consists of returning:

wrerM = argmin Fis(w) + R(w). 4)
wew

"Despite the way the result is phrased in Amir et al. [2021], their result does not imply separation between
SGD and GD in terms of sample complexity but only number of iterations.

Gradient Descent (GD) on Training Loss. Gradient descent on training loss is the algorithm that
performs the following update on every iteration:

wil) + wiP — nVFs(wP), (5)

where 7 denotes the step size. After ¢ rounds, we return the point WgP 1= 1 37 &P,
Stochastic Gradient Descent (SGD). Stochastic gradient descent (SGD) has been the method of
choice for training large over-parameterized deep learning models, and other convex and non-convex
learning problems. Single pass SGD algorithm runs for n steps and for each step takes a single data
point and performs gradient update with respect to that sample. That, is on round ¢,

wiSﬁD — w9 =V f(wfP;) 6)

Finally, we return @5¢P = 1 3" | 3SP. Multi-epoch (also known as multi-pass) SGD algorithm

n
simply cycles over the dataset multiple times continuing to perform the same update specified above.

It is well know that single pass SGD algorithm enjoys the following convergence guarantee:

Theorem 1 (Nemirovski and Yudin [1983]). On any SCO problem satisfying Assumption I in (2) and
Assumption Il in (3), running SGD algorithm for n steps with the step size of n = 1/y/n enjoys the
guarantee
1
Es[F(@3%P)] — inf F <0(—),
s, ")) — inf F(w) < NG

where the constant in the order notation only depends on constants B, L and o in (3) and is
independent of the dimension d.

In fact, even weaker assumptions like one-point convexity or star convexity of F' w.r.t. an optimum
on the path of the SGD suffices to obtain the above guarantee. We use this guarantee of SGD
algorithm throughout this work. Up until Section 6 we only consider SCO problems for which SGD
automatically works with the above guarantee.

2 Related Work

On the topic of RERM, implicit regularization and SGD, perhaps the work most relevant to this
paper is that of Dauber et al. [2020]. Just like this work, they also consider the general setting of
stochastic convex optimization (SCO) and show that for this setting, for no so-called “admissible”
data independent regularizer, SGD can be seen as performing implicit regularized ERM. For the
implicit regularization part of our work, while in spirit the work aims at accomplishing some of the
similar goals, their work is in the setting where the instantaneous losses are also convex and Lipschitz.
This means that, for their setting, while SGD and regularized ERM may not coincide, regularized
ERM is indeed still an optimal algorithm as shown in Shalev-Shwartz et al. [2009]. In this work we
show a strict separation between SGD and RERM with an example where SGD works but no RERM
can possibly provide a non-trivial learning guarantee. Second, qualitatively, their separation result
in Theorems 2 and 3 are somewhat unsatisfactory. This is because while they show that for every
regularizer there is a distribution for which the SGD solution is larger in value than the regularized
training loss of the regularized ERM w.r.t. that regularizer, the amount by which it is larger can
depend on the regularizer and can be vanishingly small. Hence it might very well be that SGD is
an approximate RERM. In fact, if one relaxes the requirement of their admissible relaxations then
it is possible that their result doesn’t hold. For instance, for square norm regularizer, the gap on
regularized objective between RERM and SGD is only shown to be as large as the regularization
parameter which is typically set to be a diminishing function of n.

On the topic of comparison of GD on training loss with single epoch SGD, one can hope for three
kinds of separation. First, separation in terms of work (number of gradient computations), second,
separation in terms of number of iterations, and finally separation in terms of sample complexity.
A classic result from Nemirovski and Yudin [1983] tells us that for the SCO setting, the number
of gradient computations required for SGD to obtain a suboptimality guarantee of ¢ is equal to the
optimal sample complexity (for £) and hence is optimal (in the worst case). On the other hand, a
single iteration of GD on training loss requires the same number of gradient computations and hence
any more than a constant number of iterations of GD already gives a separation between GD and

SGD in terms of work. This result has been explored in Shalev-Shwartz et al. [2007] for instance.
The separation of GD and SGD in terms of number of iterations has been considered in Amir et al.
[2021]. Amir et al. [2021] demonstrate a concrete SCO problem on which GD on the training loss
requires at least {(1/e%) steps to obtain an e-suboptimal solution for the test loss. Whereas, SGD
only requires O(1/&?) iterations. However, their result does not provide any separation between GD
and SGD in terms of sample complexity. Indeed, in their example, using the upper bound for GD
using Bassily et al. [2020] one can see that if GD is run on n samples for 7' = n? iterations with the
appropriate step size, then it does achieve a 1/1/n suboptimality. In comparison our work provides a
much stronger separation between GD and SGD. We show a sample complexity separation, meaning
that to obtain a specific suboptimality, GD requires more samples than SGD, irrespective of how
many iterations we run it for. Our separation result also yields separation in terms of both number of
iterations and number of gradient computations.

3 Regularized ERM, Implicit Regularization and SGD

In Shalev-Shwartz et al. [2009] (see also Feldman [2016]), SCO problems where not just the
population loss F' but where also for each z € Z, the instantaneous loss f(-,z) is convex is
considered. In this setting, the authors show that the appropriate {5 norm square regularized RERM
always obtains the optimal rate of 1/+/n. However, for SGD to obtain a 1/y/n guarantee, one only
needs convexity at the population level. In this section, based on construction of SCO problems that
are convex only at population level and not at the empirical level, we show a strict separation between
SGD and RERM. Specifically, while SGD is always successful for any SCO problem we consider
here, we show that for any regularizer R, there is an instance of an SCO problem for which RERM
w.r.t. this regularizer has suboptimality lower bounded by a constant.

In Shalev-Shwartz et al. [2009] (see also Feldman [2016]), SCO problems where not just the
population loss F' but where also for each z € Z, the instantaneous loss f(:, z) is convex is
considered. In this setting, the authors show that the appropriate ¢ norm square regularized RERM
always obtains the optimal rate of 1//n. However, for SGD to obtain a 1/1/n guarantee, one only
needs convexity at the population level. In this section, based on construction of SCO problems that
are convex only at population level and not at the empirical level, we show a strict separation between
SGD and RERM. Specifically, while SGD is always successful for any SCO problem we consider
here, we show that for any regularizer R, there is an instance of an SCO problem for which RERM
with respect to this regularizer has suboptimality lower bounded by a constant.

Theorem 2. For any regularizer R, there exists an instance of a SCO problem that satisfies both
Assumptions I and Il given in Equations (2) and (3), for which

Es[F(wrerm)] — inf F(w) > Q(1),
where wrERM IS the solution to (4) with respect to the prescribed regularizer.

The regularizer R we consider in the above result is sample independent, that is, it has to be chosen
before receiving any samples. In general, if one is allowed an arbitrary sample dependent regularizer,
one can encode any learning algorithm as an RERM. This is because, for any algorithm, one can simply
contrive the regularizer R to have its minimum at the output model of the algorithm on the given
sample, and a very high penalty on other models. Hence, to have a meaningful comparison between
SGD (or for that matter any algorithm) and RERM, one can either consider sample independent
regularizers or at the very least, consider only some specific restricted family of sample dependent
regularizers. One natural variant of considering mildly sample dependent regularizers is to first, in
a sample independent way pick some regularization function R and then allow arbitrary sample
dependent regularization parameters that multiply the regularizer R. The following corollary shows
that even with such mildly data dependent regularizers, one can still find SCO instances for which the
RERM solution has no non-trivial convergence guarantees.

Corollary 1. For any regularizer R, there exists an instance of a SCO problem that satisfies both
Assumptions I and II, for which the point wrgrm = argmin,, ¢y Fs(w) + AR(w), where X is any
arbitrary sample dependent regularization parameter, has the lower bound

Es[F(wRERM)] — wiélFf;d F(w) Z Q(l)

The SCO problem in Theorem 2 and Corollary 1 is based on the function f(4y given by:
fray(w; 2) = yll(w — @) © 2, (A)

where each instance z € Z can be written as a triplet z = (z,y,) and the notation ® denotes
Hadamard product (entry wise product) of the two vectors. We set z € {0,1}¢, y € {#1} and
a € {0,ey,...,eq} where e; to e denote the standard basis in d dimensions. We also set d > 2.

In the following, we provide a sketch for why ¢s-norm square regularization fails and show no
regularization parameter works. In the detailed proof provided in the Appendix, we deal with arbitrary
regularizers. The basic idea behind the proof is simple. Consider the distribution: = ~ Unif ({0, 1})4,
and y is set to be +1 with probability 0.6 and —1 with probability 0.4, and set o« = e; deterministically.
In this case, note that the population function is 0.2 E,yyiff0,13¢ [|* © (w — e1)]|2 which is indeed
convex, Lipchitz and sandwiched between 0.1||w — e1]| and 0.2|jw — ey ||. Hence, any & sub-optimal
solution @ must satisfy ||@ — e1]| < 10e.

Since d > 2", with constant probability there is at least one coordinate, sayf € [d], such that for

any data sample (x4, y;) for ¢ € [n], we have z;[j] = 0 whenever y; = +1 and x:[j] = 1 whenever

1+ = —1. Hence, ERM would simply put large weight on the j coordinate and attain a large negative
value for training loss (as an example, w = e; has a training loss of roughly —0.4). However, for test

loss to be small, we need the algorithm to put little weight on coordinate 3 Now for any square norm

regularizer R(w) = Al|lw||2, to prevent RERM from making this j coordinate large, A has to be at
least as large as a constant.

However, we already argued that any ¢ sub-optimal solution @ should be such that || — e1|| < 10e.
When) is chosen to be as large as a constant, the regularizer will bias the solution towards 0 and thus
the returned solution will never satisfy the inequality ||@ — e]| < 10e. This leads to a contradiction:
To find an € sub-optimal solution, we need a regularization that would avoid picking large value
on the spurious coordinate 3 but on the other hand, any such strong regularization, will not allow
RERM to pick a solution that is close enough to e;. Hence, any such regularized ERM cannot
find an € sub-optimal solution. This shows that no regularization parameter works for norm square
regularization. In the Appendix we expand this idea for arbitrary regularizers R.

The construction we use in this section has dimensionality that is exponential in number of samples
n. However similarly modifying the construction in Feldman [2016], using the y = +1 variable
multiplying the construction there, one can extend this result to a case where dimensionality is
©(n). Alternatively, noting that for the maximum deviation from mean over d coordinates is of order
\/log d/n, one can use a simple modification of the exact construction here, and instead of getting
the strong separation like the one above where RERM does not learn but SGD does, one can instead
have d = nP for p € (0, 1] and obtain a separation where SGD obtains the 1//n rate but no RERM

can beat a rate of order /logn/n.

Implicit Regularization. As mentioned earlier, a proposed theory for why SGD algorithms are so
successful is that they are finding some implicitly regularized empirical risk minimizers, and that this
implicit bias helps them learn effectively with low generalization error. However, at least for SCO
problems, the above strict separation result tells us that SGD cannot be seen as performing implicitly
regularized ERM, neither exactly nor approximately.

4 Gradient Descent (Large-batch) vs SGD (Small-batch)

In the previous section, we provided an instance of a SCO problem on which no regularized ERM
works as well as SGD. When gradient descent algorithm (specified in (5)) is used for training, one
would expect that GD, and in general large batch SGD, will also eventually converge to an ERM and
so after enough iterations would also fail to find a good solution. In this section, we formalize this
intuition to provide lower bounds on the performance of GD.

Theorem 3. There exists an instance of a SCO problem such that for any choice of step size 1 and
number of iterations T, the following lower bound on performance of GD holds:

Es[F(@9)] — inf F(w) zﬂ(ﬁ)

weRd

Theorem 3 suggests that there is an instance of a SCO problem for which the performance of GD is
lower bound by 1/n%42. On the other hand, SGD with the step size of 7 = 1/n%® learns at a rate of
1/n%5 for this problem. This suggests that GD (large batch size) is a worse learning algorithm than
SGD. We defer the proof to Appendix C and give a brief sketch below.

Our lower bound proof builds on the recent works of Amir et al. [2021], which gives an instance
of a SCO problem for which the performance guarantee of GD algorithm is Q(nv/'T + 1/7T"). We
provide an instance of a SCO problem for which GD has a lower bound of (nT'/n). Adding the
two instances together gives us an SCO problem for which GD has lower bound of

Q(nﬁ+i+ﬂ). (7)

nI' n

This lower bound is by itself not sufficient. In particular, for 7 = 1/n3/2 and T = n?, the right hand
side of (7) evaluates to O(1/4/n), which matches the performance guarantee of SGD for this SCO
problem. Hence, this leaves open the possibility that GD may work as well as SGD. However, note
that in order to match the performance guarantee of SGD, GD needs to be run for quadratically more
number of steps and with a smaller step size. In fact, we can show that in order to attain a O(1/y/n)

rate in (7), we must set = O(1/n3/2) and T = w(n?).

The lower bound in Theorem 3 follows by adding to the SCO instance in (7) another objective
that rules out small step-sizes. This additional objective is added by increasing the dimensionality
of the problem by one and on this extra coordinate adding a stochastic function that is convex in
expectation. The expected loss on this coordinate is a piecewise linear convex function. However, the
stochastic component on this coordinate has random kinks at intervals of width 1/n°/4 that vanish
in expectation, but can make the empirical loss point in the opposite direction with probability 1/2.
Since the problem is still an SCO problem, SGD works as earlier. On the other hand, when one
considers training loss, there are up to n of these kinks and roughly half of them make the training
loss flat. Thus, if GD is used on training loss with step size smaller than 1/ n5/* then it is very likely
that GD hits at least one such kink and will get stuck there. This function, thus, rules out GD with
step size 7 smaller than 1/n%/%. Restricting the step size n = Q(1/n°/4), the lower bound in (7)
evaluates to the (1/n°/12) giving us the result of Theorem 3.

Our lower bound in (7) matches the recently shown performance guarantee for GD algorithm by
Bassily et al. [2020]; albeit under slightly different assumptions on the loss function f(-; z). Their
work assumes that the loss functions f(w; z) is convex in w for every z € Z. On the other hand, we
do not require convexity of f but only that F'(w) is convex in w (see our Assumptions I and II).

S Single-pass vs Multi-pass SGD

State of the art neural networks are trained by taking multiple passes of SGD over the dataset.
However, it is not well understood when and why multiple passes help. In this section, we provide
theoretical insights into the benefits of taking multiple passes over the dataset. The multi-pass SGD
algorithm that we consider is:

1. Split the dataset .S into two equal sized datasets S7 and S5.
2. Run k passes of SGD algorithm using a fixed ordering of the samples in S; where,

o The step size for the jth pass is set as n; = 1/v/nj.

SGD

7 as the average of all the iterates

o At the end of jth pass, compute W; = n% Z;ﬁf w
generated so far.

3. Output the point MY := argmin s Fi, (w) where W := {@y, ..., @y }.

The complete pseudocode is given in the Appendix. In the following, we show that the above
multi-pass SGD algorithm performs at least as well as taking a single pass of SGD.
Proposition 1. The output ™Y of multipass-SGD algorithm satisfies
PR ~ ~7 1
Es[F(@")] < EslF@37)) +0(=),
SGD

where Q/EH/Q denotes the output of running (one pass) SGD algorithm for n/2 steps with step size

1//n.

This suggests that the output point of the above multi-pass SGD algorithm is not too much worse than
that of SGD (single pass). For problems in SCO, SGD has a rate of O(1//n) (see Theorem 1), and

in for these problems, the above bound implies that multi-pass SGD also enjoys the rate of O(1/+/n).

5.1 Multiple Passes Can Help!

In certain favorable situations the output of multi-pass SGD can be much better:

Theorem 4. Let k be a positive integer and let R(-) be a regularization function. There exists an
instance of a SCO problem such that:

(a) For any step size 1, the output of the SGD algorithm has the lower bound

Furthermore, running SGD with 1 = 1//n achieves the above 1/+/n rate.

(b) On the other hand, multi-pass SGD algorithm with k passes has the following guarantee:

(¢) RERM algorithm has the lower bound: Eg[F(wrgrm)| — inf ,ere F'(w) > Q(1).

We defer the proof details to Appendix D and provide the intuition below. Parts (a) and (b) follow
easily by taking a standard construction in [Nesterov, 2014, Section 3.2.1]. Here, a convex determin-
istic function Fy over an optimization variable v is provided such that Assumption II is satisfied with
L, B = O(1), and any gradient based scheme (such as SGD, which is equivalent to GD on Fly) has a
suboptimality of Q(1/4/n) after n iterations (which corresponds to single pass SGD). On the other
hand, because Fly satisfies Assumption II, k passes of SGD, which correspond to nk iterations of

GD, will result in suboptimality of O(1/v/nk) for the given step sizes.

The more challenging part is to prove part (c). It is tempting to simply add the SCO instance from
Theorem 2, but that may break the required upper bound of O(1/v/nk) for multipass SGD. To get
around this issue, we construct our SCO instance by making z consist of k¥ components {&1, ..., &k}
drawn independently from the distribution considered in Theorem 2. Furthermore, the loss function
considered in Theorem 2 also defines the loss corresponding to each &; component for an optimization
variable w that is different from the optimization variable v.

The key idea in the construction is that, while each data sample consists of k£ independently sampled
components, at any time step, SGD gets to see only one of these components. Specifically, in the
first pass over the dataset, we only observe the £&; component of every sample, and in the second
pass we only observe the £, component for every sample and so on for further passes. This behavior
for SGD is induced by using an independent control variable u. The optimization objective for u
is such that SGD increases u monotonically with every iteration. The value of u controls which of
the &; components is observed during that time step. In particular, when we run our multipass SGD
algorithm, during the first pass, the value of w is such that we get to see £; only. However, on the
second pass, u has become large enough to reveal £,2, and so on for further passes. Thus, in & passes,
multipass SGD gets to see nk “fresh” samples and hence achieves an suboptimality of O(1/v/nk),
as required in part (b). Finally, part (c) follows from the same reasoning as in Theorem 2 since the
same SCO instance is used.

6 Distribution Free Learning

In this section, we consider the general learning setting [Vapnik, 2013] and aim for a distribution free
learnability result. That is, we would like to provide problem settings where one has suboptimality
that diminishes with n for any distribution over the instance space Z. For the SCO setting we
considered earlier, the assumptions in (2) and the assumption in (3) that the population loss is convex,
imposes restrictions on the distributions allowed to be considered. Specifically, since f(- ; z) need not
be convex for every z, one can easily construct distributions for which the problem is not SCO and in

fact, may not even be learnable. E.g., consider the distribution that puts all its mass on z for which
f(-; 2) is non-convex. In this section we will consider problems that are so called learnable, meaning
that there is a learning algorithm with diminishing in n suboptimality for any distribution D on the
instance space Z. Under this setting, we show a separation between SGD and RERM. Specifically,
we provide a problem instance that is learnable at a rate of ¢,, > €(1/n'/*) for any distribution over
the instance space Z. In particular, we show that the worst case rate of SGD is c¢,, for this problem.
However, on the subset of distributions for which the problem is SCO, SGD as expected obtains a
rate of 1/4/n. On the other hand, for the same problem we show that RERM while having worst case
rate no better than c,,, has a lower bound of (c2) on SCO instances.

Our lower bound in this section is based on the following learning setting: For d > 27", let Z =
{0,1} x {0, ey, ...,eq} be the instance space, let the instantaneous loss function be given by:

1 Cn
fy(w;2) =5ll(w —a) © z||* - < llw = a* + max{1, [lw]|*}, (B)

where z = (z, @) and ¢, := n~ (G~ for some v > 0.

Additionally, let 2. denote the set of distributions over instances space Z for which F' is convex, i.e.
D :={D| F(w) =E.op[f(5)(w,z)] is convex in w}. (8)
Note that under the distributions from Z,, the problem is an instance of an SCO problem. We show a
separation between SGD and RERM over the class .. In the theorem below we claim that the above
learning problem is learnable with a worst case rate of order ¢,, (by SGD), and whenever D € &,
SGD learns at a faster rate of 1/4/n. To begin with we first provide the following proposition for the
problem described by the function f(py that shows that no algorithm can have a worst case rate better
than ¢, for this problem.
Proposition 2. For any algorithm ALG that outputs W%, there is a distribution D on the instance
space, such that for the learning problem specified by function f(py:

~ALGY] _ s &
Es[F(@™7)] - inf F(w) = -

ALG

Next, we show that SGD obtains this worst case rate, and a much better rate of 1/+/n for any
distribution in Z.. However, we also show that for this problem, no RERM can obtain a rate better
than c2 for every distribution in ... This shows that while SGD and RERM have the same worst
case rate, SGD outperforms any RERM whenever the problem turns out to be convex.

Theorem 5. For the learning problem specified by function f(p):

(a) For every regularizer R, there exists a distribution D € 9, such that,
Es[F(wRERM)] - iéléd F(U}) Z Q(Ci)

()

0]
VD ¢ 9., Es[F(w3CP)] — inf F(w) <O (ca).
weRd

(b) For the SGD algorithm we have the following upper bounds:
VD € 9., Es[F(05°P)] — inf F(w) <

weRd

As an example, plugging in ¢, = n=s% implies that when D ¢ 9., the suboptimality of SGD is
bounded by O(1/n'/®), and when D € Z,, the suboptimality of SGD is bounded by O(1//n).
However, for any RERM, there exists a distribution D € ., on which the RERM has a suboptimality
of Q(1/n'/*) and the worst case rate of any RERM is also n~'/8. This suggests that SGD is a
superior algorithm to RERM for any regularizer R, even in the distribution free learning setting.

7 «-Linearizable Functions and Deep Learning

While the classic convergence proof for SGD is shown for SCO setting, a reader familiar with
the proof technique will recognize that the same result also holds when we only assume that the
population loss F' is star-convex or one-point-convex with respect to any optimum w*, or in fact even
if it is star-convex only on the path of SGD. The following definition of Linearizable population loss
generalizes star-convexity and one-point-convexity.

Definition 1 (a-Linearizable). A stochastic optimization problem with population loss F(w) is
a-Linearizable if there exists a w* € argmin F(w) such that for every point w € RY,

F(w) — F(w*) < a(VF(w), w — w").

For linearizable function, one can upper bound the suboptimality at any point w by a linear function
given by V F'(w). The convergence guarantee for SGD now follows by bounding the cumulative sum
of this linear function using standard arguments, giving us the following performance guarantee.

Theorem 6. On any a-Lineariazable stochastic optimization problem satisfying Assumption Il in (3),
running SGD algorithm for n steps with the step size of 1 = 1/+/n enjoys the guarantee:

Es[F(@5%P)] — inf F <0(ﬂ),
SIF@3P)) — inf, F) < O(
where the constant in the order notation only depends on constants B, L and o in (3) and is
independent of the dimension d.

The hypothesis that this phenomenon is what makes SGD successful for deep learning has been
proposed and explored in various forms [Zhou et al., 2019, Kleinberg et al., 2018]. On the other
hand our lower bound results hold even for the simpler SCO setting. Of course, to claim such a
separation of SGD with respect to GD or RERM in the deep learning setting, one would need to
show that our lower bound constructions can be represented as deep neural networks with roughly
the same dimensionality as the original problem. In fact, all the functions that we considered so
far can be easily expressed by restricted deep neural networks (where some weights are fixed) with
square activation functions as we show in Appendix F.3. Although, it would be a stretch to claim that
practical neural networks would look anything like our restricted neural network constructions; it still
opens the possibility that the underlying phenomena we exploit to show these separations hold in
practical deep learning setting. In the following, we give an example of a simple two layer neural
network with ReLU activation function where SGD enjoys a rate of 1//n, but any ERM algorithm
fails to find an O(1)-suboptimal solution.

Let the input sample (z,y) be such that x € {0, l}d and y € {—1,1}. Given the weights w =
(w1, ws), where wy € R? and ws € R?, we define a two layer ReLU neural network that on the input
x outputs

h(w;z) = ReLU(wy ReLU(w; ® 2)).

This is a two layer neural network with the input layer having a diagonal structure and output layer
being fully connected (hence the name diagonal neural network). Suppose the network is trained
using the absolute loss, i.e. on data sample z = (x, y) and for weights w = (w1, w2), we use the loss

f(w;z) = |y — h(w; 2)| = |y — ReLU(w; ReLU(w; © z))|.)

Theorem 7 (Two layer diagonal network). For the loss function given in (9) using a two layer
diagonal neural network, there exists a distribution D over the instance space Z such that:

(a) F(w) is 1/2-Linearizable, and thus SGD run with step-size 1/+/n has excess risk O(1/+/n).
(b) Ford > 2™, with probability 0.9, ERM algorithm fails to find an O(1)-suboptimal point.

Remark 1. The result of Theorem 7 can be extended to diagonal two layer neural networks trained
with linear loss f(w; z) = yh(w;), or with hinge loss f(w;x) = max{0,1 — yh(w;2)}.

While the above result shows that for a simple two layer neural network, SGD performs better than
ERM, our construction requires the first layer to be diagonal. It is an interesting future research
direction to explore whether a similar phenomena can be demonstrated in more practical network
architectures, for eg. fully connected networks, convolutional neural networks (CNN), recurrent
neural networks (RNN), etc. It would also be interesting to extend our lower bounds for GD algorithm
from Section 4 to these network architectures. The key idea is that SGD only requires certain nice
properties (eg. convex, Linearizable, etc) at the population level, which might fail to hold at the
empirical level in large dimensional models; hence, batch algorithms like GD and RERM might fail.

10

Acknowledgements

We thank Roi Livni, Robert Kleinberg and Mehryar Mohri for helpful discussions. AS was an intern
at Google Research, NY when a part of the work was performed. KS acknowledges support from
NSF CAREER Award 1750575.

Funding Transparency Statement

Funding in direct support of this work: NSF CAREER Award 1750575.

References

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in terms
of optimization geometry. In International Conference on Machine Learning, pages 1832—1841.

PMLR, 2018a.

Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham M Kakade. Benign
overfitting of constant-stepsize sgd for linear regression. arXiv preprint arXiv:2103.12692, 2021.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. The Journal of Machine Learning Research, 19(1):
2822-2878, 2018.

Ziwei Ji and Matus Telgarsky. Risk and parameter convergence of logistic regression. arXiv preprint
arXiv:1803.07300, 2018.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Implicit bias of gradient descent on
linear convolutional networks. arXiv preprint arXiv:1806.00468, 2018b.

Suriya Gunasekar, Blake Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nathan Srebro.
Implicit regularization in matrix factorization. In 2018 Information Theory and Applications
Workshop (ITA), pages 1-10. IEEE, 2018c.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. arXiv preprint arXiv:1905.13655, 2019.

Noam Razin and Nadav Cohen. Implicit regularization in deep learning may not be explainable by
norms. arXiv preprint arXiv:2005.06398, 2020.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Bobby Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view: When does sgd escape local
minima? In International Conference on Machine Learning, pages 2698-2707. PMLR, 2018.

Zeyuan Allen-Zhu and Yuanzhi Li. Can sgd learn recurrent neural networks with provable general-
ization? arXiv preprint arXiv:1902.01028, 2019.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized
neural networks, going beyond two layers. arXiv preprint arXiv:1811.04918, 2018a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural
networks. arXiv preprint arXiv:1810.12065, 2018b.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. In International Conference on Machine Learning, pages
244-253. PMLR, 2018.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the
effectiveness of sgd in modern over-parametrized learning. In International Conference on
Machine Learning, pages 3325-3334. PMLR, 2018.

11

Léon Bottou and Olivier Bousquet. The tradeoffs of large-scale learning. Optimization for machine
learning, page 351, 2011.

Idan Amir, Tomer Koren, and Roi Livni. Sgd generalizes better than gd (and regularization doesn’t
help). arXiv preprint arXiv:2102.01117, 2021.

Arkadi Semenovi¢ Nemirovski and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

Assaf Dauber, Meir Feder, Tomer Koren, and Roi Livni. Can implicit bias explain generalization?
stochastic convex optimization as a case study. arXiv preprint arXiv:2003.06152, 2020.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Stochastic convex
optimization. In COLT, 2009.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal Estimated sub-GrAdient SOlver for
SVM. pages 807-814, 2007.

Raef Bassily, Vitaly Feldman, Cristébal Guzman, and Kunal Talwar. Stability of stochastic gradient
descent on nonsmooth convex losses. arXiv preprint arXiv:2006.06914, 2020.

Vitaly Feldman. Generalization of erm in stochastic convex optimization: The dimension strikes
back. arXiv preprint arXiv:1608.04414, 2016.

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer Publishing
Company, Incorporated, 1 edition, 2014. ISBN 1461346916.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media, 2013.

Yi Zhou, Junjie Yang, Huishuai Zhang, Yingbin Liang, and Vahid Tarokh. Sgd converges to global
minimum in deep learning via star-convex path. arXiv preprint arXiv:1901.00451, 2019.

Jiti Matousek and Jan Vondrak. The probabilistic method. Lecture Notes, Department of Applied
Mathematics, Charles University, Prague, 2001.

Dmitriy Panchenko. Some extensions of an inequality of vapnik and chervonenkis. Electronic
Communications in Probability, 7:55-65, 2002.

12

Contents of Appendix

A

Preliminaries
A.1 Additional notation e e
A.2 Basicalgorithmicresults L L

A.3 Basic probability results

Missing proofs from Section 3

B.1 Supporting technical results o
B.2 Proofof Theorem?2 e
B.3 Proofof Corollary 1

Missing proofs from Section 4

C.1 Modification of Amir et al. [2021] lowerbound
C2 Lowerbound of nT'/m i
C.3 Lower bound for small step size (n < 1/64n>/%)
C4 Proofof Theorem3

Missing proofs from Section 5
D.1 Proof of Proposition 1.
D.2 Proofof Theorem4 e

Missing proofs from Section 6

E.1 Supporting technical results o
E.2 Proofof Proposition2. e
E.3 Proofof TheoremS e

Missing proofs from Section 7
F.1 «-Linearizable functions e
F2 Proofof Theorem7 e

F.3 Expressing f(4) and f(p) using neural networks

13

14
14
14
15

16
16
17
20

20
21
24
27
32

35
35
36

40
40
42
43

A Preliminaries

A.1 Additional notation

For a vector w € R%, fo any j € [d], w[j] denotes the j-th coordinate of w, ||w|| denotes the Euclidean
norm and ||w||« denotes the £, norm. For any two vectors w; and ws, (w1, ws) denotes their inner
product, and w; ® wo denotes the vector generated by taking the Hadamard product of w; and wo,
ie. (w1 ®wa)[j] = wi[j]ws[j] for j € [d]. We denote by 1, a d-dimensional vector of all 1s, and
the notation I denotes the identity matrix in d-dimensions. The notation N/(0, o) denotes Gaussian
distribution with variance o2, and B(p) denotes the Bernoulli distribution with mean p.

For a function f : R? x R, we denote the gradient of f at the point w € R? by V f(w) € R?. The
function f is said to be L-Lipschitz if f(wq) — f(ws) < L||wy — ws]| for all wy, ws.

A.2 Basic algorithmic results

The following convergence guarantee for SGD algorithm is well known in stochastic convex opti-
mization literature, and is included here for the sake of completeness.

Theorem 8 (Nemirovski and Yudin [1983]). Let w € R% and z € Z. Given an initial point w; € R¢,
loss function f(w; z) and a distribution D such that:

(a) The population loss F(w) = E,.p|[f(w; 2)] is L-Lipschitz and convex in w.
(b) For any w, E,p[||Vf(w;2) — VF(w)]] < o2
(c) The initial point wy satisfies | w1 — w*|| < B where w* € argmin F(w).

Further, let S ~ D™, Then, the point 05" obtained by running SGD algorithm given in (6), with
step size 1 = 1/+/n for n steps using the dataset S satisfies

E[F(@03°P) — F*] < —(o® + L* + B?),

Si-

where F* := min,, F(w).
Proof. Let {wt}tzl denote the sequence of iterates generated by the SGD algorithm. We note that
for any time ¢ > 1,
lwers —w*ll5 = [[wers — we + w — w3
= lwerr — well3 + Jlwe — w* |5 + 2(we 1 — wy, we — w*)
= |0V f(we; ze)|l5 + llwe — w5 + 2(—nV f (w3 20), wi — w*),
where the last line follows from plugging in the SGD update rule that wy11 = wy — NV f (wy; 2¢).

Rearranging the terms in the above, we get that
n 2 1 2 2
(Vf(we; 2e),we —w™) < IV F(wes ze)ll; + %(Hwt —w'|ly = lwerr —w3).
Taking expectation on both the sides, while conditioning on the point w,, implies that

* 1 * *
(VF(we), we = w*) < TE[IVf wis 23] + 5 (lwe = w3 = Jwa = w*3)

2
2 2
< nE[IV fwis 2) = VE(w) 3] + nlIVF(w);
*2 *2
+ g (e = w5 = e =)
2 2 1 * (12 %12
(0”4 L2) g (e — 0 = s —w'),

where the inequality in the second line is given by the fact that (a — b)? < 2a? + 2b? and the last line
follows from using Assumption II (see (3)) which implies that F'(w) is L-Lipschitz in w and that

14

E[IVf(w;z) — VF(w)|3] < 02 for any w. Next, using convexity of the function F', we have that
F(w*) > F(w) — (VF(w), wy — w*). Thus

* 1 * *
Fwy) = F* <n(o® + L?) + 277(||wt — w*|f; = [wigr —w?]f3).
Telescoping the above for ¢ from 1 to n, we get that

SO(Flwy) — F*) < nnfo? + L)+ = ([lwy — w2 = fwnes — w'[2)

t=1 21
1
< n(0® + L2) + o flwr — wl5.
2n
Dividing both the sides by n, we get that

n

An application of Jensen’s inequality on the left hand side, implies that the point w,, := % Z?Zl Wy
satisfies

~ * 1 *
E[F(@,) — F*] <n(o? + L) + gl —w I5-
Setting n = ﬁ and using the fact that ||w; — w*||, < B in the above, we get that
1
E[F(©,) — F*] < NG (o® + L* + B?),
which is the desired claim. Dependence on the problem specific constants (o, L and B) in the

above bound can be improved further with a different choice of the step size 7; getting the optimal
dependence on these constants, however, is not the focus of this work .

A.3 Basic probability results

Lemma 1 (Hoeffding’s inequality). Let X;, ...,
in the interval [a, b], and the expected value E[X]

Pr(‘;in — u| > t) < 26xp<—(b2i22)2).
=

Lemma 2. Let j* € [d]. Let X be a {0,1}" valued random variable such that X|j) is sampled
independently from B(p) for every j € [d]. Let the {X1,...,X,} denote n i.i.d. samples of the
random variable X. If
d—1
n < logi ()

In(10)

then, with probability at least 0.9, there exists a coordinate j € [d] such that j # j*, and X; [3] =0
foralli € [n].

X, be independent random variables with values
= p. Then, for everyt > 0,

Proof. Let E; denote the event the coordinate X;[j] = 0 for all ¢ € [n]. We note that for any j € [d],
Pr(E;) =(1-p)",

Further, let £ denote the event that there exists a coordinate j € [d] \ {j*} such that X;[j] = 0 for
all i € [n]. Thus,

Pr(EC):Pr(N E])(:) [T P&
JeldNG*} JeldNG}

15

where the equality in (7) follows from the fact that the events { £; } are mutually independent to each
other. Plugging in the bound for Pr(E¥), we get

Pr(E)=(1—-(1-p™)* "
Using the fact that 1 — a < e~ for a > 0, we get
Pr(E°) < e~ (-P"d=D < (1,

where the second inequality above holds for n < 1ogﬁ (md(;ul)))' [
Lemma 3 (Proposition 7.3.2, MatouSek and Vondrak [2001]). For n even, let Xy,...,X,, be
independent samples from B(1/2). Then, for any t € [0,n/8],

n
n 1 2
P(§X>— t>>—*16t/”.
2 L1251t = 15°

Lemma 4 (Panchenko [2002]). Let W denote a finite class of k points {w1, ..., wk }, and let f(w; z)
denote a loss function that is L-Lipschitz in the variable w for all z € Z. Further, let S = {zi}?zl
denote a dataset of n samples, each drawn independently from some distribution D. Define the point
Wg = argming,cyy > oy %f(w, 2;). Then, with probability at least 1 — § over the sampling of the
set S,

Llog(K/$) n F*L log(K/(S))

F(ig) < F* + 0(

where F(w) := E,p[f(w; 2)] and F* := miny,ew F(w).

B Missing proofs from Section 3

Throughout this section, we assume that a data sample z consists of (x,y, «), where z € {0,1}¢,
ye{—-1,1}and @ € {0,e1,...,eq}. The loss function f) : R? x Z is given by:
fy(w; (2,9, 0)) = yll(w — a) © . (10)

We also assume that d > In(10)2" + 1. Since f4) is not differentiable when w = 0, we define
the sub-gradient J f(4)(w) = 0 at the point w = 0. Further, for the rest of the section, whenever
clear from the context, we will ignore the subscript (A), and denote the loss function by f(w; z).
Additionally we define the following distribution over the samples z = (x, y, «).

Definition 2. For parameters § € [0,1], p € [0,1], and a € {0, e1,. .., eq}, define the distribution
D(6,p,a) over z = (x,y, a) as follows:
z ~ B(p)®?, y=2r—1 for r~B(3+9), o= a.

The components x, y and o are sampled independently.

B.1 Supporting technical results

The following lemma provides some properties of the population loss under D(4, p,a) given in
Definition 2.

Lemma 5. For any § € [0, %} p € (0,1], and a € {0,e1,...,eq}, the population loss under
f(ay when the data is sampled i.i.d. from D(0, p, a) is convex in the variable w. Furthermore, the
population loss has a unique minimizer at w = a with F'(a) = 0, and any e-suboptimal minimizer w
of the population loss must satisfy ||w — a|| < &/2dp.

Proof. Let F' be the population loss. Using the definition of F', we get

F(w) = E(I,y,a)~D(5,p,a) [?/H(w - O‘) © CCH]
=Pr(y =1 E(wv—a)©2[] - Pr(y = —1) Eso[[[(w — a) © z[]
= (3 +) Efl[(w —a) ©z[] = (5 = 6) B[(w — a) ©]

16

= 20E;[l|(w — a) © z[]].
Since, for any « and a, the function ||(w — a) ® z|| is a convex function of w, the above formula

implies that F is also a convex function of w. Furthermore, F' is always non-negative and F'(a) = 0.

Now note that
F(w) = 20E;[[|(w — a) © z[l] > 26||(w — a) ® Eg[z]|| = 20p[lw — all,

where the second inequality follows from Jensen’s inequality, and the last equality from the fact
that ~ B(p)?. Now, if w is an e-suboptimal minimizer of F, then since F'(a) = 0, the above
bound implies that ||w — a|| < €/2dp. This also implies, in particular using € = q, that a is a unique
minimizer of F. O

The next lemma establishes empirical properties of a dataset S of size n drawn from the distribution
D(1/10,1/2, a) given in Definition 2.
Lemma 6. Let j* € [d]. Let S denote a dataset of size n < log,(d/In(10)) sampled i.i.d. from a

distribution D(%O, %, a) for some vector a € {0, e1,...,eq}. Then, with probability at least 0.9 over

the choice of the dataset S, there exists an index j € [d] such that j % 7% and x[/j\] =0forallz € S

~.

Sfor whichy = 1 and x[j] = 1 forall z € S for whichy = —1.

Proof. Let .S denote a set of n samples drawn i.i.d. from D(l—lo, 1,a). We define the sets S* and S~
as follows:

St = {Zl es | Y; = +1},

S i={z €S|y =1} (11)
Let E; denote the event that the coordinate z[j] = 0 for all z = (z,y) € ST, and z[j] = 1 for all
z = (z,y) € S™. Since, for each sample, z[j] is drawn independently from 5(1/2), we have that

1

Next, let E denote the event that there exists some j € [d] \ {;*} for which z[j] = 0 for all

A~

z=(x,y) € ST,and z[j] = 1 forall z = (z,y) € S~. We thus note that,
(& (& (Z) C
Pr(E°) :Pr(ﬂ Ej) = H Pr(Ej)

Jeld\{i*} JeldN\{s*}

where the equality in (¢) follows from the fact that the events { £; } are mutually independent to each
other. Plugging in the bound for Pr(E¥), we get

1

Pr(E°) = (- Q—n)H.

Using the fact that 1 — a < e~ for a > 0, we get
Pr(E°) < e~ 4=D/2" < .1,
where the second inequality above holds for n < log,((d — 1)/In(10)). O
B.2 Proof of Theorem 2
We now have all the tools required to prove Theorem 2, which states for any regularization function

R(w), there exists an instance of a SCO problem for which RERM fails to find O(1)-suboptimal
solution, in expectation.

Proof of Theorem 2. In this proof, we will assume that n > 300, d > log(10)2™ + 1 and the initial
point w; = 0. Assume, for the sake of contradiction, that there exists a regularizer R : R? - R

17

such that for any SCO instance over R? satisfying Assumption IT with> L, B = 1 the expected
suboptimality gap for RERM is at most ¢ = 1/20000. Then, by Markov’s inequality, with probability
at least 0.9 over the choice of sample set S, the suboptimality gap is at most 10e.

Before delving into the proof, we first define some additional notation based on the regularization
function R(-). For j € [d], define the points w} such that

€ argmin R(w). (12)

w s.t. [[w—e;]|<100e

k%
Wy

and define the index j* € [d] such that j* € argmax;c(y R(wj).

Now we will construct an instance of SCO in d = [2" In(10) + 1] dimensions. The instance will be
based on the function f(4y given in (10). The data distribution of interest is Dy := D(l—lo, %, ej«) (see
Definition 2) and suppose that the dataset S = {z,}?:1 is sampled i.i.d. from D;. The population
loss F'(w) corresponding to D is given by

F(w) = Eznp, [fia) (w5 2)] = 0.2E,[||(w — e;+) O 2]].

Clearly, F'(w) is convex in w and so minimizing it is an instance of SCO. Furthermore, f4) is
1-Lipschitz, and the initial point w; = 0 satisfies ||w; — w*|| < 1. This implies that f 4) satisfies
both Assumptions I and II given in (2) and (3) respectively. Additionally, note that e;« is the unique
minimizer of F'(-), and as a consequence of Lemma 5, any 10e-suboptimal minimizer w’ for F'(-)
must satisfy

< 100e. 13)

A
[w’ — e
Using the dataset .S, we define some additional sets as follows:

e Define the set ST as the set of all the sample points in S for which y = +1, i.e
Sti={(z,y,0) € S|y =+1},
and define the set S~ := 5\ ST.
e Define the set U as the set of all the sample points in ST for which z[j*] = 1, i.e.

U:={(z,y,a) € ST | z[j*] = 1}.
o Similarly, define the set V' as the set of all the sample points in S~ for which z[j*] = 1, i.e.
Vi={(z,y,0) € S~ | z[j*] = 1}.
Next, define the event £ such that all of the following hold:

(a
b

) |S7| > 7n/20.

(b) [U| < 39n,/100.

(¢) |V| = Tn/50.

(d) There exists j such that j # j* and z[j] = 0 forall z € ST and z[j] = 1 forall z € S~
(e)

e) RERM with regularization R(-) and using the dataset S returns an 10e-suboptimal solution for
the test loss F'(w).

Using Hoeffding’s inequality (Lemma 1) and the fact that E[|S™|] = 2n/5, E[|U|] = 3n/10, and
E[|[V|] = n/5, we get that parts (a), (b) and (c) hold simultaneously with probability at least
0.3 for n > 300. Furthermore, by Lemma 6, part (d) holds with probability at least 0.9 since
d > In(10)2™ + 1, and part (e) holds with probability 0.9 by our assumption. Hence, the event E
occurs with probability at least 0.1. In the following, we condition on the occurrence of the event F.

The specific values L, B = 1 are used for convenience; the proof immediately yields the required SCO
instances for arbitray values of L and B that are O(1) in magnitude as a function of n.

18

Consider the point w;’f defined in (12) corresponding to the coordinate 3 (that occurs in event E). By
definition, we have that ||w3* — €5]| < 100e. Thus, we have

— [lw? — €5l = V2 — 100 > 100e.

The first line above follows from Triangle inequality, and the second line holds because} # j* and
because € = 1/20000. As a consequence of the above bound and the condition in (13), we get that
the point w;* is not an 10e-suboptimal point for the population loss F'(-), and thus would not be the

solution of the RERM algorithm (as the RERM solution is 10e-suboptimal w.r.t F'(-)). Since, any
RERM must satisfy condition (13), we have that

F(w?) + R(w?) > min (ﬁ(w) + R(w))
J J w: ||w—e_7~* ||§1005

> min 3 w) + min
w: ||w—e;= || <100e w: ||w—e;= || <100e
> —100¢ + R(w}.), (14)
where F(w) = L5 | f(w; z;) denotes the empirical loss on the dataset S, and the inequality in
the last line follows from the definition of the point w}. and by observing that F (w) > —100¢ for
any w for which ||w — e;-|| < 100e since F is 1-Lipschitz and F'(e;-) = 0. For the left hand side,

we note that
1
==Y yll(w: —ejr) @
n J
z€S

(2) 1
< 100e + - ZyH(e; —ej+) Oz

zZ€S
(i1) 1
< 100+ (3 g —e) @l = Y e ;) @ a)
z€S+ z€S—
(2i1)
< 100 + — (ZL@ -3 Vit)
zeS+ zeSt
(iv
2 100 4+ L (Zl—Z\f— 3)
zeU zeV ze€S—\V

= 100 + — (|U\ (ﬁ—l)IVI—IS_\)

where the inequality (¢) is due to the definition of the point wA and because F is 1- -Lipschitz, the

inequality in (i) follows from the definition of the sets ST and S ~, the inequality (4i7) holds due to

the fact that z[j] = 0 for all (z,a) € ST, and z[j] = 1 for all z € S~ and finally, the inequality
(iv) follows from the definition of the sets U and V. Plugging the bounds on |U]|, |V'| and |S~| from
the event E' defined above, we get that:

F(w?) < 100e - (15)

200
Combining the bounds in (14) and (15) and rearranging the terms, we get that

3 3
200e > R(wi.) — R(w%) >
£ > g0 + RlwS) — Bw)) = o5
where the second inequality above holds because j* € argmax;¢(g R(w;) (by definition). Thus,
£ > 3/40000 > 1/20000, a contradiction, as desired.?

Finally, note that since the function f(4) is 1—Lipschitz, the initial point w; = 0 satisfies
lwi — w*|| = ||lw1 —ej+|| < 1 and F(w) is convex, due to Theorem 1, SGD run with a step
size of 1/4/n for n steps learns at a rate of O(1/+/n). O

3The constant in the lower bound for € can be improved further via a tighter analysis for the sizes of the sets
|U|,|V|and |S™| in the event E.

19

B.3 Proof of Corollary 1

The following proof closely follows along the lines of the proof of Theorem 2 above.

Proof. In this proof, we will assume that n > 300, d > log(10)2™ + 1 and the initial point w; = 0.
Assume, for the sake of contradiction, that there exists a regularizer R : R¢ — R such that for any
SCO instance over R? satisfying Assumption I with L, B = 1, there exists a regularization parameter
A such that the expected suboptimality gap for the point wrgrMm = argmin ¢y, Fg(w) + AR(w) is
at most e = 1/20000. Then, by Markov’s inequality, with probability at least 0.9 over the choice of
sample set S, the suboptimality gap is at most 10e.

We next define the functions f(w; z), the distribution D; and the population loss function F'(w)
identical to the the corresponding quantities in the proof of Theorem 2. Furthermore, we also
define the points w; for j € [d], the coordinates j* and the event E identical to the corresponding
definitions in the proof of Theorem 2. As we argued in the proof of Theorem 2 above, we note that
any 10e-suboptimal minimizer w’ for F'(-) must satisfy

< 100€. (16)

Jw' — ej

Thus, the point w;* (where 3 is defined in the event E) is not an 10e-suboptimal point for the

population loss F'(+), and thus for any regularization parameter A (that can even depend on the dataset
S) should not correspond to the RERM solution (as the point wrerM is 10e-suboptimal with respect
to F'(+)). Since, any RERM must satisfy condition (16), we have that for any regularization parameter
A that can even depend on the dataset S,

F(w?) + AR(w?) > min (F(w) + AR(w))
J J w: ||w—ej* ||§1008

~

> min F(w) + min AR(w
w: ||wfej* ||§1005 w: ||wfej* ||§1006
> 1002 + AR(w}.), (17)

where the inequality in the last line follows from the definition of the point w7. and by observing that
F(w) > —100¢ for any w for which |jw — ej+|| < 100e since F is 1-Lipschitz and ﬁ(ej*) = 0. For
the left hand side, similar to the proof of Theorem 2, we upper bound

o 3
) < -
F(w?) <1006 — 5o (18)

Combining the bounds in (17) and (18) and rearranging the terms, we get that
3
2 > — 4+ A)= A) > —.
00e > 500 + AR(wj}-) R(w]) Z 300
where the second inequality above holds because j* € argmax ¢y R(w}) (by definition). Thus,
€ > 3/40000 > 1,/20000, a contradiction, as desired.

We remark that in the above proof the regularization parameter A can be arbitrary and can even
depend on the dataset .S, but A should not depend on w as this will change the definition of the points
wj. Only the regularization function R(-) is allowed to depend on w. O

C Missing proofs from Section 4

In this section, we first provide a learning problem for which, for any n € [1/n%/1) and T € [1,n?),
the point @SDT returned by running GD algorithm with step size 7 for 7" time steps has the lower
bound ’

&P — in w) =
E[F (@, 7)] weédF() Q<log4(n)

min{nﬁ+ %T*%l}) (19)

Then, we will provide a learning setting in which GD algorithm when run with step size < 1/64n°/*

has the lower bound of Q(1/n3/%) for all T > 0. Our final lower bound for GD algorithm, given in
Theorem 3 then follows by considering the above two lower bound constructions together.

20

C.1 Modification of Amir et al. [2021] lower bound

Amir et al. [2021] recently provided the following lower bound on the performance of GD algorithm.

Theorem 9 (Modification of Theorem 3.1, Amir et al. [2021]). Fix any n, 7 and T. There exists a
Sunction f(w; z) that is 4-Lipschitz and convex in w, and a distribution D over the instance space
Z, such that for any 1 € [7,7+/3/2) and T € [T, 2T), the point w°P[n, T| returned by running GD
algorithm with a step size of n) for T steps has excess risk

1

E[F (@[, 7)) — inf F(w) > Q(min{nvT + —.1}), (20)
weR? ’I]T

where F(w) := E,.p[f(w;2)]. Additionally, there exists a point w* € argmin,, F'(w) such that

[w] < 1.

Proof. We refer the reader to Amir et al. [2021] for full details about the loss function construction
and the lower bound proof, and discuss the modifications below:

e Amir et al. [2021] provide the lower bound for a fixed 7 and 7'. In particular, their loss function

construction given in eqn-(16) (in their paper) consists of parameters i, 2, 3, €1, . - ., €3 and

d which are chosen depending 1 and 7. However, a slight modification of these parameters

easily extends the lower bound to hold for all) € [7,7+/3/2) and T € [T, 2T). The modified
parameter values are:

g
e Set d= W
o Set~; such that v, (1 + 577)Vd < & min{7VT, 1}.

e Sety, = 2y,7T and 3 = 1.
e Set0<ep <---<egg< L

Their proof of the lower bound in Theorem 3.1 follows using Lemma 4.1, Theorem 6.1, Lemma
6.2 and Claim 6.3 (in their paper respectively). We note that the above parameter setting satisfies
the premise of Lemma 4.1 and Claim 6.3 for all) € [77,7/3/2) and T € [T, 2T). Furthermore,
it can be easily verified that the proofs of Theorem 6.1 and Lemma 6.2 also follow through with
the above parameter setting for all i € [7,771/3/2) and T € [T, 2T). Thus, the desired lower
bound holds for all n € [7,7+/3/2) and T € [T, 2T).

e Amir et al. [2021] consider GD with projection on the unit ball as their training algorithm.
However, their lower bound also holds for GD without the projection step (as we consider in our
paper; see (5)). In fact, as pointed out in the proof of Lemma 4.1 (used to Prove Theorem 3.1) in
their paper, the iterates w; generated by the GD algorithm never leave the unit ball. Thus, the
projection step is never invoked, and GD with projection and GD without projection produce
identical iterates.

The upper bound on ||w*|| also follows from the provided proof in Amir et al. [2021]. As they show
in the proof of Lemma 4.1 (page 28, last paragraph in the proof), all the GD iterates as well as the
minimizer point w* lie a ball of unit radius.

Finally, note that the loss function in Theorem 9 is 4-Lipschitz, and bounded over the unit ball which
contains all the iterates generated by GD algorithm. Thus, a simple application of the Markov’s
inequality suggests that the lower bound in (20) also holds with constant probability. However, for
our purposes, the in-expectation result suffices. O

The loss function construction in Theorem 9 depends on 7 and 7', and thus the lower bound above

only holds when the GD algorithm is run with step size n € [7,7+/3/2) and for T € [T,2T). In
the following, we combine together multiple such lower bound instances to get an anytime and any
stepsize guarantee.

Theorem 10. Fix any n > 200. There exists a function f(w; z) that is 1-Lipschitz and convex in w,
and a distribution D over Z such that, for any ' € [1/n*,1) and T € [1,n?), the point W°P[n/, T"]

21

returned by running GD algorithm with a step size of 1 for T' steps satisfies the lower bound

T min{y VI + }) @D

log™ (n)

EF (@l)] - inf, F(w) > 2

where F(w) := E,.p[f(w; 2)]. Additionally, there exists a minimizer w* € argmin,, F'(w) such
that [[w*| = O(1)

Proof. Set~y := /3/2. We consider a discretization of the intervals [1/n3, 1) for the step sizes (we
take a slightly larger interval that the domain [1/n2, 1) of the step size) and [1, n3) for the time steps
respectively. Define the set

1 7 ,y ~y[3log(n)/log(v)]

R
of step sizes such that for any ' € [1 /) there exists an n € A that satisfies n < n/ < .
Similarly, define the set

T :=1{1,2,4,...,2/3sm]]

of time steps such that for any 7" € [1,n3), there exists a7 € T that satisfies 7' < T" < 27T Further,
define M = |N/||T|. Clearly, M = [3log(n)/log(7)] - [3log(n)] and for n > 20 satisfies the
bound 40 log?(n) < M < 80log*(n).

In the following, we first define the component function f, 7 for every n € N and T' € 7. We then
define the loss function f and show that it is convex and Lipschitz in the corresponding optimization
variable. Finally, we show the lower bound for GD for this loss function f for any step size
n € [1/n?,1) and time steps T' € [1,n?).

Component functions. For any n € N and T € T, let w, 7, 2z, 1, [y and D, 1 denote the
optimization variable, data instance, loss function and the corresponding data distribution in the lower
bound construction in Theorem 9 where 7 and 7" are set as 17 and T respectively. We note that:

(a) For any z, r, the function f,) 7 (@, ; 2n,1) is 4-Lipschitz and convex in @y, 7.

(b) For any 1’ € [n,~vn) and T” € [T, 2T), the output point* @S’% [n”,T"] returned by running
GD algorithm with a step size of 1" for T" steps has excess risk

E[Fn T<AGD [77// TN])] o ’ll%{ylf’;‘ Fn,T(wn,T> = Q<min{ H\/Ti// + //T//’ })’ 22)
where the population loss Fy, 7 (wy, 1) := E., r~p, +[fy.7(0n 15 20,7)]-

(c) There exists a point w;, - € argmin F, 7 (w,) such that ||} | < 1.
Lower bound construction. We now present our lower bound construction:

o Optimization variable: For any n and T, define w, v := @, r/log(n). The optimization
variable w is defined as the concatenation of the variables (wy, 7)yen,TeT-

e Data instance: z is defined as the concatenation of the data instances (z, 7)nen,TeT-

e Data distribution: D is defined as the cross product of the distributions (D, 7),enr,7e7- Thus,
forany n € N and T' € T, the component z, 7 is sampled independent from D, 7.

e Loss function: is defined as
1

fw; z) = i Z fo 1 (W15 20,7), (23)
neN,TeT
where recall that @, r = wy, rlog(n). Additionally, we define the population loss F'(w) :=

E.op[f(w; 2)]-
“We use the notation @SI}[" T"] to denote the value of the variable 1, v computed by running GD
algorithm with the step size n” for T time steps. The subscripts 7, T are used to denote the fact that the

corresponding variables are associated with the loss function construction in Theorem 9 where 7 and T are set
as 77 and 7" respectively.

22

[is convex and 1-Lipschitz. Since, for any n € N and T € T, the function f, (@, 1; 2y,1) is
convex in w,, r for every z, r, and since w, 7 = W, /log(n), we immediately get that the function
f(w; z) is also convex in w for every z. Furthermore, for any w, w’ and z, we have

(@)
Fw2) = f@s) € oo S |l z) — for (s z.r)]

neN,TeT
i) 4log(n)

< ST ur — whal

A

neN,TeT
4]

= 08 S g — w2
neN, TeT

(#4) 1

< og(n), |— Wy, — W, 7

< 4log(n), /47 | mrll?

neN,TeT

4log(n R
22 [S e vl

neN,TeT

4log(n R
= \/7 Z ||w77 T ;;,TH

neN, TeT

(iv) 4log(n) o =P

< w =],

where the inequality (i) follows from Triangle inequality and the inequality (i7) holds because
[, is 4-Lipschitz in the variable w,, 1 for every n € N and T € T, and by using the fact that
Wy, = wy, 7 log(n). The inequality (7ii) above follows from an application of Jensen’s inequality
and using the concavity of square root. Furthermore, the equality (iv) holds by the construction of
the variable w as concatenation of the variables (w,, 7)nen,re7- Finally, the inequality (v) follows
from the fact that M > 16log?(n) for n > 4. Thus, the function f(w; z) is 1-Lipschitz in w for
every z.

Bound on the minimizer. Since the components (w,, 7)near, 77 do not interact with each other
in the loss function f, any point w* € argmin F'(w) satisfies:

fwrl= [> el = s [Y Il

neN, TeT neN,TeT

where w;, - denote the corresponding minimizers of the population loss £}, 1. Due to Theorem 9, we
have that for any 7 and T, there exists a w;, ;- that satisfies ||w} p|| < 1. Plugging these in the above,
we get that there exists a w* for which

where the second inequality follows by using the fact that M < 100 log® (n) for n > 20.

Lower bound proof. We next provide the desired lower bound for the loss function in (23). First,
note that when running GD update on the variable w, with a step size of 7’ and using the loss function
f(w; z), each of the component variables w0, 7 are updated as if independently performing GD on
the function f, 7 but with the step size of 1’ /M.

Now, suppose that we run GD on the loss function f with step size ' € [1/n?,1) and for T” € [1,n?)

steps. For n > 20, the step size 77 := 1/ /M < 1/401log?(n) with which each component is updated
clearly satisfies 77 € [1/n3, 1]. Thus, by construction of the sets A" and T, there exists some 7 € N
and T € T suchthat 7 < 7 < vjand T < T’ < 2T. Thus, due to (23), we have that for the

23

component function corresponding to (7, T'), the point @S T[n, T’] returned after running GD with
step size 7] for T’ steps satisfies

E[Fyr (@570 T')] =

o) 2 8w 1)

Q(%mln{n\ﬁwL T }), (24)

Y

where the last line holds for 7 = ' /M.

Our desired lower bound follows immediately from (24). Let WSP[n’, T'] be the output of running
GD algorithm on the function f with step size n’ and for T” steps. We have that

E[F(@%0),)] —min F(w) = = 3" (E[Fyr (8537, 7)] — inf Fyr(u, 1)
neEN,TET n

Y]

ﬁ(E[Fﬁ,T(@g [U,T’])] - infT F,—],T(wﬁj))
= Q(# mm{n VT + ’T” })

where the equality in the first line holds because the variables {w,, 7} do not interact with each other,
the inequality in the second line follows by ignoring rest of the terms which are all guaranteed to be

positive, and finally, the last line follows by plugging in (24). Using the fact that M > 40 logQ(n) in
the above, we get that for any 1’ € [1/n?,1) and for T” € [1,n3), the point WCP[r), T"] satisfies

E[F (@[, T'))] — min F(w) = Q(logl() mln{n VT + ,T,, 1})

C.2 Lower bound of nT'/n
The lower bound in (21) already matches the first two terms in our desired lower bound in (19). In
the following, we provide a function for which GD algorithm has expected suboptimality of 7" /n.

Lemma 7. Fix any n. Let w € R denote the optimization variable and z denote a data sample from
the instance space Z = {—1,1}. There exists a 2-Lipschitz function f(w; z) and a distribution D
over Z such that:

(a) The population loss F(w) 1= E,.p[f(w;z)] is convex in w. Furthermore, w* = 0 is the
unique minimizer of the population loss F'(w).

(b) For any 1 and T, the point W°P[n, T returned by running GD with a step size of n for T steps
satisfies

T
E[F(@°°[n, T])] - inf Fw) > 0(">).
[F(@%[, 7)) - inf F(w) > (L
Proof. For z € {—1,1} and w € R, define the instance loss function f as

flw; z) = (4\7 + 2)[wl.

Define the distribution D such that z = +1 or z = —1 with probability 1/2 each. Clearly, f(w; z) is
2-Lispchitz w.r.t. w for any z € Z. Furthermore, for any w € R,

F(w) = E.vp[f(w; 2)] = E wl,

[+ wl] = e

where the last equality holds because E[z] = 0. Thus, F/(w) is convex in w and w* = 0 is the unique
minimizer of the population loss F'(w). This proves part-(a).

24

We now provide a lower bound for GD algorithm. Let S = {z;}!_, denote a dataset of size n
sampled i.i.d. from D. The update rule for GD algorithm from (5) implies that

RIS -
wiPy + wiP —n - sign(w®) - Tn E Z zi (25)
i=1

and finally the returned point is given by w°P[n, T = Zt LW

For i € [n], define the random variables y; = (1 — z;)/2. Note that y; ~ 5(1/2), and thus Lemma 3
implies that

I

Zyzz

with probability at least 1/15e. Rearranging the terms, we get that Y " | z; < —y/n/2 with
probability at least 1/15e. Plugging this in (25), we have that with probability at least 1/15e, for all
t>0,

1\9\3

GD

4:}51gn(wt).

GD GD
Wiy 2> wy o +

Without loss of generality, assume that w; > 0. In this case, the above update rule implies that
wy > W —
t 1 + 4 \/7

for all ¢ > 0, which further implies that

T
. 1 T-1
@, T) = Zwt2w1+u-

T o
Thus,
F(AGD[n, T]) — ing(w) - F(@GD[T),T]) > 4135 N %,

giving us the desired lower bound on the performance guarantee of the returned point wSP[n, T).
The final in-expectation statement follows by observing that the above holds with probability at least
1/15e. The proof follows similarly when wy < 0. O

We next prove the lower bound in (19) which follows by combining the lower bound construction
from Theorem 9 and Lemma 7.

Theorem 11. Fix any n > 200. There exists a 3-Lipschitz function f(w; z) and a distribution D
over z, such that:

(a) The population loss F(w) = E..p|f(w;z)] is convex in w. Furthermore, there exists a
w* € argmin,, F'(w) such that ||w*|| = O(1).

(b) Foranyn € [1/n?,1) and T > 1, the point W°P[n, T returned by running GD with a step size
of n for T’ steps has excess risk

E[F (@[, T))] — inf, F(w)= Q(logl()mm{mf ot 0t 1}) (26)

Proof. We first define some additional notation. Let w1y, 2(1), f(1) and D(1) denote the optimization
variable, the data sample, the instance loss and the distribution over z(;y corresponding to the
lower bound construction in Theorem 10. Additionally, let Fq)(w(1)) denote the corresponding
population loss under the distribution D(;). We note that the function f) is 1-Lipschitz in w)
for any z(;). Furthermore,Theorem 10 implies that F{)(w(y)) is convex in wy), there exists a
minimizer w(}) € argmin,, ., F(1)(w()) such that [|w{, || = O(1), and that for any 7 € [1/n2,1)

w()

25

and T' € [1,n?), the point w(})[n, T] returned by running GD algorithm with step size 1) for T time
steps satisfies

_ . 1 . 1
E[Fy(@¢5[n, T))] — g(llf) F(wg)) = Q(m mln{n\/f—k T 1}) 7)

Similarly, let wa), 2(2), f(2) and D(q) denote the corresponding quantities for the lower bound
construction in Lemma 7, and let F{9)(w2) denote the corresponding population loss under the
distribution D(2y. We note that the function f(g) is 2-Lipschitz in w(yy for any z(2). Furthermore,
Lemma 7 implies that F{2)(w(2)) is convex in w2y with w* = 0 being the unique minimizer, and
that for any 7 and 7" the point @(Gg [, T] returned by running GD algorithm with step size 7 for T'
time steps satisfies
~GD : nT
E[Fey (@8, T))] — inf Flwe) = 0(L-). (28)

11)(2) n

Our desired lower bound follows by combining the lower bound constructions from Theorem 9 and
Lemma 7 respectively.

Lower bound construction. Consider the following learning setting:

e Optimization variable: w is defined as the concatenation of the variables (w1y, w(2)).

Data instance: z is defined as the concatenation of the data instances (2(1), z(g)).

Data distribution: D is defined as D1y X D(q), i.e. z(1) and z() are sampled independently
from D(1y and D) respectively.

Loss function: is defined as
fw; 2) := fy(way; za)) + fo)(wez); 2(2))
Additionally, define the population loss F'(w) := E,..p[f(w;2)].

Since, f(1) is 1-Lipschitz in w(y) and f o) is 2-Lipschitz in w(2), we have that the function f defined
above is 3-Lipschitz in w. Furthermore, the population loss

F(w) = Fay(wmy) + Foy(wz)),

is convex in w as both Fyy(w(y)) and F9)(w2)) are convex functions. Furthermore, since the
components (wyqy, w2y) do not interact with each other in the function f, we have that there exists a
w* € argmin,, F'(w) such that:

[w*|| < [lwiy || + lwiyll = O1),

where w(}) denotes a minimizer of F{;) with [Jw{})|| = O(1) and wf;) = 0 denotes the unique
minimizer of F{).

GD lower bound. From the construction of the function f, we note that the variables w(;) and wz)
are updated independent to each other by GD algorithm. Thus, for any € [1/n?,1) and T € [1,n?),
the point wSP[n, T returned by running GD algorithm on the function f with step size 7 for T time
steps satisfies

E[F (@[, T1)] — min F(w) = E[Fo (@5 [0, T)) + F (@[, TN)] - min - Foy(ww) + Floy (wea)
= E[F) (@), T1)] - m(inFu)(w(l)) +E[F(@3) [, 71)] = min F(we)
(i) 1 nT
- (10g4(n) mln{n\/>+ 0T’ 1}> + Q(?)
T
= Q(logi() mln{nxf—i— LT L 1})

where the lower bound in () follows from combining the lower bounds in (27) and (28).

Finally, we note that when 7 € [1/n?,1) and T > n?, we have that
E[F(@[.7))] - min F(w) > E[F(@F7.T)] - min F) ()
-o()
n
=Q(1),
where the second line follows by using the lower bound in (28), and the last line holds for 7' > n?

because 77 > 1/n?. Thus, the desired lower bound holds for all € [1/n?, 1] and T > 1. O

C.3 Lower bound for small step size () < 1/64n°/%)

In the following, we provide a learning setting for which GD run with step size < 1/64n°/* has
lower bound of Q(1/n%/%).

Lemma 8. Ler w € R denote the optimization variable, and z denote a data sample. There exists a
Sunction f(w; z) and a distribution D over z such that:

(a) The population loss F(w) := E..p|f(w;z2)] is 1-Lipschitz and convex in w. Furthermore,
there exists a point w* € argmin,, F(w) such that |w*| = 1.

(b) The variance of the gradient is bounded, i.e. E..p[|Vf(w;z)— VF(w)|?] < 1 for any
w € R.

(c) Ifn < 1/64715/4, then for any T' > 0, the point zﬁgp returned by running GD algorithm with
step size 1) for T steps satisfies

_ . 1
E[F(7)] — min F(w) = Q(m) (29)

Proof. Before delving into the construction of the function f, we first define some auxiliary functions
and notation. Define the kink function h(w) as

0 if w<0
5/8 : 1
fn;/8w , if 0§1w< EEZEEN
h(w) = n / w — 64n5/8 if 64%5/4 S w S W) (30)
5/8 :
—n5/ W+ 1578 if 64715/4 <w < Tons/a
0 if T6n5/% S w
and the corresponding gradients Vh(w) as
0 if w<0
_5/8 1
57;8 o S1 S e 3
5 .
_nb/8 if 7647115/4 <Ww < GEA
0 if T6ns/1 <w

Additionally, define the set

He{ty L1y 2 3
T4 8nd/AT4 T 8nd/AT T4
where the set H has 4n°/ numbers from the interval [1/4, 3/4] spaced at a distance of 1/8n°/4.

We now present our learning setting:

e Data sample: z consists of the tuple (3,y) where 5 € H andy € {—1,+1}.

27

Data Distribution: D over the instances z = (3, y) is defined such that
B ~ Uniform(H) and y ~ Uniform({—1,1}), (32)
where 3 and y are sampled independent of each other.

Loss function: is defined as
1
flw;2) = =75 max{—w,—1} +y - h(w + B), (33)
n

Additionally, define the population loss F(w) := E.p[f(w; 2)].

We next show the desired statements for this learning setting:

(a)

For the distribution D defined in (32), since E[y] = 0 and y is sampled independent of 3, we
have that the population loss

F(w) =E,p[f(w;2)] = nTl/s max{—w, —1}.

Clearly, F'(w) is 1-Lipschitz and convex is w. Additionally, the point w* = 1 is a minimizer of

We next bound variance of the stochastic gradient. For any w € R, we have

.V f(w;2) — VF(w)[*] = Eg,y) [[yVh(w + B)|]
= Eg[|Vh(w + B)1%]

:Eg[l{ﬁe [w— 1671;5/4’111]} -n5/4}

1
= n5/4 Pr(ﬁ S [UJ — W,'LU])

where the equality in the first line holds because y € {—1, 1}, and the second line follows from
the construction of the function h which implies that |VA(w + 3)| < n®/® for any w and f3
(see (31)). Using the fact that 8 ~ Uniform(B) in the above, we get that

E.op(|Vf(w;2) = VF(w)]] < 1/4.

We next show that GD algorithm when run with the step size of n < 1/ 64n°/* fails to converge
to a good solution.

Define f3(1), ..., B(n) such that 3(;) denotes the jth smallest item in the set {3, ..., 3, }, and
define y ;) as the corresponding y variable for the random variable 3(;). An application of

Lemma 9 implies that with probability at least 1 — 2/n'/4, there exists a j < [log(n)/2n'/4]
such that:

(1) By # By # Ba) # -+ # B4y and
(#4) yG) = +1.
In the following, we condition on the occurrence of the above two events. The key idea of

the proof is that at the level of the empirical loss, the first 3\ kinks (that arise as a result of the
stochastic function k) would be isolated from each other due to event-(7). Thus, the norm of

the gradient of the empirical loss would be bounded by 2/n3/8 for all points before /3’3 At the
same time, since YG) = +1 from event-(i7), the empirical loss would be flat in a small interval
around B; As we show in the following, when GD is run on the empirical loss with step size
n<1/ 64n°/4, some GD iterate will lie in this small flat region, and after that GD will fail to
make progress because the gradient is 0; hence outputting a bad solution. On the other hand,

GD / SGD run with a large step size e.g. 1/+/n will easily jump over these kinks and converge
to a good solution. We illustrate this intuition in Figure 1, and provide the proof below.

28

O(n—5/4)
Empirical loss is flat due to the kink function

Population loss is convex

GD with large step size
jumps over the kink

NN NN

S~_GD with small step size gets
stuck in the flat region

Figure 1: (Picture not drawn according to scale) The solid red line shows the empirical loss induced
by the kink function when y = +1, the solid green line shows the empirical loss when y = —1, and
the dotted blue line shows the convex population loss. The empirical loss when y = +1 has gradient
0 in a region of width 1/32n5/4, Gradient descent with step size smaller than 1/64n°/4, shown in
the bottom, will get stuck in this flat region and thus fail to find a good solution. On the other hand,
gradient descent with large step size will jump over the kink and find a good solution.

Recall that the empirical loss on the dataset S is given by:

~

F(w) = # max{—w,—1} + % Zyj(h(w + 85))
j=1

Note that for any § € H, the set of w for which h(w + () is non-zeros is given by the
interval [3, 8 4 1/16n°/%]. Furthermore, any two numbers in the set H are at least 1/8n°/*
apart from each other. Thus, the event-(¢) above implies that non-zero parts of the functions

{h(w + B1));- -, h(w + B}, ie. the first J kinks do not overlap with each other. This
implies that for w < Bz,

~ 1 1 &
VE@W)| < =5+ = [Vh(w+5)|
j=1
- 1 no/8 2
- n3/8 n - n3/8’

(34)

where the first inequality in the above follows from Triangle inequality and the second inequality
holds because at most one of the n terms in the stochastic component 2?21 y;i(h(w + B;))

above is non-zero for w < 5. ;. Thus, ﬁ(w) is 1-Lipschitz for w € [0, BGi1))-

Next, the event-(i¢) above implies that YG) = 1. Define the interval W o= (BG) +
1/64n°/4, B + 3/64n5/4) and note that for any w € W,

~ 1 1
_ 1 1 5/8 _
==, (35)

29

where the first equality holds because YG) = +1 and using the event- (i) above. This implies

that the empirical loss F (w) has 0 gradient for w € VN\/, and thus GD algorithm will stop
updating if any iterate reaches W .

In the following, we will show that forn < 1/ 64n°/*, GD algorithm is bound to get stuck in

the interval W, and will thus fail to find a good solution. Consider the dynamics of the GD
algorithm:

W41 <~ W — nVﬁ(wt),

where the initial point w; = 0. Suppose there exists some time 7 for which w, > BG +1) and
let ¢y > 0 denote the smallest such time. Thus, for any ¢ < ¢y and n < 1/64n°/*, we have that

lwis1 — wy| = | VE(w)| <5 < 1/64n5/4,

where the first inequality holds due to (34). This implies that any two consecutive iterates
produced by the GD algorithm for ¢ < ¢y are at most 1/ 64n5/* apart from each other. However,
note that the interval W C [0, Ba +1)) and has width of 2/641°/4. Thus, there exists some time
t' <ty for which w; will lie in the set W. However, recall that VF'(w) = 0 for any w € W as
shown in (35). Thus, once wy € W, GD will not update any further implying that for all ¢ > ¢/,
w; = wy . This shows via contradiction that no such time 7 exists for which w, > BG +1)

Hence for) < 1/64n°/4, all iterates {w; };>o generated by the GD algorithm will lie in the set
[0, BG +1)). Thus, for any 7' > 1, the returned point @W$P satisfies

3
~GD
Pt S By S 3

where the second inequality holds because G+1) € H and is thus smaller than 3/4. Thus,

1
~GDY\ -
F(wp”) gleerlF(w) > T (36)

Since, the events (i) and (ii) occur simultaneously with probability at least 1 — 2/n'/%, we
have that for any 7" > 0,

1

E[F(@$P)] — min F(w) = Q<W)

weR

O

Lemma 9. Suppose (81,v1),-- ., (Bn,Yn) be n samples drawn independently from Uniform(H) X
Uniform({—1,1}), where the set H := {1 + 8'rz+/47 i+ 87%/4, ..., 2}. Further, define (3, to denote
the jth smallest number in the set {1, ..., B}, and define y;) as the corresponding y variable for
B(;)- Then, with probability at least 1 — 2/n*/*, there exists aj < [log(n)/2n*/*] such that:

(1) By # B2y # By # ++ # By and
(i) Y5 = +1.

Proof. Let k = [log(n)/2n'/*]. We give the proof by translating our problem into a “ball and bins"
problem.

Let the set H denote m = 4n5/% distinct bins, and let there be n distinct balls. Each of the n
balls are tossed independently into one of the m bins drawn uniformly at random. For any 4, j, the
event where the ball j is tossed into the bin 4 corresponds to the event that 8; = i + g577- In
addition to this, the balls are such that they change color after they are tossed into a bin. In particular,
after being tossed into a bin, a ball changes color to either red or blue with equal probability. For
any i, j, the event where the ball j takes red color corresponds to the event that y; = 1; Similarly,
blue color corresponds to y = —1. Thus, in the balls and bins model, the position of the n balls

30

in the bins and their corresponding colors after tossing reveals the value of the random variables
(ﬂhyl)a ey (ﬂfhyn)'

In the following, we first show that with probability at least 1 — nl%, the first £ bins will have at
most one ball each, and there will be some bin amongst the first k£ bins that contains a red color ball.
Define F; to denote the event that the bin ¢ gets more than one ball. Thus,

Pr(E;) =1 — Pr(Bin has 0 or 1 ball in it)

1 \» 1 \»-1 1
=1-(1-5m) (1= 5n)

1 1 n—1
s1- <1 - n1/4) pl/a (1 p5/a)
n—1 1
= Sﬁ (37)

where the first inequality in the above follows from the fact that (1 — o)™ < 1 — an for any o > —1
and n > 1. Let Ay denote the event that there exists some bin among the first £ bins that has more
than one ball. Taking a union bound, we get

Z)Si
Vn

Next, let Bj, denote the event that there is no red ball in the first £ bins after n tosses. When we throw
a ball, the probability that it will fall in the first & bins is given by &/ n5/%, and the probability that it
takes the color red is 1/2. Since the bin chosen and the final color are independent of each other for
each ball, the probability that a ball falls into the first & bins and is of red color is given by k/ 2nb/4,
Furthermore, since the balls are thrown independent to each other, the probability that if we throw n
balls, no ball falls into the first &k bins that takes the red color is given by

Pr(By) = (1- %Lm)

Finally, let us define C}, to denote the event that there is at most one ball per bin amongst the first &
bins, and that there exists a bin amongst the first k£ bins with a red ball in it. By the definition of the
events A, and B;, we note that

Pr(Cy) = Pr(4% N By)
=1- Pr(Ak @] Bk)
2 1-— Pr(Ak) — Pr(Bk)

215 (1)

k
Pr(Ag) = Pr(Uj_,E;) <Y Pr(E
1=1

vn 2n5/4
>1— ko efk/2n1/4,
n

where the first inequality in the above follows from the union bound, the second inequality holds by

plugging in the corresponding bounds for P(Ay) and P(By), and the last line is due to the fact that

(14)™ < e for any . Plugging in the value of k = [log(n)/2n'/*] in the above, we get that
2

Thus, with probability at least 1 — 2/ nl/4, the first k bins have at most one ball each, and there exists

some bin} € [k] that contains a red ball; when this happens, the corresponding random variables
(ﬂh yl)a ceey (6%7 yﬂ) SatiSfy:

(@) By # By # Be) # -+ # By1) and

31

C.4 Proof of Theorem 3

In this section, we combine the lower bound constructions in Theorem 11 and Lemma 8 to provide an
instance of a SCO problem on which, for any step size 7 and time steps 7', GD has the lower bound

of Q(1/n5/12).

Proof of Theorem 3 . Throughout the proof, we assume that n > 200 and the initial point w; = 0.

We first define some additional notation: Let w1y, 2(1), f(1) and D(y) denote the optimization
variable, the data sample, the instance loss and the distribution over z(;y corresponding to the lower
bound construction in Theorem 11. The statement of Theorem 11 implies that:

(@) fa1)(w(1); 2(1)) is 3-Lipschitz in the variable w() for any z(;).
(b) The population loss F(1)(w(1)) := E,,~py, [f(w(1); 2(1))] is 3-Lipschitz and convex in wyy).
Additionally, there exists a point w(;) € argmin,, = F1)(w(1)) such that [|w, || = O(1).

w()

(c) Foranyn € [1/n? 1) and T > 1, the point @?B [n, T returned by running GD algorithm with
a step size of n for T' time steps satisfies:

E[Fay (88800, T)] — min Fpy(wqy) = Q(

W)

o min{nﬁ+ niT n % 1}) (38)

Similarly, let w(g), z(2), f(g) and D() denote the optimization variable, the data sample, the instance
loss and the distribution over z(3) corresponding to the lower bound construction in Lemma 8. The
statement of Lemma 8 implies that:

(a) The population loss Fa)(w(2)) = E., ~p, [f(w(2); 2(2))] is 1-Lipschitz and convex in w(y).
Additionally, there exists a point w(,) € argmin,, , F'(w(2)) such that [|w, || < 1.

(2

(b) The variance of the gradient is bounded, i.e. for any w(y),

Ezo) oDy [IVf2) (Wi2); 2(2)) — VF2) (wi2)P] < 1. (39)

(c) If 7 < 1/64n5/%, then for any T > 0, the point ﬁ)\g? [n, T returned by running GD algorithm
with step size 7 for T steps satisfies

_ . 1
ElFl) (@[, T])] — min Fg) (wiz) = © (rg/s) : (40)

Lower bound construction. Consider the following learning setting:

e Optimization variable: w is defined as the concatenation of the variables (w(1), w(a)).
e Data instance: z is defined as the concatenation of the data instances (2(1), 2(2)).

o Data distribution: D is defined as D1y X D(gy, i.e. 2(1) and z(z) are sampled independently
from D(yy and D(y) respectively.

e Loss function: is defined as
Jw; z) == foy(way; 21)) + f)(wey 2e2),
Additionally, define the population loss F(w) := E.~p[f(w; 2)] = Fr1y(wa)) + Fio)(w(2)).

Excess risk guarantee for SGD. We first show that the above learning setting is in SCO. Note that
the population loss

F(w) = Fay(w(y) + Foy(wg)).

32

Clearly, F'(w) is convex in w since the functions F{1)(w(1)) and Fio)(w(s)) are convex in w(;) and
w2y respectively. Next, note that for any w and w’,

(i)
|F(w) — F(w')| < [Fay(way) = Fay(wipy)| + [Fro) (w) — Foy (wiz)]

< Bllway = wip || + lwey — wiy |

< 3(lwa) = wiy P + /Il — wiy[1?)
(i3

)
< 3v2- fllwa) — wiyy P + o — w2

W 3va\w - w?
= 3v2|w - '],

where the inequality (i) above follows from Triangle inequality and the inequality (i) is given by
the fact that F{y) is 3-Lipschitz in w(;) and that F,) is 1-Lipschitz in w(s). The inequality in (74)
follows from an application of Jensen’s inequality and using concavity of square-root. Finally, the
equality in (iv) is by construction of the variable w as concatenation of the variables (w(1),w(g)).

Thus, the population loss F'(w) is 3v/2-Lipschitz in w.

We next show a bound on the variance of the gradient. Note that for any w,
E.vn [[IVf(w;2) = VF(w)|]

= E.on [[IV f) (wys 201) + Vii2) (wiz); 2(2)) = VE@) (wiy) = VEg)(wz)]?]

(0
< 2Bz op) [V F0) (ways 2y) = VE@) (wn)|?]

+ 2B, ~Dp IV Fi2) (we2); 22)) — Vo) (wz) 1]
(i) 5. (i)
< 724 2B, ~pp IV Fi2)(wi2); 2(2)) — VEe) (wee)|?] < 74,

where the inequality (i) above follows from the fact that (a + b)? < 2a? + 2b* for any a, b. The
inequality (i7) holds because the function f(1)(w(1); 2(1)) is 3-Lipchitz in wq for any z(;), and
because F{1(w(y)) is 3-lipschitz in w(;). Finally, the inequality (4i) is due to the bound in (39).

We next show that there exists a w* € argmin,, F'(w) such that [jw*|| = O(1). Since the components
(w(l), w(2)) do not interact with each other in the above construction of the loss function f, we note

that the point w* = (w{), w{,)) is a minimizer of F'(w) = F1)(w(1)) + Fi1)(w()). This point w*
satisfies

[w*|| < [lwiy || + lwiyll = O1),

where we used the fact that [[w{}, || = O(1) and [Jw(,)[| = O(1).

Combining the above derived properties, we get that:

(a) The population loss F(w) is 3v/2-Lipschitz and convex in w.
(b) There exists a point w* € argmin,, F'(w) such that |[w*|| = O(1).
(¢) For any w, the gradient variance E.p [||V f(w; 2) — VF(w)|?] < 72.

Thus, as a consequence of Theorem 8, we get that running SGD with step size n = 1/4/n and

initialialization w; = 0, returns the point w5%P that satisfies

E[F(@59P)] — min F(w) = O

) =0(1),

33

Lower bound for GD. We next show that GD algorithm fails to match the performance guarantee
of SGD in (41), for any step size 1 and time step 7.

Let @°P[n, T denote the point returned by running GD algorithm on the function f with step size 1
for T steps. Since the components w(;) and w2y do not interact with each other in the GD update
step due to the construction of the function f, we have that

E[F (@[, T))] ~ min F(w) = E[F)(@38 . 71)) ~ min Fo (i)

+ E[Fo) (@3 [0,])]—gl(izr)lF@)(w(z)) (42)

The key idea behind the lower bound for GD is that first components has a lower bound of Q(1/75/12)
when 7) is larger than 1/ 64n5/*. Specifically, in order to improve the excess risk bound over the rate
of 1/n%/12 w.r.t. the variable w1, we need 7 to be smaller than 1/64n°/*. However, any choice of
n < 1/64n5/* fails to find a good solution w.r.t. the component w(g). We formalize this intuition by
considering the two cases (a) n < 1/ 64n°/*, and (b) n > 1 / 64n5/* separately below.

e Case 1: 7 < 1/64n5/4, Using the fact that E[Fy (@ [, T])] — miny,,, Fuy(wa)) > 0in
(42), we get that

E[F(@%n, T])] — min F(w) > E[Fz) (@) [0, T1)] — min Fz) (w())

w(2)

where the inequality in the second line above is due to the lower bound in (40) which holds for
ally < 1/64n>* and T > 1.

e Case 2: n = > 1/64n5/4 Using the fact that E[F(g)((2) [77,])] — minw(z) F(Q) (w(Q)) > 0in
(42), we get that

E{F(ASTH‘—HEDFTW)EiEUQU(ﬁggmaTD]-—gﬁ?FhﬂU«n) (44)

The lower bound in (38) suggests that forp € [1/n2,1) and T > 1,

E[Fo) (@[, T1)] = min Fiy) (w)) = Q(logl(n) mln{n\f+—+— 1}

W)
= Q(logl() mln{n\/>+ 277% + : })
@ Q(logi(n) min{n\/f+ T + \/%, 1})
(45)

1
rnin{nl/3 + %, 1})
where (¢) follows from an application of the AM-GM inequality for the last two terms, and (i)

holds by setting 7' = 1/7*/3 which minimizes the expression in (45). Plugging the above lower
bound in (44), we get that

(i%) 1
W Q(-
log™(n)

E[F(2°[n,T])] — min F(w) > Q(logi(n) min{nl/3 + %, 1})

Finally, using the fact that 7 > 1/64n°/* in the above bound, we get

E[F(@°[y, T))] —rrgnF(w) >Q(bg41(n>min{nsl/12+\/15,1}). (46)

34

Combining the lower bound from (43) and (46) for the two cases above, we get that for all > 0 and
T > 1, the point @WCSP[n, T returned by running GD algorithm on the function f with step size 7 for
T steps satisfies:

w

E[F(@GD[WT])] — min F(w) > Q(logi(n) min{ﬁ, 1})

D Missing proofs from Section 5

The pseudocode for multi-pass SGD algorithm given in Algorithm 1 is slightly different from the
description of the algorithm given at the beginning of Section 5. In particular, at the start of every
epoch, Algorithm 1 uses the following projection operation:

w if |lw—w|| < B
wy + ﬁ(m —wp) otherwise.

Hth(w) = {

This ensures that the iterate at the start of every epoch has bounded norm. Rest of the algorithm is the
same as in the description in the main body.

Algorithm 1 Multi-pass SGD algorithm

Input: Dataset S = {z;}""_;, number of passes k, initial point w;.
1: Define m :=n/2, 51 :={z;}.", and S2 := S\ S}
2: Initialize W < ()

3: forj=1,...,kdo > Multiple passes
4: W (j—1)+1 < le,B(wm(j—l)H)

5: nj ﬁ

6: fori=1,3,...,mdo

7: W (j—1)+i+1 & W (j—1)+i — ijf(wm(j—l)-s-i?).

8: ﬁ)\j < 7%] Z?;Jl W

9 W WU{d;}
10: Return the point wMP € argmin, 5 Fs, (W) := Ly F(w; zmtr) > Validation

D.1 Proof of Proposition 1

Proof. The following proof uses the fact that the loss function is bounded over the domain of
interest. This is automatically ensured for our multi-pass SGD algorithm due to the projection step
in Algorithm 1. Assume that f is bounded by M. Since S5 is independent of S7, we note S5 is

also independent of the set of points VV. Hoeffding’s inequality (Lemma 1) thus implies that, with
probability at least 1 — 6, for all w € W,

[Py () — Fu)] < 2y B,

Thus, the returned point @™ € argmin, g Fs, (w) satisfies:

F(@MP) < min F(w) +2M log(2k/9)
weW n

< -+ o, [EBT]

Observing that the point w; denotes @SGzD, and converting the above high probability statement into

an in-expectation result (since f is bounded by M) gives us the desired statement. O

35

D.2 Proof of Theorem 4

For the upper bound of part (b) in Theorem 4, we need the following slight generalization of
Theorem 1.

Lemma 10. Consider any SCO problem and initial point w1 satisfying Assumption I in (2) and
Assumption Il in (3). Suppose starting from the pomt wy, we run SGD algorithm with step size 1) for
n steps. Then the average iterate W57 = 1 ZZ 1 w; enjoys the bound

Es[F(w,°")] - inf F(w) < n(o” + L?) + Tllwl -,
for any point w* € argmin , F'(w).

Proof. The proof follows exactly along the lines of the proof of Theorem 8 given on page 14. [

Theorem 12. Consider any SCO problem satisfying Assumption I in (2) and Assumption II in (3).
Suppose we run the following variant of SGD: for some integer k > 1, we run Algorithm [for nk
steps with the only change being that fresh samples z; are used in each update step (line 5) instead of
reusing samples. Then the average iterate @ESD enjoys the bound

Es[F(@5GP)] — inf F(w) <2(B*+ L* 4+ o%)Vnk.

w: |lw—wy||<B

Proof. The proof is completely standard, we just include it here for completeness. Let w* € R? be
any point such that ||w; — w*|| < B. We use ||w; — w*||? as a potential function. Within epoch 7,
we have

lwesr = w* | = [lwe = w*[|* = 20;(V f (we; 21), (we — w*)) + 07 |V f (we; 20|
Since ||V f(wy; 2¢)||> < 2L2 + 202, by rearranging the above, taking expectation over z; conditioned
on wy, and using convexity of F' we have
lwe = w*]|? — Efllwigs — w*|[|wi]
2n;
Now taking expectation over the randomness in w;, and summing up the inequality for all iterations
in epoch j, we get

F(w) = F(w®) <

+ nj(LZ + 02).

- Elllwnij—1)41 — w*||? — E[|Jw!;,q — w*|?
S Flw) - Fw) < Ukongs-n+ ”2, Uonia =W 22 4 02,
t=n(j—1)+1 7j

where we use the notation wy, ;. ; to denote the iterate computed by SGD before the I1,,,, 5 projection
to generate w, ;1. Summing over all the k epochs, we have

ok — 2 * (|2 Ellw’. . — w* 2
3 F(w) - F(w") < llw1 wll +Z([lwng1 —w*)?) _ Ell st ||1)
t=1 j

21541

E[||wn,
[[|wnkt1 — wH +Z"JL2+J)

21 =
@ fuy — w2 =y 1 1 5N o, s
< TS Y (5 - 5) Elllwng = w' P + Yo ni (22 + o?)n
2m ; 2041 2n; ! ; !
(21) 2B2 k
< Sttt
k X
j=1

(2i1)

< 2(B?+ L2 + o) Vnk.
Here, (i) follows since ||wyj+1 — w*|]?
reduce the distance to w*, and (77) follows since ||wyj+1 — w*||* < 4B?forall j =0,1,...,k — 1,
and telescoping, and finally (4i¢) follows by plugging in ; = 1//nj.

< lw),; 41 — w*||? since the II,, p projection can only

36

Finally, the stated bound on F’ (@EED) follows via an application of Jensen’s inequality to the convex
function F'. The dependence on problem specific constants (o, L and B) in the above bound can be
improved further with a different choice of the step size n; getting the optimal dependence on these
constants, however, is not the focus of this work. O

We now prove Theorem 4. To begin, we first define the instance space, the loss function, and the data
distribution.

Instance space and loss function. We define the instance space Z = {0,1}F% x {+1}* x
{0,€e1,...,eq}*. That is, each instance z € Z can be written as a 3-tuple z = (z,y,a) where
x € {0,1}%, y € {£1}*, and a € {0,e1,...,eq}". For each s € [k], we define x4, ys, as to
be the s-th parts of z, y, o respectively when these vectors are split into k contiguous equal sized
blocks of sizes d, 1, 1 respectively. Define the function fic) : R“*"*2 x Z — R on the variables
u € R,v € R"™! 7 € R? and instance z = (x,y,a) € Z as follows. First, define the intervals

I = (=00, 1], I, = (W72, #] fors = 2,3,...,k — 1, and I = (! o0). Then define

k
f(c)((u,’l)ﬂ'); Z) = fN(U) + Zl[u € Is]f(A) (7—; (%J/s,as)) - \/% min{u7 1} +c1, ©

s=1

where the function fy : R"*! — R is defined as

fn() = (1+3%)ien[lﬁ<1] vi + (gm0 1%,

and the constant ¢; = \/% + T}/m Finally, we define the variable w to denote the tuple (u, v, 7).
We also assume that n. > 300 and d > log(10)2™ + 1.

For the purpose of defining the SGD update on the function fic)(+; z) for any given z € Z, we
make the following convention for defining subgradients: when u € I for some s € [k], we use a
subgradient of

fN(U) + f(A)(T; ($s7y37as)) - \/% min{u, 1}

It is easy to check that with the above convention, the norm of the subgradient is always O(1).

Input distribution. The samples z € Z are drawn by sampling ((x,,ys,as))c; ~
D(%, 1.¢e;+)®F, for some j* € [d] that will be defined in the proof (see Definition 2 for the
definition of D).

Proof of Theorem 4. Let D’ denote the distribution specified over the instance space Z. The exact
choice of j* will be specified later in this proof. Note that due to the indicators in (C), the population
loss under f(cy when the data are sampled from D’ can be written as

F(w) = E.nor[fio)(w,v,7);2)] = [(v) + Esnpr [fa) (73 2)] = 2= min{u, 1}. (47)

Note that by Lemma 5, E..p/[f(4)(7; 2)] is a convex function of 7. Hence, F' is convex, 1-Lispchitz
and 7 = e;~ denotes its unique minimizer. Also note that ' nicely separates out as convex functions
of u, v, 7 and hence it is minimized by minimizing the component functions separately. In particular,
it is easy to check by computing the subgradient that the optima are

_ _ 1 _
u =1, v =— n+11, W= ejx,

\/%’ _ﬁ, and 0. This
implies that F* = min,, F'(w) = 0. More importantly, the suboptimality gap also decomposes as

the sum of suboptimality gaps for the three functions, a fact we will use repeatedly in our analysis.

where 1 is the all 1’s vector. The corresponding optimal values are —

Finally, we will assume that the initial value of the variables u, v, T is 0.

37

Proof of part-(a). Since ||V f(u,v,7;2)|| < O(1) for any z € Z and u,v, 7, and the optimal
values of u, v, T are O(1) in magnitude, and F'(w) is convex in w = (u, v, 7), Theorem 1 implies
that single pass SGD run for n steps with a step size of % will obtain O(%) suboptimality gap in
expectation.

As for the lower bound, note that the function f is exactly the same one constructed in [Nesterov,
2014, Section 3.2.1]. There, it is shown (in Theorem 3.2.1) that a certain class of gradient based meth-
ods (including GD/SGD) have suboptimality at least (1//n) after n iterations, which completes
the proof of part-(a) of Theorem 4.

Proof of part-(b). In the following, we give convergence guarantee for multi-pass SGD algorithm
that does k passes over the dataset S; of n/2 samples (see Algorithm 1). First, note that the
deterministic components of the function fc), viz. fx and —\/% min{u, 1}, are unaffected by the
randomized component in the iterates produced by SGD update. Since these deterministic components
are 1-Lipschitz, their optimal values are O(1) in magnitude and the corresponding population losses
are convex, we conclude via Theorem 12 that the multi-pass SGD, which is equivalent to GD, attains
a suboptimality gap of O(\/%) on these components. Specifically, the points %y, and vy, returned

after the k-th pass satisfy
1
~ 2 . o~ . 2 .
fn (@) — 7= min{ug, 1} — 151’1un<fN(v) -I= min{u, 1}) <O(—= E)

Coming to the randomized component of f), we note that as long as u < 1, the gradient of f)
with respect to u is always —2/ V'kn. Thus, u keeps monotonically increasing at each step of SGD
with an increment equal to the step size times 2/ V'kn. Suppose we run k pass SGD with step size
set to 1/v/kn and u starting at 0, where in each pass we take n/2 steps of SGD using the dataset
Sy. It is easy to see that for all s € [k], the value of u stays in I in the s-th pass, and traverses to
the next interval ;11 as soon as the (s + 1)-th pass starts. Thus, within each pass s € [k] and for
all ¢ € [n], multi-pass SGD encounters a fresh i.i.d. sample (z; s, ¥ s, v s) ~ D for every update.
This is thus equivalent to running SGD with kn/2 such i.i.d. samples over the first kn /2 iterations.
An application of Theorem 12 (where we set n to be n/2) implies that the suboptimality gap of the
iterate 7), generated after the kth-pass of SGD algorithm on the randomized component of f) is

Enplfia) (Tis 2)] — min Exp|fia) (w; 2)] < O(\/%)

Taking the above two bounds together, we get that the point Wy, = (U, Uy, 7)) satisfies

1
F(@),) = F(@y) — min F(w gO(—), (48)
() = F (i) ~min F(w) < 0 =
where the equality in the first line above follows from using the fact that min,, F'(w) 0 by
construction.
Finally, note that the returned point @™° € argmin, 5 Fs,(W) where W = {@y, ..., @ }.

Lemma 4 thus implies that the point @MP satisfies

@) < min F(i;) + 0(© logék/ o) 4 \/ minsefy F(®@;) L log(k/ 5))

= jel¥] J n

. F(@k)+O(LlogTEk/5) N \/F(@k)Llog(k/6)>

n

1 +O(log(k/5)+l log(k/z?))’

n n k

<

~ Vnk

where L-denotes the Lipschitz constant for the function f and the inequality in the last line follows
by plugging in the bound on F'(wy,) from (48) and using the fact that L = O(1). Finally, observing
that min,, F'(w) = 0, the above bound implies that

(@) - min F(w) < o(\/%)

for k = o(n); proving the desired claim.

38

Proof of part-(c). The proof follows exactly along the lines of the proof of Theorem 2 in Ap-
pendix B.2. Recall that n > 300 and d > log(10)2™ + 1.

Assume, for the sake of contradlctlon that there exists a regularizer R : R x R"*! x R? — R such
that for any distribution D = D(10 2, e;~) (see Definition 2) for generating the components of z,
the expected suboptimality gap for RERM is at most e = 1/20000. Then, by Markov’s inequality,
with probability at least 0.9 over the choice of sample set S, the suboptimality gap is at most 10e.

First, since the population loss separates out nicely in terms of losses for u, v, 7 in (47), we conclude
that if (u/, v’, 7’) is a 10e-suboptimal minimizer for the population loss when components of z are
drawn from D, then v/, v, and 7/ must be individually 10e-suboptimal minimizers for the functions
—\/% min{u, 1}, fx(v) and E.p[f(a)(7; 2)] respectively. Additionally, from Lemma 5, we must

have that ||/

is insight, for any j € [d], define the set
G, = {(u,v,f) : —\/% min{u, 1} < _f +10¢, fn(v) < T\l/m +10e, |[T—e;| < 1005}.

This set covers all possible 10e-suboptimal minimizers of the population loss. Also, for convenience,
we use the notation
w = (u,v,7).

As in the proof of Theorem 2, define the points w} for j € {0,1,...,d} to be

wj € argmin R(w)
weG
Now we are ready to define j*: let j* € [d] be any element of argmax;c(q R(w}). The proof now
follows similarly to the proof of Theorem 2. In particular, in the following, we condition on the
occurrence of the event E' defined in the proof of Theorem 2.

Now define ¢ := f\/% 2+2\/7 It is easy to see that for any w = (u,v,7) € G, forany j € [d],
we have
c< —\/%min{u,l} + fn(v) < e+ 20e. (49)

Next, consider the point w? defined in (12) for the special coordinate} Reasoning similarly to the
proof of Theorem 2, we conclude that that wE cannot be an e-suboptimal minimizer of F', and thus wA
can not be a minimizer of the regularized empirical risk (as all RERM solutions are 10e- suboptlmal
w.r.t. the population loss F'). Thus, we must have

F(w;) + R(w;) > wrélérj}* (F(w) + R(w))

> min F(w)+ min R(w)
wEGj* ’LUEGj*

> R(wj.) + ¢ — 100¢, (50)
where F' denotes the empirical loss on 9, and the last inequality above follows from (49) and due to
the fact that: if w* = (u*,v*,7*) is the minimizer of F'(w) over G-, and s € [k] is the index such
that u* € I, then the function 7 — L 3" v; .[|7 ® x; || is 1-Lipschitz and takes the value 0 at
T = €j5x.

On the other hand, if w;* = (u,v,7) and s € [k] is the index such that & € I, then using (49), we
have
F(w) < 5 350 4isl| (7 = ¢j+) © 25| = = min{@, 1} + f (0)
< Ll (F =€) © @isll + e+ 20e. (SD)

Now, since we are conditioning on the occurrence of the event £, using the same chain of inequalities
leading to (15), we conclude that

I s ll(T = €j+) © @i]| <1008 — 535 (52)
Combining (50), (51), and (52) and rearranging the terms, we get

3 3
220e > R(wi.) — R — > — 53
e 2 Rwj.) = R(wj) + 555 = 555 (53)
where the second inequality above holds because j* € argmax;¢(g R(w;‘) (by definition). Thus,
€ > 3/44000 > 1/20000, a contradiction, as desired. O

39

E Missing proofs from Section 6

Throughout this section, we assume that a data sample z consists of (x, @), where z € {0,1}% and
a € {0,e1,...,eq}. The loss function f(p : R? x Z is given by:

1 Cn
fipy w3 2) =3 =) © al]* = Zlw = o> + max{1,]}, (54)

where ¢,, := n=(G=) for some v > 0. We will also assume that c,, < %. Furthermore, since
J(B)(w; 2) is not differentiable when |[w|| = 1, we make the following convention to define the
sub-gradient:

Of (w; 2) = (w—) ®a — cn(w — a) + 41{|Jw| > 1}|w||*w. (53

Whenever clear from the context in the rest of the section, we will ignore the subscript (B), and
denote the loss function by f(wj;z). Additionally we define the following distribution over the
samples z = (z, a).

Definition 3. For parameters § € [0, 3], ¢, € [0,1], and v € {0, €1, .., eq}, define the distribution
D(8, ¢y, v) over z = (x,) as follows:

)®d

x ~ Ble, +9 and a=w.

The components x and o are sampled independently.

E.1 Supporting technical results

Before delving into the proofs, we first establish some technical properties of the empirical loss
f(w; z) and the population loss F'(w). The following lemma states that for any distribution D, the
minimizers of the population loss F'(w) := E,.p[f (wj; z)] are bounded in norm.

Lemma 11. Suppose ¢, < i. Then for any data distribution D, the minimizer of F(w) =
E.~p[f(w; 2)] has norm at most 1.

Proof. Note that for any w such that ||w]|| > 1, we have

Flw;2) 2 —ca(wl* + al*) + lwll* > —callw]? = cn + Jw|* > 1 — 2¢n.
Thus, F(w) > 1 — 2¢,,. On the other hand, f(0;z) = |a ® z|?> — 2| «a|? < 15%. Hence,
F(0) < % <1 —2¢, since ¢,, < i. This implies that such a w is not a minimizer of F'(w). O

We show now that the single stochastic gradient descent update keeps the iterates bounded as long as
the learning rate 7 is chosen small enough.
Lemma 12. Suppose that the learning rate 1 < 15 and the point w satisfies |w|| < 2.5. Let

wt =w —n-df(w;2) for an arbitrary data point z in the support of the data distribution. Then
[[wt]| < 2.5.

Proof. We prove the lemma via a case analysis:

1. Case 1: ||w]|| < 2. Using (55) and the Triangle inequality, we get that
10 (w;)| < [(w — @) © || + [lea(w — @) || + 4] w]®
< L+) (flwll + llal) + 4llw]® < 36, (56)

where the last inequality follows from the fact that the iterate w satisfies ||w|| < 2, and that
the parameter ¢, < } and [|a|| < 1.

Now, for the gradient descent update rule w; 1 = w; — ndf(w; z), an application of the
triangle inequality implies that

[wisall = llw = ndf (w; 2)|| < wl| + |0 f (w; 2)|. (57)
Plugging in the bounds on ||0 f (w; z)|| derived above, we get that
[wh || <2+ 360 < 2.5 (58)
since n < ﬁ.

40

2. Case2: 2 < ||lw|| < 2.5. We start by observing that the new iterate w satisfies

[wt[|? = Jlwe — ndf (w; 2)|>
= |lw|® + 7?[10f (w; 2)||* — 2n(w, df (w; 2)). (59)

Reasoning as in case 1 above, using the fact that ||w|| < 2.5, we have ||0f(w; z)|| < 70.
Furthermore,
(w,0f (w; 2)) = (w, (w — @) O & — en(w —) + dw|*w)
= 4f|w||* + (w,w O z) — (w,a ® z + cp(w — a))

i)
> Afwl|* - (w,a © z + co(w - @))

=

@) 4
= dwl]” = [l (1 + cn) el + enllw]])
where the inequality in (¢) follows from the fact that (w, w ©® x) > 0, the inequality in (¢7)

is given by an application of Cauchy-Schwarz inequality followed by Triangle inequality.
Next, using the fact that ¢,, < 1 and ||| < 1, we get

5 1
(w, 0f (w3 2)) = Alfw][* ~ w] (5 + 7llwl) = 60, (60)

where the last inequality holds as the polynomial f(a) := 4a* — a(1.25 + 0.25a) is an
increasing function of @ over the domain a € [2, 00).

Plugging the bound |0 f (w; z)|| < 70 and and (60) in (59), we have
w1 < leo]* + 49007 — 60 <],

since nn < ﬁ. Thus,

wh] < |lw| < 2.5.

Thus, in either case, ||w™]|| < 2.5, completing the proof. O

Corollary 2. Suppose that the learning rate n < 1/100 and the initial point w, be such that
[lwi]] < 2.5. Then the iterates obtained when running either full gradient descent on the empirical
risk, or by running SGD, have norm bounded by 2.5 at all timest > 0.

Proof. The iterates obtained during the running of any of the gradient descent variants described in
the statement of the lemma can be seen as convex combinations of single sample gradient descent
updates. Thus, the bound on the norm follows immediately from Lemma 12 via the convexity of the
norm. O

The following lemma shows that the loss function f(wj z) is Lipschitz in the domain of interest, i.e.
the ball of radius 2.5. This is the region where all iterates produced by gradient based algorithms and
the global minimizers of the population loss (for any distribution D) are located in.

Lemma 13. In the ball of radius 2.5 around 0, and for any data point z, the function w — f(w; z)
is 70-Lipschitz.

Proof. For w such that ||w| < 2.5, using (55) and the Triangle inequality, we get that

10f (w; 2)]| < ll(w = a) ® 2] + ea(w — a) || + 4wl
< (1 + ea)([lwl + llall) + 4wl < 70.

41

E.2 Proof of Proposition 2

Proof. The proof is rather simple. To show this statement, we consider two distributions D; and Dy
on the instance space. What we will show is that if a learning algorithm succeeds with a rate any
better than ¢,, on one distribution, then it has to have a worse rate on the other distribution. Thus, we
will conclude that any learning algorithm cannot obtain a rate better than c,,.

Without further delay, let us define the two distributions we will use in this proof. The first distribution

D; is given by:
1 ®d
x ~ B(2> and a=0

and the second distribution we consider is D» given as follows, first, we draw 3 ~ Unif[d], next we
set z[j] = 0 deterministically, finally, on all other coordinates i # 7, 2[j] ~ unif{0, 1}. We also set
a = 0 deterministically.

Now the key observation is the following. Since d > 2", when we draw n samples from distribution
D; with constant probability there is a coordinate j such that x;[j] = 0 for all ¢t € [n]. Further, j can
be any one of the d coordinates with equal probability. However, on the other hand, if we draw n
samples from distribution Dy, then by definition of j, we have that z,[;] = 0 for any ¢ € [n]. The
main observation is that the learning algorithm is agnostic to the distribution on instances. Now
since a draw of n samples from D; has a coordinate that to the algorithm is indistinguishable from
coordinate j when n samples are drawn from D, the algorithm cannot identify which of the two

distributions the sample if from.

Hence, with constant probability both samples from D; and D, will be indistinguishable. However
note that for distribution D; we have

1/1
Fi(w) = Eonp, f(w,2) = 5 (5 = ea) lull® + max{1, Ju]*},
and for distribution D>,

Faw) = Eun, f(w.2) = 5

1 Cp, ~ 4
— en) gy I = ST + max{L, Juwll'}.

Hence notice that for any w,

. 1/1
Fy(w) — inf Fi(w) = 5 (5 = e) lwl]? + max{1, [lw]'} - 1
1/1 1/1 ~
> 2 (5 = en) lwl? = 5 (5 = en) 2

and

. 1/1 Cn, o~ Cn,
Faw) = inf Fa(w) = 5 (5 =) i 3y = 5ol + mase(1, ol '} + - =1

11 2 Cn, %2 Cn
> 55— o) oy I? = ShlilP + 5
c ~ c
>_" 2,
2 —5 Wbl + 5

Now as mentioned before, they key observation is that with constant probability we get a sample
using which we cant distinguish between whether we got samples from D; or from D5. Hence in this
case, if we want to obtain a good suboptimality, we need to pick a common solution w for which
both Fy (w) — inf,, F(w), and F5(w) — inf,, F>(w) are small. However, note that if we want a w
for which Fy(w) — inf,, F5(w) < ¢, /4, then it must be the case that

Cn Cn| <12 Cn

s N -n

2> Pl + 2
and hence, it must be the case that, \w[}]\ > % However, for such a w from the above we clearly

have that 11 11)
—i > (= —e¢, -2>7(77W)>7

Fy(w) —inf Fi(w) > (5 = e) wlIP 2 7 (5 —n) 2 5

(as long as ¢,, = o(1)). Thus we can conclude that no learning algorithm can attain a rate better than
cn /4. O

42

E.3 Proof of Theorem 5

We prove part-(a) and part-(b) separately below. The following proof of Theorem 5-(a) is similar to
the proof of Theorem 2 given in Appendix B.2.

Proof of Theorem 5-(a). In the following proof, we will assume that n is large so that nc? > 200
and that d > In(10)(1 — ¢,,) ™™ + 1.

Assume, for the sake of contradiction, that there exists a regularizer R : R¢ — R such that for any
distribution D € Z.. the expected suboptimality gap for the RERM solution is at most £ /10. Then, by
Markov’s inequality, with probability at least 0.9 over the choice of sample set .S, the suboptimality
gap is at most e. We will show that € must be greater than ¢2 /3200 for some distribution in the class
9., hence proving the desired claim.

We first define additional notation. Set § = ¢,,/10 and define € := ¢/§. For the regularization
function R(-), define the points w} for j € [d] such that

wi € argmin R(w). (61)

wst ||lw—e;||2<E

and define the index j* € [d] such that j* € argmax;cy R(w]). We are now ready to prove the
desired claim.

Consider the data distribution D; := D(6, c,, e;j~) (see Definition 3) and suppose that the dataset
S = {z;}]_, is sampled i.i.d. from D;. The population loss F'(w) corresponding to D; is given by

5
F(w) = Eup,[f(w:2)] = 5w — ¢+ |* + max{1, "}

Clearly, F'(w) is convex in w and thus the distribution D; € &,.. Furthermore, e;+ is the unique
minimizer of F(-), and any e-suboptimal minimizer w’ for F'(-) must satisfy

2e 1
< =28< -,
T
To see the above, note that if w’ is an e-suboptimal minimizer of F'(w), then F(w) < F(e;-) +¢€ =
1 + e. However, we also have that F/(w') > d|jw — e;~ % 1 1. Taking the two inequalities together,
and using the fact that £ < 1/10, we get the desired bound on ||w — e;«|.

(62)

[w’ — e

Next, define the event £ such that the following hold:
(a) For the coordinate j*, we have) __ ¢ z[j*] < n(c, + 20).

(b) There exists j such that j # j* and z[j] = 0 forall z € S.

(¢) RERM (with regularization R(-)) using the dataset S returns an e-suboptimal solution for
the test loss F'(w).

Since z[j*] ~ B(cp, + §), Hoeffding’s inequality (Lemma 1) implies that the event (a) above occurs
with probability at least 0.8 for n > 2/6% = 200/c2. Furthermore, Lemma 2 gives us that the
event (b) above occurs with probability at least 0.9 for d > In(10)(1 — ¢,,) ™. Finally, the assumed
performance guarantee for RERM with regularization R(-) implies that the event (c) above occurs
with probability at least 0.9. Thus, the event ' occurs with probability at least 0.6. In the following,
we condition on the occurrence of the event E.

Consider the point w;"f, defined in (61) corresponding to the coordinate 3 (that occurs in event £). By

definition, we have that ||in - e;||2 < &, and thus

1
lws —ej+]1* > Slles = ej- | = w3 — &5
4

where the first line above follows from the identity that (a + b)? < 2a? + 2b? for any a,b > 0, and
the second line holds because j # j* and because £ < 1/10. As a consequence of the above bound

43

and the condition in (62), we get that the point wj*_‘ is not an e-suboptimal point for the population

loss F'(-), and thus would not be the solution of the RERM algorithm (as the RERM solution is
e-suboptimal w.r.t F'(w)). Since, any RERM must satisfy condition (62), we have that

ﬁmp+3mp>_Hme(@mm+Rm»

~

> min F(w)+ min
w: ||w e; *H <é w: ||wfej* 2§§
(i) Cn, 4
> i _n *
> min zgg(5 [lw) + R(w}.)

w: ||w—e7*

Y

Cn 2 *
n o, (F5 el) + Ry

w: ||w—ej*

:—%L5+1+R@m)
@ ¢,

> -2 414 R(w]) (63)

where F(w) := L3 | f(w; z;) denotes the empirical loss on the dataset S, the inequality (i)

follows by ignoring non-negative terms in the empirical loss ﬁ(w), and the inequality (47) is due to
the fact that £ < 1/10. For the left hand side, we note that

-~ * 1 * 71 *
Fut) = 5 30wt —) @l — 2w — 502 + max(L, o}
(z, a)GS
(@) Cr ~
SEros 3 e - e 0l - e —)P A+
(a)€es
@ o 1 2 _ Cn 2
< 168+ o Yo e —ep) oz’ - 5 [l(e5 —¢;+)
(z,0)€S
@) 1 2
< 165+ (o +20) - fc” ¥, (64)
where the inequality (%) above holds because HwA — &5 < € (by definition) and because [|e;|| = 1.

The inequality in (i) follows from the fact that (1 +a)? <1+ 15a for a < 1. Finally, the inequality
(iii) is due to the fact that z[j] = 0 for all (z,a) € S and because P wayes] < nlep +20)
due to the conditioning on the event E.

Combining the bounds in (63) and (64), plugging in § = ¢, /10, and rearranging the terms, we get
that

~_ Cn . Cn

16 > 20 + R(wj.) — R(wA) > — 50"

where the second inequality above holds because j* € argmax;cq R(wj) (by definition). Since,
€ = /4, we conclude that

2

C. C
>5.i> n_
©= 97320 = 3200

The above suggests that for data distribution Dl, RERM algorithm with the regularization function
R(w) will suffer an excess risk of at least 2(c2) (with probability at least 0.9). Finally note that
R(w) could be any arbitrary function in the above proof, and thus we have the desired claim for any
regularization function R(w). O

We now prove Theorem 5-(b). In the following, we give convergence guarantee for SGD algorithm
given in (6) when run with step size = 1/204/n < 1/100 using the dataset S = {z;}?_, drawn

44

i.i.d. from a distribution D. We further assume that assume that the initial point w; = 0, and thus
||lw1|| < 2.5. Note that having initial weights to be bounded is typical when learning with non-convex
losses, for eg. in deep learning.

Proof of Theorem 5-(b). We consider the two cases, when D € 2, and when D ¢ 2., separately
below:

Case 1: When D € 2. . In this case, we note the population loss F(w) := E,.p[f(w;z)] is
convex in w by the definition of the set Z, in (8). Further, since n = 1/20y/n < 1/100, Lemma 12
and Lemma 13 imply that f is 70-Lipschitz. Finally, due to Lemma 11, the initial point w; = 0

satisfies ||w; — w*|| < 2.5. Thus, we satisfy both Assumption I and Assumption II in (2) and (3)

respectively, and an application of Theorem 1 implies that the point @5“P enjoys the performance

guarantee

E[F(@5°P) — w* | E] < o(%).

Case 2: When D ¢ Z.. In order to prove the performance guarantee of SGD algorithm in this
case, we split up the loss function f(w; z) into convex and non-convex parts g and g, defined as:

1 ~
g(w;2) = S ll(w = @) ©al* + max{L, Jw]"} and Glw;2) = —cnflw - af”,
Further, we define the functions G/(w) and G (w) to denote their respective population counterparts,
ie. G(w) = E,up[g(w; 2)] and G(w) = E,p[g(w; 2)]. Clearly,
F(w) = Esnp[f (w3 2)] = G(w) + Glw). (65)

Let w* be a minimizer of F'(w; D). By Lemma 11, we have ||w*|| < 1. The folltowing chain of
arguments follows along the lines of proof of SGD in Case 1 above (see the proof of Theorem 8 on
page 14).

Let the sequence of iterates generated by SGD algorithm be given by {wt}thl. We start by observing
that for any ¢t > 0,

wepr — w5 = [lwerr — we + we — w3
= lwer1 — wells + 1wy — w* |5 + 2(wer1 — we, we — w*)
= [[=0V fu(wy; Zt)H; + [Jwe — w*||§ + 2(—=nV fu(we; 2¢), we —w™),

where the last line follows from plugging in the update step w1 = w; — NV fo, (wy; 2¢). Rearranging
the terms in the above, we get that

| 2, 1 " |2
(Vf(we; 2e), wp —w*) < §\|Vf(wt;zt)||2 + %(Hwt —w*[|3 = [[wepr — w*3)

1 * *
< 24500 + o (o = wlly = s = w'lz), (66)
where the second inequality in the above follows from the bound on the Lipschitz constant of the

function f when the iterates stay bounded in a ball of radius 2.5 around 0 (see Lemma 13). We split
the left hand side as:

(Vf(wy; ze),we — w*) = (Vg(we; 2¢), wy — w*) + (Vg(wy; 2¢), we — w™).
This implies that

* 1 * * -~ *
(Vg(we; 2¢), wy —w™) < 2450m + %(Hwt -—w Hg = [lwir —w Hg) + (Vg(we; 2e), w* — wy).

Taking expectation on both the sides with respect to the data sample z;, while conditioning on the
point w; and the occurrence of the event E, we get

1 ~
(VG(wi), wy —w*) < 2450n + o Efllwe — w3 = [[wegr — w*[l3] + (VG(wy), w* — wy).

45

Next, note that the function G(w) is convex (by definition). This implies that G(w*) > G(w;) —
(VG(wy), ws — w*), plugging which in the above relation gives us

1 ~
G(wy) — G(w*) < 2450n + o Ellwe — w* |3 — lwerr — w*|f3] + (VG(we), w* — wy).

Telescoping the above for ¢ from 1 to n, we get that

n 1 n .
Z(G(wt) — G(w")) < 2450nn + %(le - w*||§ — |Jwpna1 — w*|| + Z (VG(wy), w* — wy)
t=1 t=1

I

* 12 n
wy —w ~ .
ler =y | S~ G o)l — el

< 2450mn +
2n t=1

where the inequality in the second line follows by ignoring negative terms, and through an application
of Cauchy -Schwarz inequality. Since, le | =0and ||w*|| <1 (due to Lemma 11), we have that
lwy —w*|| < 1. Setting n = 1/20+/n, using the bound ||w; — w*|| < 1 and by an application of

Jensen’s inequality in the left hand side, we get that the point wSGD : w; satisfies
q y g p t 1
_ 245 1
G(@pP) - G(w*) < N + - ZIIVG (we)[[[[w™ — wel]. (67)

Furthermore, by Lemma 12, since 1 = 201% < 155 and |lwy || < 2.5 (by construction), we have that

t|| S 2. . N *— < O. . i i i N
lw]] < 2.5 forall t. Thus, ||w* — w,|| < 3.5 for all t. Plugging this bound in (67), we get that
~SGD 245
G@,"7) = Glw") = 7= + 3.5 max IVG(wo)].

Next, note that from the definition of the function é(wt), we have that

HVé(wt)H = cp|lwe — af| < 3.5¢,,

and thus

G(T5CP) — G(w*) < % + 3.5¢,,. (68)
n

Finally, using the relation (65) and taking expectations on both the sides, we have that
E[F(@,97) — F(w") | E] = E[G(@,°") = G(w")] +E[G(@,°") - G(w")]

245
< 5= +3.5¢, + e EL[w* — al?]

vn
245
< — + 6cy, 69
=7 + 6c (69)
where the inequality in the second line is due to (68) and by using the definition of the function G (w)
and by ignoring negative terms. The last line holds because |w* — «| < [[w*| + [Ja| < 2. O

F Missing proofs from Section 7

F.1 «-Linearizable functions

In the following, provide the proof of the performance guarantee for SGD for a-Linearizable
functions.

Proof of Theorem 6. The proof follows along the lines of the proof of Theorem 8 on page 14. Let
{w¢}+>1 denote the sequence of iterates generated by the SGD algorithm. We note that for any
w* € argmin,, F'(w) and time ¢ > 1,

lwer1 — W*”; = w1 — we + wy — IU*HS

46

= [fwigr — w3 + [[we = w* |5 + 2(wi 1 — we, w —w*)
= =0V f (wes z)ll3 + lwe = wll3 +2(=0V f (we; 20), w, = w"),
where the last line follows from plugging in the SGD update rule that w;+1 = wy — nV f(wy; 2¢).

Rearranging the terms in the above, we get that
w1 2, 1 .2 *)2
(Vf(we; 2t), we —w™) < SV f(we; 2l + %(Hwt —w'|l; = werr — w|3)-
Taking expectation on both the sides, while conditioning on the point w;, implies that
* n 2 1 %12 * (12
(VF(wr), w — w*) < SE[[Vf(wis 20)ll] + 5~ ([we = wll; = e = w]3)

2n
<nE[IVf(we z) — VE(w)ll5] + 0l VE(wy)|3

1 * *
+%mw—wn?4wﬂ—wn®
1 * *
§n<02+L2)+%(Hwt—w I3 = llwerr —w*|3), (70)

where the inequality in the second line is given by the fact that (a — b)? < 2a? + 2b? and the last line
follows from using Assumption II (see (3)) which implies that F'(w) is L-Lipschitz in w and that
E[|Vf(w;2) — VF(w)|3] < o? for any w. Next, using the fact that F is a-Linearizable, we have
that there exists a w* € argmin,, F'(w) such that for any w,

F(w) — F(w*) < a(VF(w),w — w*). (71)

Setting w* to the one that satisfies (71), and using the above bound for w = w; with the bound in
(70), we get that for any ¢ > 1,

1 2 2
+ L) + %(Hwt — w5 = lwepr — wl3),

where F* := F(w™*). Telescoping the above for ¢ from 1 to n, we get that

n

1 * 1 * *
D> S (Flw) = F) S n(o® + L) 4 oo (lwr = w3 = llwnsa = w[5)
t=1

1 N
<nn(o? + L?) + %le —w ||§

Dividing both the sides by n, we get that

1
(F(we) = F*) < n(0® + L%) + 5wy — w5,
t=1 2nn
An application of Jensen’s inequality on the left hand side, implies that for the point @S¢ :=
% >, wy, we have that

1 . . 1 2
aE[F(WSGD)—F] S77(‘72+L2)‘|'21Tn||wl — w3
1

Setting n = G

and using the fact that ||w; — w*||, < B in the above, we get that

E[F(@5°P) — F7]

n

(6%
< 2 L2 32
<7 (o0 + L* + B?),
which is the desired claim. Dependence on the problem specific constants (o, L and B) in the
above bound can be improved further with a different choice of the step size 7; getting the optimal
dependence on these constants, however, is not the focus of this work.

47

Input Hidden Ouput
layer layer layer

Figure 2: Two layer diagonal neural network. The weights are given by w; € R? and wy € R? for
the first layer and the second layer respectively. The green nodes denote input nodes with linear
activation function and red node denote hidden units with ReLU activation function.

F.2 Proof of Theorem 7

Let the input X' € {0,1}* and the label) € [—1, 1]. Consider a two layer neural network with ReLU
activation and weights given by w = (w1, w,) where w; € R? denotes the weights of the first layer
and wo € R denotes the weights of the second layer, as shown in Figure 2. When given the input x,
the output of the network with weights (w1, ws) is computed as

h(w; z) = ReLU(wy ReLU(w; ® z)).

Here, the first layer of the neural network has sparse connections, i.e. each input node connects to
only one hidden node. Such networks are denoted as diagonal two layer neural networks. We assume
that the neural network is trained using absolute loss function. Specifically, the instantaneous loss on
a sample z = (x,y) is given by

f(w;2) = |y — h(w;z)| = |y — ReLU(w, ReLU(w; ® x))]. (72)

Since f(wj;2) is not smooth, for any weights w = (wy, ws) and sample z = (z,y), we define the
gradient of f(w;z) as

Voo, L(w; 2)[i] = —sign{y — h(w;)} - 1{wy ReLU(w; ®) > 0} - (wa; - L{wy ;- 2; > 0} - ;)
and

Vo, l(w; 2)[i] = — sign{y — h(w;z)} - 1{wg ReLU(w; ® x) > 0} - (ReLU(wy ; - z;)), (73)
for i € [d]. We next show that the population loss F(w) := E,.p[f(w; 2)] is 1/2-Linearizable.

Lemma 14. Let D be defined such that x and y are independent random variables with distributions
& ~ Uniform({0,1}%) and y ~ B(1/4).
Then, the population loss F(w) := E.p[f(w; z)] is 1/2-Linearizable.
Proof. The population loss F'(w) is given by:
F(w) = Eay[ly — h(w;)|},

where h(w; r) = ReLU(wy ReLU(w; ® x)). Using the fact thaty € {—1,1},and Pr(y = 1) = 1/4
and is independent of x, the above can be written as:

3 1
F(w)=E, Z|h(w,ac)| + Z|1 — h(w; z)||.

48

It is easy to verify that F/(w) is minimized when h(w;z) = 0 for every z € {0, 1}%, which occurs at
the point w = 0. Furthermore, F'(0) = 1/4. Next, note that for any w, and sample z = (z, y),

(w, Vo [(w; 2)) = (w1, Ve, f(w; 2)) + (wa, Vi, f(w; 2))
0 <

=1
d

= — Zw“ - sign{y — h(w;x)} - 1{wy ReLU(w; ®) > 0} - (wa; - L{wy ;- x; > 0} - a;)

— ng,d - sign{y — h(w;x)} - 1{w, ReLU(w; ®) > 0} - (ReLU(wy ; - 7;))

= —sign{y — h(w;2)} - 1{wy ReLU(w; ® 2) > 0} - (wy ReLU(w; © z))
— sign{y — h(w;z)} - 1{wy ReLU(w; ® x) > 0} - (wy ReLU(w; ® z))
= —2sign{y — h(w;z)} ReLU(wy ReLU(w; ® z))
= —2sign{y — h(w;2)} h(w; z)
= 2|y — h(w; z)| = 2sign{y — h(w; z)}y

where the equality (7) follows from using the definition of V,,, f(w; z) and V,,, f(w; z) from (73).
Taking expectations on both the sides with respect to z, we get that

(w, Vo F(w)) = 2B, y[ly — h(w; 2)]] — 2B,y [sign{y — h(w;z)}y]
=2F(w) — 2E, y[sign{y — h(w; z)}y]
> 2F(w) — 2B [|yl]
= 2(F(w) — F(0)),
] =

where the last line follows by observing that E[|y|
the above implies that

zyllyl — h(0;2)] = F(0). Defining w* := 0,

F(w) — F(w*) < =(w —w*, V,F(w)),

N | =

thus showing that F'(w) is 1/2-Linearizable. O

Proof of Theorem 7. Consider the distribution D over the instance space Z = {0,1}% x {0,1}
where

z ~ Uniform({0,1}%), and y ~ B(1/4). (74)
We now prove the two parts separately below:

(a) In the following, we show that SGD algorithm, run with an additional projection on the unit
norm ball after every update, learns at a rate of O(1/4/n). In particular, we use the following
update step for ¢ € [n],

WP T, (0 — 0¥ (s)

where the initial point w; is chosen by first sampling w} ~ N(0, ;) and then setting wy =
w4 /||w ||, and the projection operation IT is given by

w if lw—w| <1
le(w):{ 1

w1 + =g (w —wi) otherwise.

After taklng n steps, the point returned by the SGD algorithm is given by @wSCP :=

Et 1wt P /n.

First note that, for the distribution given in (74), Lemma 14 implies that the population loss
F(w) is 1/2-Liearizable w.r.t. the global minima w* = 0. Next, note that for any point w and
data sample z,

IV (ws)7 = 1V [(w3 2) |+ [Vo f (w5 2) |2

49

IS9

d
Z wa,j - 5)° + Z(ReLU(ij -x5))?

=1 j=1
d d
<D whi+ D wl
j=1 j=1
2
= [Jw]

where the inequality in the second line follows by plugging in the definition of V,,, f(w; z) and
V w, f(w; 2), and by upper bounding the respective indicators by 1. The inequality in the third
line above holds because ReLU (k) < |h| for any h € R, and by using the fact that z; € {0,1}
for j € [d]. Since, the iterates produced by SGD algorithm satisfy [|w?%P|| < 1 due to the
projection step, the above bound implies that ||V f(wP; 2)|| < 1 for any ¢ > 0, and thus
IVF(wiP)| < 1.

The above bounds imply that Assumption II (in (3)) holds on the iterates generated by the SGD
algorithm with max{B, o, L} < 2. Furthermore, the population loss F'(w) is 1/2-Linearizable.
Thus, repeating the steps from the proof of Theorem 6 on page 46, and using the fact that
IITL,, (w) — w*|| < ||w — w*|| for w* = 0 to account for the additional projection step, we get
that the point wSGD returned by the SGD algorithm enjoys the performance guarantee

F(@5%P) — F* < o(%).

In the following, we will show that for d > log(10)2™ + 1, with probability at least 0.9 over
the choice of S ~ D™, there exists an ERM solution for which

F(wERM) — wiél}gd F(w) Z Q(l)

Suppose that the dataset S = {(x;,y;)},—, is sampled i.i.d. from the distribution D given in
(74). A slight modification of Lemma 6 implies that for n < log,(d/log(10)), with probability

at least 0.9, there exists a coordinate j such that x; []] = y; for all i € [n]. In the following,
we condition on the occurrence of such a coordinate j. Clearly, the empirical loss at the point
W = (ese7) is:
3753
F(®) = |y; — ReLU(esReLU(e5 @)| = > _|yi — w:[j]| = 0,
i=1 i=1
where the last equality follows the fact that z;[j] = y; for all i € [n]. Since F (w) > 0 for any

w, we get that the point @ is an ERM solution. Next, we note that the population loss at the
point @ satisfies

F(@) — min F(w) 2 F(@) — 7
(#4) 1
= E,y Hy — ReLU(e5ReLU(e; © x))H ~1

~ 1 (e) 1
Esylly — 2[J]l])

where the equality (%) follows by observing that min,, F' (w) = 1/4 (see the proof of Lemma 14
for details), the equality (i) holds for @ = (e5, e;) and (i12) follows by using the fact that

y ~ B(1/4) and z[j] ~ B(1/2) and that z and y are sampled independent to each other. Thus,
there exists an ERM solution wgrym = @ for which the excess risk:

F(wgrm) — muijn F(w) = -.

The desired claim follows by observing that the coordinate 3 above occurs with probability at
least 0.9 over the choice of S ~ D".

O

50

F.3 Expressing f(4) and f(p) using neural networks

In this section, we show that the loss functions f(4) and f(p) can be represented using restricted
neural networks (where some of the weights are fixed to be constant and thus not trained) with
poly(d) hidden units. We first provide neural network constructions that in addition to ReLU, use
square function o(a) = a? and square root function &(a) = \/a as activation functions. We then
give a general representation result in Lemma 15 which implies that the activations o and & can be
approximated both in value and in gradients simultaneously using poly(d) number of ReLU units.
This suggests that the functions f(4) and f) can be represented using restricted RELU networks of
poly(d) size.

Note that in our constructions, the NN approximates the corresponding functionst in both value and
in terms of the gradient. Thus, running gradient based optimization algorithms on the corresponding
NN representation will produce similar solutions as running the same algorithm on the actual function
that it is approximating.

Proposition 3. Function f 4 in Equation (A) can be represented as a restricted diagonal neural
network with square and square root activation functions with O(d) units and constant depth.

Proof. In the following, we will assume that before passing to the neural network, each data sample
z = (z,,y) is preprocessed to get the features 7 defined as 7 := (z, —a ®)T € R??. The vector
Z is given as the input to the neural network.

We construct a three layer neural network with input Z € R2, and weight matrices W € R?3*2d,
Wy € R23%d and W3 € R¥*! for the first layer, the second layer and the third layer respectively.
The activation function after the ith layer is given by o; : R — R. The neural network consists of d
trainable parameters, given by w € R?, and is denoted by the function h(w;Z) : R? x R?¢ — R. In
the following, we describe the corresponding weight matrices and activation functions for each layer
of the network:

e Layer 1: Input: 7 € R??. The weight matrix W, : R24*2¢ i5 given by
wlj] if1<i=35<d
Wili, j]:== ¢ 1 ifd<i=j<2d.
0 otherwise

The activation function o is given by o1(a) = a. Let hy(w; Z) := o1(ZW;) denote the
output of this layer. We thus have that hy (w;2) = (w ® z, —a © z)7.

e Layer 2: Input: h; (w;) € R??. The weight matrix W, : R??*4 is given by

1 ifi—je{0,d}
0 otherwise

Wi, j] -= {

The activation function o3 is given by 02 (a) = a?. Let ho(w;) := 02 (h1(Z, w)W>) denote
the output of this layer. We thus have that hy (w; Z)[j] = (w[j] © z[j] — a[j] ® z[5])* for
any j € [d].

e Layer 2: Input: hy(w;Z) € R% The weight matrix W3 : R4*! is given by the vector
1= (1,...,1)7.

The activation function o5 is given by o2(a) = /a. Let hz(w;) = o3(ha(w; T)Ws)
denote the output of this layer. We thus have that h3(w; T)[j] = |lw ©® z — a © ||
Thus, the output of the neural network is
h(w; T) = hg(w; T)
= o3(02(01(@W1)W2)Ws) = [[(w — o) © 2.

Except for the first d diagonal elements of W7, all the other weights of the network are kept fixed
during training. Thus, the above construction represents a restricted neural network with trainable

51

parameters given by w. Also note that in this first layer, any input node connects with a single node
in the second layer. Such networks are known as diagonal neural networks [Gunasekar et al., 2018b].

We assume that the network is trained using linear loss function, i.e. for the prediction h(w; Z) for
data point (Z, y), the loss is given by

Lw;z) =y - h(w;7) = y|(w —a) ©z, (75)

Note that the above expression exactly represents f(4y(w; z). This suggests that learning with the
loss function f(4) is equivalent to learning with the neural network % (defined above with trainable
parameter given by w) with linear loss. Furthermore, the network h has a constant depth, and O(d)
units, proving the desired claim.

We next show how to express the loss function f) using a neural network.

Proposition 4. Function f(p) in Equation (B) can be represented as a restricted diagonal neural
network with square and square root activation functions with O(d) units and constant depth.

Proof of Proposition 4 . In the following, we will assume that before passing to the neural network,
each data sample z = (z, a) is preprocessed to get the features 7 := (z, —a ®x, 14, —a, 14,14)7 €
R, The vector T is given as the input to the neural network.

We construct a four layer neural neural network with input z € R%? and weight matrices W, €
ROdx6d 17, ¢ ROX3d W, € R34%2 1/, € R?*! for the four layers respectively. The activation
function after the ith layer is given by o; : R +— R. The neural network consists of d trainable
parameters, given by w € R, and is denoted by the function h(w;7) : R? x R® + R. In the
following, we describe the corresponding weight matrices and activation functions for each layer of
the network:

e Layer 1: Input: 7 € R*?. The weight matrix W, : R%*6¢ i5 given by

wlj] ifi=jandj—ad <dfora € {0,2,4}
Wili,j] =<1 ifi=jandj—ad <dfora € {1,3,5}.
0 otherwise

The activation function o is given by o1(a) = a. Let hy(w; Z) := o1 (ZW7) denote the
output of this layer. We thus have that hy (w;Z) = (w ® z, —a ® 2, w, —a, w, 14)7.

e Layer 2: Input: h;(w; %) € R5. The weight matrix W5 : R89*34 is given by
ifi—je{0,d}andj <d
ifi—je{d2dandd < j<2d

ifi=j+3dand 2d < j
otherwise

Wl[i’.ﬂ =

O~ =

The activation function o5 is given by 0 (a) = a?. Let ho(w; T) := 02 (hy (Z,w)W>) denote
the output of this layer. We thus have that hs(w; 7)[j] = (w[j] ® z[j] — a[j] ® z[j])? for
any j € [d], ho(w; 7)[j] = (wlj] — a[j])” forany d < j < 2d and hy(w; T)[j] = (w]j])*
for 2d < j < 3d.

e Layer 3: Input: ho(w; 7) € R3?. The weight matrix W5 : R3?*2 is given by

3 ifj=land1<i<d
-2 ifj=landd+1<i<2d
1 ifj=2and2d +1<i<3d

W3[Z.v.ﬂ =

For the first node in the output of this layer, we use the activation function os(a) = v/a
and for the second node, we use the activation function o3(a) = max{1,a®}. Let
hs(w;T) = o3(he(w;T)W3) denote the output of this layer. We thus have that

ha(w; T)[j] = ll(w — @) @ 2| = G |[(w — a) © 2|, max{1, [[w]*}).

52

e Layer 4: Input: h3(w;7) € R%. The weight matrix Wy : R?*! is given by Wy = (1,1),
and the activation function oy is given by o4(a) = a. Let hy(w;T) := o3(ha(w;T)W3)
denote the output of this layer. We thus have that ha(w; 7)[j] = (v —a)® P —
% (w -) © a]? + max{L, Ju]).

Thus, the output of the neural network is given by
h(w; T) = ha(w; T)
= 0'4(0'3(0'2(0'1 (EWl)Wg)Wg)W4)

1 2 Cn 2
=3lw-a)o|” - Fl(w-a) Oz + max{1, [|w[|*}.

In the above construction, the first layer can be thought of as a convolution with filter weights given by
diag(w, 14) and stride 2d. While training the neural network, we keep all the weights of the network
fixed except for the ones that take values from w (in the weight W7). Thus, the above construction
represents a restricted CNN with trainable parameters given by w.

Furthermore, for the prediction h(wj; Z) for data point Z, we treat the output of the neural network as
the loss, which is given by

((w; F) = h(w; F) + max{1, w]|*}

1 2 Cp 2 4
= 5ll(w—a) oz - F(w - a) © z]|” + max{1, [[w]"}.

Note that the above expression exactly represents f(z(w; z). This suggests that learning with the
loss function f) is equivalent to learning with the neural network / (defined above with trainable
parameter given by w). Furthermore, the network & has a constant depth, and O(d) units, proving the
desired claim.

We next provide a general representation result which implies that the activation functions o (a) = a?

(square function) and 5 (a) = +/a (square root function), used in the constructions above, can be
approximated both in value and in gradients simultaneously using poly(d) number of ReLU units.

Lemma 15. Let f : [a,b] — R be an L-Lipschitz and a-smooth function. Then for any € > 0, there
is a function h : [a,b] — R that can be written as a linear combination h of (MW +1
ReLUs with coefficients bounded by 2L such that for all © € [a, b], we have | f(x) — h(z)| < ¢, and

if h is differentiable at x, then | f'(x) — ' (x)| < e.

Proof. Consider dividing up the interval [a, b] into equal n equal sized intervals of length § = I’_T‘L,

forn = [M] Define a; = a + id fori = 0,1,...,n. Let h be a piecewise linear
functlon that mterpolates f onthe n+ 1 endpoints of the intervals. For any such interval [a;, a;11], by
the mean value theorem, the slope of on the interval is equal to f'(x;) for some x; € (a;, a;+1), and
hence is bounded by L since f is L-Lipschitz. Furthermore, by the L-Lipschitzness and a-smoothness
of f, for any x € (a;,a;+1), we have

|f(z) —h(z)| < 0L <e
and
| (z) = 1 (@)| = [f'(x) = W' (z)| = | (x) = f'(zi)] < b < e

Now, by Lemma 16 we can represent h as a linear combination of n + 1 ReLUs with coefficients
bounded by 2L. O

Lemma 16. Any piecewise linear function f : R — R with K segments can be written as a linear
combination of K 4 2 ReLUs with coefficients bounded by twice the maximum slope of any segment

of f.

Proof. A piecewise linear function f : R — R is fully determined by the endpoints a; < as < --- <
ar for some positive integer K which define the segments of f, the value f(a1), and the slopes

53

mo,m1,...,mg € R, such that the slope of f on the segment (a;, a;4+1) is m;, where we define
ap := —oo and ax 41 = +oo for convenience. Specifically, we can write f as the following:

mo(x — ay) ifx <ay
. ‘
> i:11 mi(aip1 — a;) + me(x —ag) ifx € [ag, arq1)

f(x) =f(a1)+{

Now define o(z) = max{z, 0} to be the ReLU function, and consider the function % defined as

K
h(z) = f(a1) — moo(ay — x) + moo(z —ay) + Z(mi —mi_1)o(x — a;).
i=1
Since this is a linear combination of ReL.Us, it is a piecewise linear function. By direct calculation,

one can check that h(a;) = f(ay), the endpoints of the segments of & are ay,as, ..., ax, and the
slopes of the segments are mg, m1, ..., mg. Hence, the function f = h. O

54

	Preliminaries
	Additional notation
	Basic algorithmic results
	Basic probability results

	Missing proofs from Section 3
	Supporting technical results
	Proof of Theorem 2
	Proof of Corollary 1

	Missing proofs from Section 4
	Modification of amir2020gd lower bound
	Lower bound of T / n
	Lower bound for small step size (< 1/64 n5/4)
	Proof of Theorem 3

	Missing proofs from Section 5
	Proof of Proposition 1
	Proof of Theorem 4

	Missing proofs from Section 6
	Supporting technical results
	Proof of Proposition 2
	Proof of Theorem 5

	Missing proofs from Section 7
	-Linearizable functions
	Proof of Theorem 7
	Expressing f(A) and f(B) using neural networks

