
A Proofs421

A.1 Preliminaries422

In the following, x ∈ Ω◦ so that ρ(x) > 0, and we will assume for simplicity that the distribution ρ423

is continuous at x.424

For the proof of our results, we will often exploit the following integral relation, valid for β > 0,425

1

Γ(β)

∫ +∞

0

tβ−1e−t z dt = z−β . (36)

In addition, we define426

ψ(x, t) :=

∫
ρ(x+ y)e

− t

||y||d ddy, (37)

which will play a central role. We note that ψ(x, 0) = 1, and that t 7→ ψ(x, t) is a continuous and427

strictly decreasing function of t. It is even infinitely differentiable at any t > 0, but not necessarily at428

t = 0. In fact, for a fixed x, controlling the behavior of 1− ψ(x, t) when t→ 0 will be essential to429

obtain our results.430

We show in Fig. 1 an example of the Hilbert kernel regression estimator in one dimension. Both431

the bias and the variance of the estimator can be visually seen, as well as the extrapolation behavior432

outside the data domain. Note that in higher dimensions, the sharp peaks would have rounded tops.433
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Figure 1: An example is shown of the Hilbert kernel regression estimator in one dimension, both
within and outside the input data domain. A total of 50 samples xi were chosen uniformly distributed
in the interval [0.25 0.75] and yi = sin(2πxi) + ni with the noise ni chosen i.i.d. Gaussian
distributed ∼ N(0, 0.1). The sample points are circled, and the function sin(2πx) is shown with a
dashed line within the data domain. The solid line is the Hilbert kernel regression estimator. Note the
interpolation behavior within the data domain and the extrapolation behavior outside the data domain.
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A.2 Moments of the weights: large n behavior434

In this section, we provide a complete proof of Theorem 3.1. Several other theorems will use the very435

same method of proof and some basic steps will not be repeated in their proof.436

Using Eq. (36) for β > 0, we can express powers of the weight function as437

wβ0 (x) =
1

||x− x0||βd
1

Γ(β)

∫ +∞

0

tβ−1e−t ||x−x0||−d−t
∑n
i=1 ||x−xi||

−d
dt. (38)

By taking the expected value over the n+ 1 independent random variables Xi, we obtain438

E
[
wβ0 (x)

]
=

1

Γ(β)

∫ +∞

0

tβ−1ψn(x, t)φβ(x, t) dt, (39)

with439

φβ(x, t) :=

∫
ρ(x+ y)

e
− t

||y||d

||y||βd
ddy, (40)

which is also a strictly decreasing function of t, continuous at any t > 0 (in fact, infinitely differen-440

tiable for t > 0).441

Note that the exchange of the integral over t and over ~x = (x0, x1, ..., xn) used to obtain Eq. (39)442

is justified by the Fubini theorem, by first noting that the function ~x 7→ wβ0 (x)
∏n
i=0 ρ(xi) is in443

L1(Rd), since 0 ≤ wβ0 (x) ≤ 1, and since ρ is obviously in L1(Rd). Moreover, the function444

t 7→ tβ−1ψn(x, t)φβ(x, t) > 0 is also in L1(R). Indeed, we will show below that it decays fast445

enough when t→ +∞ (see Eqs. (42-50)), ensuring the convergence of its integral at +∞, and that it446

is bounded (and continuous) near t = 0 (see Eqs. (63-68)), ensuring that this function is integrable at447

t = 0.448

For β = 1, φ1 = −∂tψ, and we obtain E
[
w0(x)

]
= 1

n+1 , as expected. In the following, we first449

focus on the case β > 1, before addressing the cases 0 < β < 1 and β < 0 at the very end of this450

section.451

We now introduce t1 and t2 (to be further constrained later) such that 0 < t1 < t2. We then express452

the integral of Eq. (39) as the sum of corresponding integrals I1 + I12 + I2. I1 is the integral between453

0 and t1, I12 the integral between t1 and t2, and I2 the integral between t2 and +∞. Thus, we have454

I1 ≤ E
[
wβ0 (x)

]
≤ I1 + I12 + I2, (41)

provided these integral exists, which we will show below, by providing upper bounds for I2 and I12,455

and tight lower and upper bound for the leading term I1.456

Bound for I2457

For any R ≥ 1, we can write the integral defining ψ(x, t)458

ψ(x, t) =

∫
||y||≤R

+

∫
||y||≥R

(42)

≤ e−
t

Rd +

∫
||y||≥R

ρ(x+ y)
||y||2

R2
ddy, (43)

≤ e−
t

Rd +
Cx
R2

, (44)

with Cx = σ2
ρ+ ||x−µρ||2 depending on the mean µρ and variance σ2

ρ of the distribution ρ. Similarly,459

for φβ(x, t), we obtain the bound460

φβ(x, t) ≤ 1

Rβd
e−

t

Rd +
Cx

R2+βd
, (45)

valid for t ≥ max(1, β) and R ≤ rt, where rt = (t/β)1/d ≥ 1 is the location of the maximum of461

the function r 7→ e
− t
rd

rβd
.462
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We now set R = t
s
d , with 0 < s < 1, and take T ′2 ≥ max(1, β, β1/(1−s)) (so that 1 ≤ R ≤ rt) is463

large enough such that the following conditions are satisfied for t ≥ t2 ≥ T ′2,464

e−
t

Rd = e−t
1−s

≤ Cx

t
2s
d

, (46)

1

Rβd
e−

t

Rd =
1

tβs
e−t

1−s
≤ Cx

t
2s
d +2βs

. (47)

Hence, for t ≥ t2 ≥ T ′2, we obtain465

ψ(x, t) ≤ 2Cx

t
2s
d

, (48)

φβ(x, t) ≤ 2Cx

t
2s
d +2βs

. (49)

In addition, we also impose t2 ≥ T ′′2 = (4Cx)d/(2s), so that 2Cx

t
2s
d
≤ 1

2 , for any t ≥ T2 =466

max(T ′2, T
′′
2 ). Finally, exploiting the resulting bounds for ψ(x, t) and φβ(x, t) for s = 1/2, we467

obtain the convergence of I2 (which, along with the bounds for I1 and I12 below, justifies our use of468

Fubini theorem to obtain Eq. (39)) and the exact bound469

I2 =
1

Γ(β)

∫ +∞

t2

tβ−1ψn(x, t)φβ(x, t) dt ≤ d

Γ(β)
× 1

2n+1(n+ 1)
, (50)

for any given t2 ≥ T2.470

Bound for I12471

Again, exploiting the fact that ψ(x, t) and φβ(x, t) are strictly decreasing functions of t, we obtain472

I12 ≤
φβ(x, t1)tβ2

Γ(β)
× ψn(x, t1), (51)

where we note that ψ(x, t1) < 1, for any t1 > 0.473

Bound for I1474

We first want to obtain bounds for 1 − ψ(x, t), where 0 ≤ t ≤ t1, with t1 > 0 to be constrained475

below. In addition, exploiting the continuity of ρ at x and the fact that ρ(x) > 0, we introduce476

ε satisfying 0 < ε < 1/4, and define λ > 0 small enough so that the ball B(x, δ) ⊂ Ω◦, and477

||y|| ≤ λ =⇒ |ρ(x+ y)− ρ(x)| ≤ ερ(x). Exploiting this definition, we obtain the following lower478

and upper bounds479

1− ψ(x, t) ≥ (1− ε)ρ(x)

∫
||y||≤λ

(
1− e

− t

||y||d

)
ddy, (52)

1− ψ(x, t) ≤ (1 + ε)ρ(x)

∫
||y||≤λ

(
1− e

− t

||y||d

)
ddy (53)

+

∫
||y||≥λ

ρ(x+ y)
(

1− e−
t

λd

)
ddy, (54)

≤ (1 + ε)ρ(x)

∫
||y||≤λ

(
1− e

− t

||y||d

)
ddy +

t

λd
. (55)

The integral appearing in these bounds can be simplified by using radial coordinates:480 ∫
||y||≤λ

(
1− e

− t

||y||d

)
ddy, = Sd

∫ λ

0

(
1− e−

t

rd

)
rd−1 dr, (56)

= Vdt

∫ +∞

t

λd

1− e−u

u2
du, (57)

where Sd and Vd = Sd
d are respectively the surface and the volume of the d-dimensional unit sphere481

and we have used the change of variable u = t
rd

.482
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We note that for 0 < z ≤ 1, we have483 ∫ +∞

z

1− e−u

u2
du = − ln(z) +

∫ 1

z

1− u− e−u

u2
du+

∫ +∞

1

1− e−u

u2
du. (58)

Exploiting this result and now imposing t1 ≤ λd, we have, for any t ≤ t1484

ln

(
C−
t

)
≤

∫ +∞

t

λd

1− e−u

u2
du ≤ ln

(
C+

t

)
, (59)

ln(C−) = d ln(λ) +

∫ +∞

1

1− e−u

u2
du, (60)

ln(C+) = ln(C−) +

∫ 1

0

1− u− e−u

u2
du. (61)

Combining these bounds with Eq. (52) and Eq. (55), we have shown the existence of two x-dependent485

constants D± such that, for 0 ≤ t ≤ t1 ≤ λd, we have486

(1− ε)Vdρ(x) t ln

(
D−
t

)
≤ 1− ψ(x, t) ≤ (1 + ε)Vdρ(x) t ln

(
D+

t

)
. (62)

In addition, we will also chose t1 < D±/3, such that the two functions t ln
(
D±
t

)
are positive and487

strictly increasing for 0 ≤ t ≤ t1. t1 is also taken small enough such that the two bounds in Eq. (62)488

are always less than 1/2, for 0 ≤ t ≤ t1 (both bounds vanish when t→ 0).489

We now obtain efficient bounds for φβ(x, t), for 0 ≤ t ≤ t1. Proceeding in a similar manner as490

above, we obtain491

φβ(x, t) ≥ (1− ε)ρ(x)

∫
||y||≤λ

e
− t

||y||d

||y||βd
ddy, (63)

φβ(x, t) ≤ (1 + ε)ρ(x)

∫
||y||≤λ

e
− t

||y||d

||y||βd
ddy +

1

λβd
. (64)

Again, the integral appearing in these bounds can be rewritten as492 ∫
||y||≤λ

e
− t

||y||d

||y||βd
ddy = Sd

∫ λ

0

rd(1−β)−1e−
t

rd dr. (65)

For 0 < β < 1, the integral of Eq. (65) is finite for t = 0, ensuring the existence of φβ(x, 0) and the493

fact that t 7→ tβ−1ψ(x, t)φβ(x, t) belongs to L1(R) (hence, justifying our use of Fubini theorem for494

0 < β < 1). For β > 1, we have495 ∫
||y||≤λ

e
− t

||y||d

||y||βd
= Vd t

1−β
∫ +∞

t

λd

uβ−2e−u du. (66)

∼t→0 VdΓ(β − 1)t1−β . (67)
This integral diverges when t → 0 and the constant term λ−βd in Eq. (64) can be made as small496

as necessary (by a factor less than ε) compared to this leading integral term, for a small enough t1.497

Similarly, we can choose t1 small enough so that the integral Eq. (65) is approached by the asymptotic498

result of Eq. (67) up to a factor ε. Thus, we find that for 0 ≤ t ≤ t1, one has499

(1− 2ε)Vdρ(x)Γ(β − 1)t1−β ≤ φβ(x, t) ≤ (1 + 3ε)Vdρ(x)Γ(β − 1)t1−β . (68)

This shows that tβ−1φβ(x, t) has a smooth limit when t→ 0 so that, combined with the finite upper500

bound for I2, t 7→ tβ−1ψ(x, t)φβ(x, t) belongs to L1(R), for β > 1, and hence for all β > 0. Hence,501

the use of the Fubini theorem to derive Eq. (39) has been justified.502

Now combining the bounds for ψ(x, t) and φβ(x, t), we obtain503

I1 ≥ (1− 2ε)
1

β − 1
Vdρ(x)

∫ t1

0

(
1− (1 + ε)Vdρ(x) t ln

(
D+

t

))n
dt, (69)

I1 ≤ (1 + 3ε)
1

β − 1
Vdρ(x)

∫ t1

0

(
1− (1− ε)Vdρ(x) t ln

(
D−
t

))n
dt. (70)
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Asymptotic behavior of I1 and E
[
wβ0 (x)

]
504

We will show below that505 ∫ t1

0

(
1− E±t ln

(
D±
t

))n
dt ∼

n→+∞

1

E±n ln(n)
, (71)

where E± = (1∓ ε)Vdρ(x). For a given x, and for t1 and t2 satisfying the requirements mentioned506

above, the upper bounds for I12 (see Eq. (51)) and I2 (see Eq. (50)) appearing in Eq. (41) both507

decay exponentially with n and can hence be made arbitrarily small compared to I1 which decays as508

1/(n ln(n)).509

Finally, assuming for now the result of Eq. (71) (to be proven below), we have obtained the exact510

asymptotic result511

E
[
wβ0 (x)

]
∼

n→+∞

1

(β − 1)n ln(n)
. (72)

Proof of Eq. (71)512

We are then left to prove the result of Eq. (71). First, we will use the fact that, for 0 ≤ z ≤ z1 < 1,513

one has514

e−µz ≤ 1− z ≤ e−z, (73)
where µ = − ln(1 − z1)/z1. We can apply this result to the integral of Eq. (71), using z±1 =515

E±t1 ln(D±/t1) > 0. Note that 0 < t1 < D±/3 and hence z±1 > 0 can be made as close to 0 as516

desired, and the corresponding µ± > 1 can be made as close to 1 as desired. Thus, in order to prove517

Eq. (71), we need to prove the following equivalent518

In =

∫ t1

0

e−nEt ln(Dt ) dt ∼
n→+∞

1

En ln(n)
, (74)

for an integral of the form appearing in Eq. (74). Let us mention again that t1 has been taken small519

enough, so that the function t 7→ t ln
(
D
t

)
is positive and strictly increasing (with its maximum at520

tmax = D/e < t1), for 0 ≤ t ≤ t1.521

We now take n large enough so that ln(n)
n < t1 and E ln(n) > 1. One can then write522

In =
1

n

∫ ln(n)

0

e−Eu ln(Dnu ) du+

∫ t1

ln(n)
n

e−nEt ln(Dt ) dt = Jn +Kn, (75)

Jn ≤ 1

n

∫ 1/E

0

e−Eu ln(DEn) du+
1

n

∫ ln(n)

1/E

e
−Eu ln

(
Dn

ln(n)

)
du, (76)

≤ 1

E n ln (DEn)
+

ln(n)

DE n2 ln
(
Dn

ln(n)

) , (77)

Kn ≤
∫ +∞

ln(n)
n

e
−nEt ln

(
D
t1

)
dt ≤ 1

E n
1+E ln

(
D
t1

)
ln
(
D
t1

) . (78)

When n→ +∞, we hence find that the upper bound I+
n of In satisfies523

I+
n ∼
n→+∞

1

E n ln (DEn)
∼

n→+∞

1

E n ln (n)
. (79)

Let us now prove a similar result for a lower bound of In by considering n large enough so that524

nEt1 > 1, and by introducing δ satisfying 0 ≤ δ < 1/e:525

In =
1

nE

∫ nEt1

0

e−u ln(DEn)+u ln(u) du, (80)

≥ 1

nE

∫ δ

0

e−u ln(DEn)+δ ln(δ) du, (81)

≥ eδ ln(δ)

nE ln (DEn)

(
1− (DEn)

−δ
)

= I−n (δ). (82)
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Hence, for any 0 ≤ δ < 1/e which can be made arbitrarily small, and for n large enough, we find526

that In ≥ I−n (δ), with527

I−n (δ) ∼ eδ ln(δ)

E n ln (DEn)
∼ eδ ln(δ)

E n ln (n)
. (83)

Eq. (83) combined with the corresponding result of Eq. (79) for the upper bound I+
n finally proves528

Eq. (74), and ultimately, Eq. (72) and Theorem 3.1 for the asymptotic behavior of the moment529

E
[
wβ0 (x)

]
, for β > 1.530

Moments of order 0 < β < 1531

The integral representation Eq. (36) allows us to also explore moments of order 0 < β < 1. In that532

case κβ(x) = φβ(x, 0) <∞ is finite, with533

κβ(x) =

∫
ρ(x+ y)

||y||βd
ddy. (84)

By retracing the different steps of our proof in the case β > 1, it is straightforward to show that534

E
[
wβ0 (x)

]
∼

n→+∞

κβ(x)

Γ(β)

∫ t1

0

tβ−1e
−nVdρ(x)t ln

(
D±
t

)
dt, (85)

∼
n→+∞

κβ(x)

(Vdρ(x)n ln(n))β
, (86)

where the equivalent for the integral can be obtained by exploiting the very same method used in our535

proof of Eq. (71) above, hence proving the second part of Theorem 3.1.536

We observe that contrary to the universal result of Eq. (72) for β, the asymptotic equivalent for the537

moment of order 0 < β < 1 is non universal and explicitly depends on x and the distribution ρ.538

Moments of order β < 0539

Finally, moments of order β < 0 are unfortunately inaccessible to our methods relying on the integral540

relation Eq. (36), which imposes β > 0. We can however obtain a few rigorous results for these541

moments (see also the heuristic discussion just after Theorem 3.1).542

Indeed, for β = −1, we have543

1

w0(x)
= 1 + ‖x− x0‖d

n∑
i=1

1

‖x− xi‖d
. (87)

But since we have assumed that ρ(x) > 0, E[‖x− xi‖−d] =
∫ ρ(x+y)
||y||d ddy is infinite and moments544

of order β < −1 are definitely not defined.545

As for the moment of order −1 < β < 0, it can be easily bounded,546

E
[
wβ0 (x)

]
≤ 1 + n

∫
ρ(x+ y)||y|||β|d ddy

∫
ρ(x+ y)

||y|||β|d
ddy, (88)

and a sufficient condition for its existence is κβ(x) =
∫
ρ(x+ y)||y|||β|d ddy <∞ (the other integral,547

equal to κ|β|(x), is always finite for |β| < 1), which proves the last part of Theorem 3.1.548

Numerical distribution of the weights549

In the main text below Theorem 3.1, we presented an heuristic argument showing that the results of550

Theorem 3.1 and Theorem 3.2 (for the Lagrange function; that we prove below) were fully consistent551

with the weight W = w0(x) having a long-tailed scaling distribution,552

Pn(W ) =
1

Wn
p

(
W

Wn

)
. (89)

The scaling function p was shown to have a universal tail p(w) ∼ w−2 and the scale Wn was553

shown to obey the equation −Wn ln(Wn) = n−1. To the leading order for large n, we have554
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Wn ∼ 1
n ln(n) , and we can solve this equation recursively to find the next order approximation,555

Wn ∼ 1
n ln(n ln(n)) . In Fig .2, we present numerical simulations for the scaling distribution p of the556

variable w = W/Wn, for n = 65536, using the estimate Wn ≈ 1
n ln(n ln(n)) . We observe that p(w)557

is very well approximated by the function p̂(w) = 1
(1+w)2 , confirming our non rigorous results. The

Figure 2: We plot the results of numerical simulations for the distribution p of the scaling variable
w = W

Wn
, with Wn ≈ 1

n ln(n ln(n)) , and for n = 65536 (black line). This is compared to p̂(w) =
1

(1+w)2 (red line), which has the predicted universal tail p(w) ∼ w−2 for large w.

558

data were generated by drawing random values of rdi = ||x − xi||d using (n + 1) i.i.d. random559

variables ai uniformly distributed in [0, 1[, with the relation ri = [ai/(1− ai)]1/d, and by computing560

the resulting weight W = r−di /
∑n
j=0 r

−d
j . This corresponds to a distribution of ||x− xi|| given by561

ρ(x− xi) = 1/Vd/(1 + ||x− xi||d)2.562

A.3 Lagrange function: scaling limit563

In this section, we prove Theorem 3.2 for the scaling limit of the Lagrange function L0(x) =564

EX|x0
[w0(x)]. Exploiting again Eq. (36), the expected Lagrange function can be written as565

L0(x) = ‖x− x0‖−d
∫ +∞

0

ψn(x, t)e−t‖x−x0‖−d dt, (90)

where ψ(x, t) is again given by Eq. (37).566

For a given t1 > 0, and remembering that ψ(x, t) is a strictly decreasing function of t, with567

ψ(x, 0) = 1, we obtain568

L1 ≤ L0(x) ≤ L1 + L2, (91)

with569

L1 = ‖x− x0‖−d
∫ t1

0

ψn(x, t)e−t‖x−x0‖−d dt, (92)

L2 = e−t1‖x−x0‖−d . (93)
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For ε > 0 and a sufficiently small t1 > 0 (see section A.2), we can use the bound for ψ(x, t) obtained570

in section A.2, to obtain571

L1 ≥ (1− 2ε)
1

‖x− x0‖d

∫ t1

0

(
1− (1 + ε)Vdρ(x) t ln

(
D+

t

))n
e
− t

‖x−x0‖d dt, (94)

L1 ≤ (1 + 3ε)
1

‖x− x0‖d

∫ t1

0

(
1− (1− ε)Vdρ(x) t ln

(
D−
t

))n
e
− t

‖x−x0‖d dt. (95)

Then, proceeding exactly as in section A.2, it is straightforward to show that L1 can be bounded (up572

to factors 1 +O(ε)) by the two integrals L±1573

L±1 =
1

‖x− x0‖d

∫ t1

0

e
−nVdρ(x) t ln

(
D±
t

)
− t

‖x−x0‖d dt. (96)

Like in section A.2, we impose t1 < D±/3, such that the two functions t ln
(
D±
t

)
are positive and574

strictly increasing for 0 ≤ t ≤ t1.575

We now introduce the scaling variable z(n, x0) = Vdρ(x)‖x− x0‖dn log(n), so that576

L±1 =
1

‖x− x0‖d

∫ t1

0

e
− t

‖x−x0‖d

1+z
ln(D±/t)

ln(n)


dt =

∫ t1
‖x−x0‖d

0

e
−u

1+z
ln(D±‖x−x0‖−d/u)

ln(n)


du,

(97)
where we have used the shorthand notation z = z(n, x0).577

For a given real Z ≥ 0, we now want to study the limit of L0(x) when n→∞, ‖x− x0‖−d → +∞578

(i.e., x0 → x), and such that z(n, x0) → Z, which we will simply denote limZ L0(x). We note579

that limZ L2 = 0 (see Eq. (91) and Eq. (93)), so that we are left to show that limZ L
±
1 = 1

1+Z =580

limZ L0(x), which will prove Theorem 3.2.581

Exploiting the fact that u ln(u) > −1/e, for u > 0, we obtain582

L±1 ≥ e−
z

e ln(n)

∫ t1
‖x−x0‖d

0

e
−u

1+z
ln(D±‖x−x0‖−d)

ln(n)


du, (98)

≥ 1

1 + z
e−

z
e ln(n)

(
1− e

− t1
‖x−x0‖d )

)
, (99)

which shows that L±1 is bounded from below by a term for which the limZ is 1
1+Z .583

Anticipating that we will take the limZ and hence the limit x0 → x, we can freely assume that584

‖x− x0‖ < 1 and K = t1
‖x−x0‖d/2

> 1, so that we also have K < t1
‖x−x0‖d . We then obtain585

L±1 ≤
∫ K

0

e
−u

1+z
ln(D±‖x−x0‖−d/u)

ln(n)


du+

∫ +∞

K

e−u du, (100)

≤
∫ 1

0

e
−u

1+z
ln(D±‖x−x0‖−d)

ln(n)


du+

∫ K

1

e
−u

1+z
ln(D±‖x−x0‖−d/K)

ln(n)


du+ e−K ,(101)

≤ 1− e−1−z
ln(D±‖x−x0‖−d)

ln(n)

1 + z
ln(D±‖x−x0‖−d)

ln(n)

+
e−1−z

ln(D±‖x−x0‖−d/K)
ln(n)

1 + z
ln(D±‖x−x0‖−d/K)

ln(n)

+ e−K . (102)

For Z > 0, limZ
ln(‖x−x0‖−d)

ln(n) = limZ

ln
(
‖x−x0‖−d/2

)
ln(n) = 1, and the limZ of the upper bound in586

Eq. (102) is also 1
1+Z . For Z = 0, we have limZ z

ln(‖x−x0‖−d)
ln(n) = limZ z

ln
(
‖x−x0‖−d/2

)
ln(n) = 0, so587

that the limZ of the upper bound in Eq. (102) is 1. Finally, since limZ L2 = 0, we have shown588
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that for any real Z ≥ 0, limZ L
±
1 = limZ L0(x) = 1

1+Z , which proves Theorem 3.2. Note that the589

two bounds obtained suggest that the relative error between L0(x) and 1
1+Z for finite large n and590

large ‖x− x0‖−d with z(n, x0) remaining close to Z is of order 1/ ln(n), or equivalently, of order591

1/ ln(‖x− x0‖).592

Numerical simulations for the Lagrange function at finite n593

0.4 0.45 0.5 0.55 0.6
10

-3

10
-2

10
-1

10
0

Figure 3: A numerical simulation is shown of the expected value of the Lagrange function of the
Hilbert kernel regression estimator in one dimension for a uniform distribution like in Fig. 1. A total
of n = 400 samples xi were chosen uniformly distributed in the interval [0, 1] for 100 repeats and
the Lagrange function evaluated at x0 = 0.5 was averaged across these 100 repeats (blue curve). The
black curve shows the asymptotic form (1 + Z)−1 with Z = 2|x− x0|/Wn. Since n = 400 is not
too large, we used the implicit form for the scale Wn given by Wn ln(1/Wn) = 1/n (see main text
below Theorem 3.1) leading to W−1

n = 3232.39 (compare with 400 ln(400) = 2396.59).

A.4 The variance term594

We define the variance term V(x) as595

V(x) = E
[ n∑
i=0

w2
i (x)[yi−f(xi)]

2
]

= EX
[ n∑
i=0

w2
i (x)σ2(xi)

]
= (n+1)E

[
w2

0(x)σ2(x0)
]
. (103)

If we first assume that σ2(x) is bounded by σ2
0 , we can readily bound V(x) using Theorem 3.1 with596

β = 2:597

V(x) ≤ (n+ 1)σ2
0 E
[
w2

0(x)
]
. (104)

Hence, for any ε > 0, there exists a constant Nx,ε, such that for n ≥ Nx,ε, we obtain Theorem 3.3598

V(x) ≤ (1 + ε)
σ2

0

ln(n)
. (105)

However, one can obtain an exact asymptotic equivalent for V(x) by assuming that σ2 is continuous599

at x (with σ2(x) > 0), while relaxing the boundedness condition. Indeed, we now assume the growth600
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condition CσGrowth601 ∫
ρ(y)

σ2(y)

1 + ‖y‖2d
ddy <∞. (106)

Note that this condition can be satisfied even in the case where the mean variance
∫
ρ(y)σ2(y) ddy is602

infinite.603

Proceeding along the very same line as the proof of Theorem 3.1 in section A.2, we can write604

E
[
w2

0(x)σ2(x0)
]

=

∫ +∞

0

tψn(x, t)φ(x, t) dt, (107)

with605

φ(x, t) :=

∫
ρ(x+ y)σ2(x+ y)

e
− t

||y||d

||y||2d
ddy, (108)

which as a similar form as Eq. (40), with β = 2. The condition of Eq. (106) ensures that the integral606

defining φ(x, t) converges for all t > 0.607

The continuity of σ2 at x (and hence of ρσ2) and the fact the ρ(x)σ2(x) > 0 implies the existence608

a small enough λ > 0 such that the ball B(x, λ) ⊂ Ω◦ and ||y|| ≤ λ =⇒ |ρ(x + y)σ2(x + y) −609

ρ(x)σ2(x)| ≤ ερ(x)σ2(x), a property exploited for ρ in the proof of Theorem 3.1 (see Eq. (52) and610

the paragraph above it), and which can now be used to efficiently bound φ(x, t). In addition, using611

the method of proof of Theorem 3.1 (see Eq. (64)) also requires that
∫
||y||≥λ ρ(y) σ

2(y)
‖y‖2d d

dy < ∞,612

which is ensured by the condition CσGrowth of Eq. (106). Apart from these details, one can proceed613

strictly along the proof and Theorem 3.1, leading to the proof of Theorem 3.4:614

V(x) ∼
n→+∞

σ2(x)

ln(n)
. (109)

Note that if σ2(x) = 0, one can straightforwardly show that for any ε > 0, and for n large enough,615

one has616

V(x) ≤ ε

ln(n)
, (110)

while a more optimal estimate can be easily obtained if one specifies how σ2 vanishes at x.617

A.5 The bias term618

This section aims at proving Theorem 3.5, 3.6, and 3.7.619

Assumptions620

We first impose the following growth condition CfGrowth for f(x) := E[Y | X = x]:621 ∫
ρ(y)

f2(y)

(1 + ||y||d)2
ddy <∞, (111)

which is obviously satisfied if f is bounded. Since ρ is assumed to have a second moment, condition622

CfGrowth is also satisfied for any function satisfying |f(x)| ≤ Af ||y||d+1 for all y, such that ||y|| ≥623

Rf , for some Rf > 0. Using the Cauchy-Schwartz inequality, we find that the condition CfGrowth624

also implies that625 ∫
ρ(y)

|f(y)|
1 + ||y||d

ddy <∞. (112)

In addition, for any x ∈ Ω◦ (so that ρ(x) > 0), we assume that there exists a neighborhood of x such626

that f satisfies a local Hölder condition. In other words, there exist δx > 0, Kx > 0, and αx > 0,627

such that the ball B(0, δx) ⊂ Ω, and628

||y|| ≤ δx =⇒ |f(x+ y)− f(x)| ≤ Kx||y||αx , (113)

which defines condition CfHolder.629

Definition of the bias term and preparatory results630
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We define the bias term B(x) as631

B(x) = EX
[( n∑

i=0

wi(x)[f(xi)− f(x)]
)2]

= (n+ 1)B1(x) + n(n+ 1)B2(x), (114)

B1(x) =
1

n+ 1
EX
[ n∑
i=0

w2
i (x)[f(xi)− f(x)]2

]
, (115)

= EX
[
w2

0(x)[f(x0)− f(x)]2
]
, (116)

B2(x) =
1

n(n+ 1)
EX
[ ∑

0≤i<j≤n

wi(x)wj(x)[f(xi)− f(x)][f(xi)− f(x)]
]
, (117)

= EX
[
w0(x)w1(x)[f(x0)− f(x)][f(x1)− f(x)]

]
. (118)

Exploiting again Eq. (36) for β = 2 like we did in section A.2, we obtain632

B1(x) =

∫ +∞

0

t ψn(x, t)χ1(x, t) dt, (119)

where ψ(x, t) is again the function defined in Eq. (37), and where633

χ1(x, t) :=

∫
ρ(x+ y)e

− t

||y||d
(f(x+ y)− f(x))2

||y||2d
ddy. (120)

For any t > 0, and under condition CfGrowth, the integral defining χ1(x, t) is well defined. Moreover,634

χ1(x, t) is a strictly positive and strictly decreasing function of t > 0.635

Now, defining ui = ||x− xi||−d, i = 0, ..., n and exploiting again Eq. (36) for β = 2, we can write636

w0(x)w1(x) = u0u1

∫ ∞
0

t e−(u0+u1)t−(
∑n
i=2 ui)t dt (121)

Now taking the expectation value over the n+ 1 independent variables, we obtain637

B2(x) =

∫ +∞

0

t ψn−1(x, t)χ2
2(x, t) dt, (122)

where638

χ2(x, t) :=

∫
ρ(x+ y)e

− t

||y||d
f(x+ y)− f(x)

||y||d
ddy. (123)

Again, for any t > 0, and under condition CfGrowth, the integral defining χ2(x, t) is well de-639

fined. Note that, the integral defining χ2(x, 0) is well behaved at y = 0 under condition CfHolder.640

Indeed, for ||y|| ≤ δx, we have |f(x+y)−f(x)|
||y||d ≤ Kx||y||−d+αx , which is integrable at y = 0641

in dimension d. Note that, if f(x + y) − f(x) were only decaying as const./ ln(||y||), then642

|χ2(x, t)| ∼ const. ln(| ln(t)|) → +∞, when t → 0, and χ2(x, 0) would not exist (see the end of643

this section where we relax the local Hölder condition).644

From now, we denote645

κ(x) := χ2(x, 0) =

∫
ρ(x+ y)

f(x+ y)− f(x)

||y||d
ddy. (124)

Also note that κ(x) = 0 is possible even if f is not constant. For instance, if Ω is a sphere centered646

at x or Ω = Rd, if ρ(x + y) = ρ̂(||y||) is isotropic around x and, if fx : y 7→ f(x + y) is an odd647

function of y, then we indeed have κ(x) = 0 at the symmetry point x.648

Upper bound for B1(x)649

For ε > 0, we define λ like in section A.2 and define η = min(λ, δx), so that650

χ1(x, t) ≤ (1 + ε)Kxρ(x)

∫
||y||≤η

e
− t

||y||d ||y||2(αx−d) ddy + Λx, (125)

Λx =

∫
||y||≥η

ρ(x+ y)
(f(x+ y)− f(x))2

||y||2d
ddy, (126)
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where the constant Λx <∞ under condition CfGrowth. The integral in Eq. (125), can be written as651 ∫
||y||≤η

e
− t

||y||d ||y||2(αx−d) ddy = Sd

∫ η

0

e−
t

rd r2αx−d−1 dr, (127)

= Vdt
2αx
d −1

∫ +∞

t

ηd

u−
2αx
d e−u du, (128)

Hence, we find that χ1(x, t) is bounded for αx > d/2. For αx < d/2, and for t < t1 small enough,652

there exists a constant M(2αx/d) so that χ1(x, t) ≤ M(2αx/d)t
2αx
d −1. Finally, in the marginal653

case αx = d/2 and for t < t1, we have χ1(x, t) ≤M(1) ln(1/t), for some constant M(1).654

Now, exploiting again the upper bound of ψ(x, t) obtained in section A.2 and repeating the steps655

to bound the integrals involving ψn(x, t), we find that, for αx 6= d/2, B1(x) is bounded up to a656

multiplicative constant by657 ∫ t1

0

tmin(1, 2αxd ) e
−nVdρ(x)t ln

(
D−
t

)
dt ∼

n→+∞
M ′(2αx/d)

(
Vdρ(x)n ln(n)

)−min(2, 2αxd +1)
, (129)

where M ′(2αx/d) is a constant depending only on 2αx/d. In the marginal case, αx = d/2, B1(x) is658

bounded up to a multiplicative constant by n−2 ln(n).659

In summary, we find that660

(n+ 1)B1(x) =


O
(
n−

2αx
d (ln(n))−1− 2αx

d

)
, for d > 2αx

O
(
n−1(ln(n))−1

)
, for d = 2αx

O
(
n−1(ln(n))−2

)
, for d < 2αx

(130)

Asymptotic equivalent for B2(x)661

Let us first assume that κ(x) = χ2(x, 0) 6= 0. Then again, as shown in detail in section A.2, the662

integral defining B2(x) is dominated by the small t region, and will be asymptotically equivalent to663

B2(x) =

∫ +∞

0

t ψn−1(x, t)χ2
2(x, t) dt, (131)

∼
n→+∞

κ2(x)

∫ t1

0

t e
−nVdρ(x)t ln

(
D±
t

)
dt, (132)

∼
n→+∞

(
κ(x)

Vdρ(x)n ln(n)

)2

. (133)

On the other hand, if κ(x) = 0, one can bound χ2(x, t) (up to a multiplicative constant) for t ≤ t1664

by the integral665 ∫
||y||≤η

(
1− e

− t

||y||d

)
||y||αx−d ddy = Sd

∫ η

0

(
1− e−

t

rd

)
rαx−d rd−1 dr, (134)

= Vdt
αx
d

∫ +∞

t

ηd

u−1−αxd
(
1− e−u

)
du. (135)

Hence, for κ(x) = 0, we find that666

n(n+ 1)B2(x) = O
(
n−

2αx
d (ln(n))−2− 2αx

d

)
. (136)

Asymptotic equivalent for the bias term B(x)667

In the generic case κ(x) 6= 0, we find that (n+ 1)B1(x) is always dominated by n(n+ 1)B2(x), and668

we find the following asymptotic equivalent for B(x) = (n+ 1)B1(x) + n(n+ 1)B2(x):669

B(x) ∼
n→+∞

(
κ(x)

Vdρ(x) ln(n)

)2

. (137)
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In the non-generic case κ(x) = 0, the bound for (n+ 1)B1(x) in Eq. (130) is always more stringent670

than the bound for n(n+ 1)B2(x) in Eq. (136), leading to671

B(x) =


O
(
n−

2αx
d (ln(n))−1− 2αx

d

)
, for d > 2αx

O
(
n−1(ln(n))−1

)
, for d = 2αx

O
(
n−1(ln(n))−2

)
, for d < 2αx

, (138)

which prove the statements made in Theorem 3.5.672

Interpretation of the bias term B(x) for κ(x) 6= 0673

Here, we assume the generic case κ(x) 6= 0 and define f̄(x) = E
[
f̂(x)

]
. We have674

∆(x) := E

 n∑
i=0

wi(x)(f(xi)− f(x))

 = f̄(x)− f(x), (139)

f̄(x) = E

 n∑
i=0

wi(x)f(xi)

 = (n+ 1)E
[
w0(x)f(x0)

]
. (140)

By using another time Eq. (36), we find that675

∆(x) = (n+ 1)

∫ +∞

0

ψn(x, t)χ2(x, t) dt, (141)

∼
n→+∞

nκ(x)

∫ t1

0

e
−nVdρ(x)t ln

(
D±
t

)
dt, (142)

∼
n→+∞

κ(x)

Vdρ(x) ln(n)
. (143)

Comparing this result to the one of Eq. (137), we find that the bias B(x) is asymptotically dominated676

by the square of the difference ∆2(x) between f̄(x) = E
[
f̂(x)

]
and f(x):677

B(x) ∼
n→+∞

(
E
[
f̂(x)

]
− f(x)

)2

, (144)

a statement made in Theorem 3.5.678

Relaxing the local Hölder condition679

We now only assume the condition CfCont. that f is continuous at x (but still assuming the growth680

conditions). We can now define δx such that the ball B(x, δ) ⊂ Ω◦ and ||y|| ≤ δx =⇒ |f(x+ y)−681

f(x)| ≤ ε. Then, the proof proceeds as above but by replacing Kx by ε, αx by 0, and by updating682

the bounds for χ1(x, t) (for which this replacement is safe) and χ2(x, t) (for which it is not). We683

now find that for 0 < t ≤ t1, with t1 small enough684

0 ≤ χ1(x, t) ≤ ε(1 + 2ε)Vdρ(x)t−1, (145)

|χ2(x, t)| ≤ ε(1 + 2ε)Vdρ(x) ln

(
1

t

)
. (146)

As already mentioned below Eq. (123) where we provided an explicit counterexample, we see that685

relaxing the local Hölder condition does not guarantee anymore that limt→0 |χ2(x, 0)| <∞. With686

these new bounds, and carrying the rest of the calculation as in the previous sections, we ultimately687

find the following weaker result compared to Eq. (137) and Eq. (138):688

B(x) = o

(
1

ln(n)

)
, (147)
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or equivalently, that for any ε > 0, there exists a constant Nx,ε such that, for n ≥ Nx,ε, we have689

B(x) ≤ ε

ln(n)
. (148)

The bias term at a point where ρ(x) = 0690

This section aims at proving Theorem 3.7 expressing the lack of convergence of the estimator f̂(x)691

to f(x), when ρ(x) = 0, and under mild conditions. Let us now consider a point x ∈ ∂Ω for which692

ρ(x) = 0, let us assume that there exists constants ηx, γx > 0, and Gx > 0, such that ρ satisfies the693

local Hölder condition at x694

||y|| ≤ ηx =⇒ ρ(x+ y) ≤ Gx||y||γx . (149)
We will also assume that the growth condition of Eq. (112) is satisfied. With these two conditions,695

κ(x) defined in Eq. (124) exists. The vanishing of ρ at x strongly affects the behavior of ψ(x, t) in696

the limit t→ 0, which is not singular anymore:697

1− ψ(x, t) ∼
t→0

t

∫
ρ(y)‖x− y‖−d ddy, (150)

where the convergence of the integral λ(x) :=
∫
ρ(y)‖x− y‖−d ddy is ensured by the local Hölder698

condition of ρ at x.699

Let us now evaluate f̄(x) = limn→+∞ E[f̂(x)], the expectation value of the estimator f̂(x) in the700

limit n→ +∞, introduced in Eq. (140). First assuming, κ(x) = χ2(x, 0) 6= 0, we obtain701

f̄(x)− f(x) = lim
n→+∞

(n+ 1)

∫ +∞

0

ψn(x, t)χ2(x, t) dt, (151)

= lim
n→+∞

nχ2(x, 0)

∫ t1

0

en t ∂tψ(x,0) dt, (152)

=
κ(x)

λ(x)
, (153)

which shows that the bias term does not vanish in the limit n → +∞. Eq. (153) can be straight-702

forwardly shown to remain valid when κ(x) = 0. Indeed, for any ε > 0 chosen arbitrarily703

small, we can choose t1 small enough such that |χ2(x, t)| ≤ ε for 0 ≤ t ≤ t1, which leads to704

|f̄(x)− f(x)| ≤ ε/λ(x).705

Note that relaxing the local Hölder condition for ρ at x and only assuming the continuity706

of f at x and κ(x) 6= 0 is not enough to guarantee that f̄(x) 6= f(x). For instance, if707

ρ(x + y) ∼y→0 ρ0/ ln(1/||y||), and there exists a local solid angle ωx > 0 at x, one can show708

that 1− ψ(x, t) ∼t→0 ωxSdρ0 t ln(ln(1/t)), and the bias would still vanish in the limit n→ +∞,709

with f̂(x)− f(x) ∼n→+∞ κ(x)/[ωxSdρ0 ln(ln(n))].710

A.6 Asymptotic equivalent for the regression risk711

This sections aim at proving Theorem 3.8. Under conditions CσGrowth, CfGrowth, and CfCont., the712

results of Eq. (109) and Eq. (147) show that for ρ(x)σ2(x) > 0 and ρ and σ2 continuous at x, the713

bias term B(x) is always dominated by the variance term V(x) in the limit n → +∞. Thus, the714

excess regression risk satisfies715

E[(f̂(x)− f(x))2] ∼
n→+∞

σ2(x)

ln(n)
. (154)

As a consequence, the Hilbert kernel estimate converges pointwise to the regression function in716

probability. Indeed, for δ > 0, there exists a constant Nx,δ , such that717

E[(f̂(x)− f(x))2] ≤ (1 + δ)
σ2(x)

ln(n)
, (155)

for n ≥ Nx,δ. Moreover, for any ε > 0, since E[(f̂(x) − f(x))2] ≥ ε2 P[|f̂(x) − f(x)| ≥ ε], we718

deduce the following Chebyshev bound, valid for n ≥ Nx,δ719

P[|f̂(x)− f(x)| ≥ ε] ≤ 1 + δ

ε2

σ2(x)

ln(n)
. (156)
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A.7 Rates for the plugin classifier720

In the case of binary classification Y ∈ {0, 1} and f(x) = P[Y = 1 | X = x]. Let F : Rd → {0, 1}721

denote the Bayes optimal classifier, defined by F (x) := θ(f(x)− 1/2) where θ(·) is the Heaviside722

theta function. This classifier minimizes the riskR0/1(h) := E[1{h(X)6=Y }] = P[h(X) 6= Y ] under723

zero-one loss. Given the regression estimator f̂ , we consider the plugin classifier F̂ (x) = θ(f̂(x)− 1
2 ),724

and we will exploit the fact that725

0 ≤ E[R0/1(F̂ (x))]−R0/1(F (x)) ≤ 2E[|f̂(x)− f(x)|] ≤ 2

√
E[(f̂(x)− f(x))2] (157)

Proof of Eq. (157)726

For the sake of completeness, let us briefly prove the result of Eq. (157). The rightmost inequality is727

simply obtained from the Cauchy-Schwartz inequality and we hence focus on proving the first inequal-728

ity. Obviously, Eq. (157) is satisfied for f(x) = 1/2, for which E[R0/1(F̂ (x))] = R0/1(F (x)) =729

1/2.730

If f(x) > 1/2, we have F (x) = 1,R0/1(F (x)) = 1− f(x), and731

E[R0/1(F̂ (x))] = f(x)P[f̂(x) ≤ 1/2] + (1− f(x))P[f̂(x) ≥ 1/2], (158)

= R0/1(F (x)) + (2f(x)− 1)P[f̂(x) ≤ 1/2], (159)

which implies E[R0/1(F̂ (x))] ≥ R0/1(F (x)). Since P[f̂(x) ≤ 1/2] = E[θ(1/2− f̂(x))], and using732

θ(1/2− f̂(x)) ≤ |f̂(x)−f(x)|
f(x)−1/2 , valid for any 1/2 < f(x) ≤ 1, we readily obtain Eq. (157).733

Similarly, in the case f(x) < 1/2, we have F (x) = 0,R0/1(F (x)) = f(x), and734

E[R0/1(F̂ (x))] = R0/1(F (x)) + (1− 2f(x))P[f̂(x) ≥ 1/2]. (160)

Since P[f̂(x) ≥ 1/2] = E[θ(f̂(x) − 1/2)], and using θ(f̂(x) − 1/2) ≤ |f̂(x)−f(x)|
1/2−f(x) , valid for any735

0 ≤ f(x) < 1/2, we again obtain Eq. (157) in this case.736

In fact, for any α > 0, the inequalities θ(1/2 − f̂(x)) ≤
(
|f̂(x)−f(x)|
f(x)−1/2

)α
and θ(f̂(x) − 1/2) ≤737 (

|f̂(x)−f(x)|
1/2−f(x)

)α
hold, respectively for f(x) > 1/2 and f(x) < 1/2. Combining this remark with the738

use of the Hölder inequality leads to739

E[R0/1(F̂ (x))]−R0/1(F (x)) ≤ 2|f(x)− 1/2|1−α E
[
|f̂(x)− f(x)|α

]
, (161)

≤ 2|f(x)− 1/2|1−α E
[
|f̂(x)− f(x)|

α
β

]β
, (162)

for any 0 < β ≤ 1. In particular, for 0 < α < 1 and β = α/2, we obtain740

0 ≤ E[R0/1(F̂ (x))]−R0/1(F (x)) ≤ 2|f(x)− 1/2|1−α E
[
|f̂(x)− f(x)|2

]α
2

. (163)

The interest of this last bound compared to the more classical bound of Eq. (157) is to show explicitly741

the cancellation of the classification risk as f(x) → 1/2, while still involving the regression risk742

E
[
|f̂(x)− f(x)|2

]
(to the power α/2 < 1/2).743

Bound for the classification risk744

Now exploiting the results of section A.6 for the regression risk, and the two inequalities Eq. (157)745

and Eq. (163), we readily obtain Theorem 3.9.746

A.8 Extrapolation behavior outside the support of ρ747

This section aims at proving Theorem 3.10 characterizing the behavior of the regression estimator f̂748

outside the closed support Ω̄ of ρ (extrapolation).749
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Extrapolation estimator in the limit n→∞750

We first assume the growth condition
∫
ρ(y) |f(y)|

1+‖y‖d d
dy <∞. For x ∈ Rd (i.e., not necessarily in751

Ω), we have quite generally752

E
[
f̂(x)

]
= (n+ 1)E

[
w0(x)f(x)

]
= (n+ 1)

∫ +∞

0

ψn(x, t)χ(x, t) dt, (164)

where ψ(x, t) is again given by Eq. (37) and753

χ(x, t) :=

∫
ρ(x+ y)f(x+ y)

e
− t

||y||d

||y||d
ddy, (165)

which is finite for any t > 0, thanks to the above growth condition for f .754

Let us now assume that the point x is not in the closed support Ω̄ of the distribution ρ (which excludes755

the case Ω = Rd ). Since the integral in Eq. (164) is again dominated by its t→ 0 behavior, we have756

to evaluate ψ(x, t) and χ(x, t) in this limit, like in the different proofs above. In fact, when x /∈ Ω̄,757

the integral defining ψ(x, t) and χ(x, t) are not singular anymore, and we obtain758

1− ψ(x, t) ∼
t→0

t

∫
ρ(y)‖x− y‖−d ddy, (166)

χ(x, 0) =

∫
ρ(y)f(y)‖x− y‖−d ddy. (167)

Note that ψ(x, t) has the very same linear behavior as in Eq. (150), when we assumed x ∈ ∂Ω with759

ρ(x) = 0, and a local Hölder condition for ρ at x.760

Finally, by using the same method as in the previous sections to evaluate the integral of Eq. (164) in761

the limit n→ +∞, we obtain762 ∫ +∞

0

ψn(x, t)χ(x, t) dt ∼
n→+∞

χ(x, 0)

∫ t1

0

en t ∂tψ(x,0) dt, (168)

∼
n→+∞

1

n

χ(x, 0)

|∂tψ(x, 0)|
, (169)

which leads to the first result of Theorem 3.10:763

f̂∞(x) := lim
n→+∞

E
[
f̂(x)

]
=

∫
ρ(y)f(y)‖x− y‖−d ddy∫
ρ(y)‖x− y‖−d ddy

. (170)

Note that since the function (x, y) 7−→ ‖x − y‖−d is continuous at all points x /∈ Ω̄, y ∈ Ω, and764

thanks to the absolute convergence of the integrals defining f̂∞(x), standard methods show that f̂∞765

is continuous (in fact, infinitely differentiable) at all x /∈ Ω̄.766

Extrapolation far from Ω767

Let us now investigate the behavior of f̂∞(x) when the distance L := d(x,Ω) = inf{||x− y||, y ∈768

Ω} > 0 between x and Ω goes to infinity, which can only happen for certain Ω, in particular, when Ω769

is bounded. We now assume the stronger condition, 〈|f |〉 :=
∫
ρ(y)|f(y)| ddy <∞, such that the ρ-770

mean of f , 〈f〉 :=
∫
ρ(y)f(y) ddy, is finite. We consider a point y0 ∈ Ω, so that ||x− y0|| ≥ L > 0,771

and we will exploit the following inequality, valid for any y ∈ Ω satisfying ||y − y0|| ≤ R, with772

R > 0:773

0 ≤ 1− Ld

||x− y||d
≤ ||x− y||

d − Ld

Ld
≤ (L+R)d − Ld

Ld
≤ e

dR
L − 1. (171)

Now, for a given ε > 0, there exist R > 0 large enough such that
∫
‖y−y0‖≥R ρ(y) ddy ≤ ε/2 and774 ∫

‖y−y0‖≥R ρ(y)|f(y)| ddy ≤ ε/2. Then, for such a R, we consider L large enough such that the775
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above bound satisfies e
dR
L − 1 ≤ εmin(1/〈|f |〉, 1)/2. We then obtain776 ∣∣∣∣Ld ∫ ρ(y)f(y)‖x− y‖−d ddy − 〈f〉

∣∣∣∣ ≤ (
e
dR
L − 1

)∫
||y−y0||≤R

ρ(y)|f(y)| ddy (172)

+

∫
‖y−y0‖≥R

ρ(y)|f(y)| ddy, (173)

≤ ε

2〈|f |〉
× 〈|f |〉+

ε

2
≤ ε, (174)

which shows that under the condition 〈|f |〉 <∞, we have777

lim
d(x,Ω)→+∞

dd(x,Ω)

∫
ρ(y)f(y)‖x− y‖−d ddy = 〈f〉. (175)

Similarly, one can show that778

lim
d(x,Ω)→+∞

dd(x,Ω)

∫
ρ(y)‖x− y‖−d ddy =

∫
ρ(y) ddy = 1. (176)

Finally, we obtain the second result of Theorem 3.10,779

lim
d(x,Ω)→+∞

f̂∞(x) = 〈f〉. (177)

Continuity of the extrapolation780

We now consider x /∈ Ω̄ and y0 ∈ ∂Ω, but such that ρ(y0) > 0 (i.e., y0 ∈ ∂Ω ∩ Ω), and we note781

l := ||x − y0|| > 0. We assume the continuity at y0 of ρ and f as seen as functions restricted to782

Ω, i.e., limy∈Ω→y0 ρ(y) = ρ(y0) and limy∈Ω→y0 f(y) = f(y0). Hence, for any 0 < ε < 1, there783

exists δ > 0 small enough such that y ∈ Ω and ||y − y0|| ≤ δ =⇒ |ρ(y0) − ρ(y)| ≤ ε and784

|ρ(y0)f(y0)− ρ(y)f(y)| ≤ ε. Since we intend to take l > 0 arbitrary small, we can impose l < δ/2.785

We will also assume that ∂Ω is smooth enough near y0, such that there exists a strictly positive local786

solid angle ω0 defined by787

ω0 = lim
r→0

1

Vdρ(y0)rd

∫
‖y−y0‖≤r

ρ(y) ddy = lim
r→0

1

Vdrd

∫
y∈Ω/‖y−y0‖≤r

ddy, (178)

where the second inequality results from the continuity of ρ at y0 and the fact that ρ(y0) > 0. If y0 ∈788

Ω◦, we have ω0 = 1, while for y0 ∈ ∂Ω, we have generally 0 ≤ ω0 ≤ 1. Although we will assume789

ω0 > 0 for our proof below, we note that ω0 = 0 or ω0 = 1 can happen for y0 ∈ ∂Ω. For instance,790

we can consider Ω0, Ω1 ⊂ R2 respectively defined by Ω0 = {(x1, x2) ∈ R2/x1 ≥ 0, |x2| ≤ x2
1}791

and Ω1 = {(x1, x2) ∈ R2/x1 ≤ 0} ∪ {(x1, x2) ∈ R2/x1 ≥ 0, |x2| ≥ x2
1}. Then, it is clear that the792

local solid angle at the origin O = (0, 0) is respectively ω0 = 0 and ω0 = 1. Also note that if x is on793

the surface of a sphere or on the interior of a face of a hypercube (and in general, when the boundary794

near x is locally an hyperplane; the generic case), we have ωx = 1
2 . If x is a corner of the hypercube,795

we have ωx = 1
2d

.796

Returning to our proof, and exploiting Eq. (178), we consider δ small enough such that for all797

0 ≤ r ≤ δ, we have798 ∣∣∣∣∣
∫
y∈Ω/‖y−y0‖≤r

ddy − ω0Vd r
d

∣∣∣∣∣ ≤ ε ω0Vd r
d. (179)

We can now use these preliminaries to obtain799

(ρ(y0)f(y0)− ε)J(x)− C ≤
∫
ρ(y)f(y)‖x− y‖−d ddy ≤ (ρ(y0)f(y0) + ε)J(x) + C, (180)

(ρ(y0)− ε)J(x)− C ′ ≤
∫
ρ(y)‖x− y‖−d ddy ≤ (ρ(y0) + ε)J(x) + C ′, (181)
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with800

J(x) :=

∫
y∈Ω / ||y−y0||≤δ

‖x− y‖−d ddy, (182)

C =

(
2

δ

)2 ∫
||y−y0||≥δ

ρ(y)|f(y)| ddy, (183)

C ′ =

(
2

δ

)2

. (184)

Let us now show that liml→0 J(x) = +∞. We define N := [δ/l] ≥ 2, where [ . ] is the integer part,801

and we have N ≥ 2, since we have imposed l < δ/2. For n ∈ N ≥ 1, we define,802

In :=

∫
y∈Ω/||y−y0||≤δ/n

ddy, (185)

and note that we have803

In − In+1 =

∫
y∈Ω/||y−y0||≤δ/n,
||y−y0||≥δ/(n+1)

ddy, (186)

∣∣∣∣∣In − ω0Vd

(
δ

n

)d∣∣∣∣∣ ≤ ε ω0Vd

(
δ

n

)d
. (187)

We can then write804

J(x) ≥
N∑
n=1

1(
l + δ

n

)d (In − In+1), (188)

≥
N∑
n=1

 1(
l + δ

n+1

)d − 1(
l + δ

n

)d
 In+1 +

I1

(l + δ)
d
− IN+1(

l + δ
N+1

)d . (189)

We have805

I1

(l + δ)
d
− IN+1(

l + δ
N+1

)d ≥ ω0Vd

(1− ε) 1(
1 + l

δ

)d − (1 + ε)
1(

1 + (N+1)l
δ

)d
 , (190)

≥ ω0Vd

(
(1− ε)2d

3d
− (1 + ε)

)
=: C ′′, (191)

which defines the constant C ′′. Now using Eq. (187), l < δ/2, N = [δ/l], and the fact that806

(1 + u)d − 1 ≥ d u, for any u ≥ 0, we obtain807

J(x) ≥ (1− ε)ω0Vd

N∑
n=1

1(
1 + (n+1)l

δ

)d
( l + δ

n

l + δ
n+1

)d
− 1

+ C ′′, (192)

≥ (1− ε)ω0Sd

N∑
n=1

1(
1 + (n+1)l

δ

)d+1

1

n
+ C ′′, (193)

≥ (1− ε)ω0 Sd(
1 + (N+1)l

δ

)d+1
ln(N − 1) + C ′′, (194)

≥ (1− ε)ω0

(
2

5

)d+1

Sd ln

(
δ

l
− 2

)
+ C ′′. (195)
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We hence have shown that liml→0 J(x) = +∞. Note that we can obtain an upper bound for J(x)808

similar to Eq. (193) in a similar way as above, and with a bit more work, it is straightforward to show809

that we have in fact J(x) ∼l→0 ω0 Sd ln
(
δ
l

)
, a result that we will not need here.810

Now, using Eq. (180) and Eq. (181) and the fact that liml→0 J(x) = +∞, we find that811 ∫
ρ(y)f(y)‖x− y‖−d ddy ∼

l→0
ρ(y0)f(y0)J(x), (196)∫

ρ(y)‖x− y‖−d ddy ∼
l→0

ρ(y0)J(x), (197)

for f(y0) 6= 0 (remember that ρ(y0) > 0), while for f(y0) = 0, we obtain
∫
ρ(y)f(y)‖x −812

y‖−d ddy = o(J(x)). Finally, we have shown that813

lim
x/∈Ω̄,x→y0

f̂∞(x) = f(y0), (198)

establishing the continuity of the extrapolation and the last part of Theorem 3.10.814
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