
Polynomial Neural Fields
for Subband Decomposition and Manipulation

- Supplementary Materials -

Guandao Yang∗

Cornell University
Sagie Benaim*

University of Copenhagen
Varun Jampani
Google Research

Kyle Genova
Google Research

Jonathan T. Barron
Google Research

Thomas Funkhouser
Google Research

Bharath Hariharan
Cornell University

Serge Belongie
University of Copenhagen

Contents

1 Theory 2

1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Basis function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 PNF as Linear Sum of Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Controllable Sets of Subbands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Fourier Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.2 Fourier L1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.3 RBF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.4 Gabor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Different Instantiation of PNFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Implementation Details 12

3 Experiment Details 13

3.1 Expressivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Texture Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Scale-space Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Derivation of Scale-space Fourier PNF . . . . . . . . . . . . . . . . . . . 17

3.3.2 Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Licenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 GPU Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
∗Equal contribution. Part of this work was done while Guandao was a student researcher at Google.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



3.6 Negative Societal Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1 Theory

In this section, we will provide a detail derivation of the theories we used for building and analyzing
PNF. We first study the definition of PNF in Sec. 1.1. Then we prove the properties that PNF is linear
sums of basis for different basis in Sec. 1.2 and Sec. 1.3. In Sec. 1.4, we studies how to organize
subset of basis, or subbands, in a controllable way to produce subband-limited PNFs. Finally, we
show several different instantiation of PNFs in Sec. 1.5.

1.1 Definition

Definition 1.1 (PNF). Let B be a basis for the vector space of functions for Rn → R. A Polynomial
neural field of basis B is a neural network f = gL ◦ · · · ◦ g1 ◦ γ, where ∀i, gi are finite degree
multivariate polynomials, and γ : Rn → Rd is a d-dimensional feature encoding using basis B:
γ(x) = [γ1(x), . . . , γd(x)]

d, γi ∈ B,∀i.

We will show how this definition has included both Π-Net [5], MFN [8], and BACON [13].

Π-Net. Here we will set basis B = {xn}n≥0. Then gi can be set according to different factorization
mentioned in Section 3.1 and 3.2.

MFN. [8] studied two types of MFNs - Fourier and Gabor MFN. For Fourier MFN that that takes
Rd as input, we will set basis to be B = {sin(ωTx)}ω∈Rd . Assume there are Lmfn layers of the
multiplicative filter networks and each layer has hidden dimension of h. We will set L = Lmfn + 2
and define gi, γ in the following manner:

γ ∈ Rd → RLmfnh, (1)

g1(γ(x)) = [M1γ(x), γ(x)] ∈ R(Lmfn+1)h (2)
gi([z, γ(x)]) = [(Wiz + bi)⊙ (Miγ(x)), γ(x)], ∀ 2 ≤ i ≤ 2 + Lmfn (3)

gLmfn+2([z, γ(x)]) = Woutx+ bout, (4)

where Mi ∈ RLmfnh×h selects the (i− 1)h to ih basis by setting each row of Mi to be an one-hot
vector and only the ((i− 1)h)th to (ih)th columes are non-zeros. Similarly, for Gabor MFN, we use
the same definition of g, but switch γ to sample from B = {exp(γ ∥x− µ∥2) sin(ωTx)}(γ,µ,ω∈Rd).

BACON. The way to instantiate BACON will be similar to MFN. Basically each intermediate
output layer of BACON is a MFN with γ to be sampled from specific subbands.

The definition of PNF is very general such that it not only include prior works but also allow potential
design of new architectures with different network topology and differnet basis. Our design of Fourier
PNF will leverage fourier basis with a modified network architecture. We will introduce several more
variants of the PNFs with different architectures and basis choices.

1.2 Basis function

Definition 1.2 (Span of Basis is Closed Under Multiplication). We call a basis B’s span closed under
multiplication if : ∀b1, b2 ∈ B, b1(x)b2(x) =

∑
i∈I aibi(x), |I| < ∞.

Note that this is the same requirement as Definition 1 in the appendix of MFN paper [9]. We will
extend the analysis of MFN in several ways. First, we will show that several commonly used basis
functions satisfies Definition 1.2.

Lemma 1 (Fourier Basis). Assume the Fourier basis of functions Rd → R takes the form of
BFourier = {bω = exp(iωTx)|ω ∈ Rd}. Then BFourier’s span is closed under multiplication.

Proof. It’s enough to show that the multiplication of two Fourier basis function is still a Fourier basis
funciton: exp(iωT

1 x) exp(iω
T
2 x) = exp(i(ω1 + ω2)

Tx) ∈ BFourier.
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Lemma 2 (RBF). Assume the Radial basis functions for real-value functions Rd → R takes the form
of BRBF = {bγ,µ = exp(− 1

2γ ∥x− µ∥2). Then BRBF ’s span is closed under multiplication.

Proof. Similar to Fourier Basis, we will show that the multiplication of two RBF functions is still in
BRBF . This is shown in Equation 24 of Supplementary of MFN [9]:

exp

(
−1

2
γ1 ∥x− µ1∥2

)
exp

(
−1

2
γ2 ∥x− µ2∥2

)
(5)

= exp

(
−γ1γ2 ∥µ1 − µ2∥

2(γ1 + γ2)

)
exp

(
−1

2
(γ1 + γ2)

∥∥∥∥x− γ1µ1 + γ2µ2

γ1 + γ2

∥∥∥∥2
)

(6)

= c(γ1, γ2, µ1, µ2) exp

(
−1

2
γ′ ∥x− µ′∥2

)
, (7)

where c(γ1, γ2, µ1, µ2) = exp
(

−γ1γ2∥µ1−µ2∥
2(γ1+γ2)

)
, µ′ = γ1µ1+γ2µ2

γ1+γ2
, and γ′ = γ1 + γ2.

Lemma 3 (Gabor Basis). Assume the Gabor basis of functions Rd → R takes the form of BGabor =

{bγ,µ,ω = exp(− 1
2γ ∥x− µ∥2) exp(iωTx)|ω ∈ Rd, µ ∈ Rd, γ ≥ 0}. Then BGabor’s span is closed

under multiplication.

Proof. Using Eq. (7), we can compute the the multiplication of two Gabor basis functions:

bγ1,µ1,ω1bγ2,µ2,ω2 = c(γ1, γ2, µ1, µ2) exp

(
−1

2
γ′ ∥x− µ′∥2

)
exp(iω′Tx) ∝ bγ′,µ′,ω′ ∈ BGabor,

(8)

where ω′ = ω1 + ω2. The output of the multiplication is still a Gabor.

The following Lemma will show that Definition 1.2 can be extended to analyzing functions from
different domain. We will show that for complex-value function that maps from a sphere, there is a
basis function that satisfies Definition 1.2.
Lemma 4 (Spherical Harmonics). We will consider the basis function for real functions that takes
spherical coordinate (i.e. S2 → C where S2 = {(θ, ϕ)|0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π}. Moreover, we will
consider Laplace’s spherical harmonics as basis:

BSH = {Y m
l (θ, ϕ) = eimϕPm

l (cos(θ))|0 ≤ l, l ∈ Z,−l ≤ m ≤ l,m ∈ Z}, (9)

where Pm
l : [−1, 1] → R is an associated Legendre polynomial. BSH satisfies Definition 1.2.

Proof. From the multiplication rule of Spherical Harmonics [4], we have:

Y m1

l1
(θ, ϕ)Y m2

l2
(θ, ϕ) ∝

∞∑
l=0

c∑
m=−c

(−1)m
√
2l + 1

(
l1 l2 l

m1 m2 −m

)(
l1 l2 l
0 0 0

)
Y m
l (θ, ϕ), (10)

where
(

j1 j2 j3
m1 m2 m3

)
denotes the 3j-syombols. Now we need to show that the infinite sum contains

only finite number of non-zero terms. By the selection rules of the 3j-symbols [11], we know that(
j1 j2 j3

m1 m2 m3

)
is zero if any of the following rules is not satisfies: 1) |j1 − j2| ≤ j3 ≤ j1 + j2; and

2) m1 +m2 +m3 = 0. This implies that for all terms l ≥ l1 + l2, and m ̸= −(m1 +m2), the term(
l1 l2 l

m1 m2 −m

)
= 0. With this said, the Eq. (10) can be written as a finite sum:

Y m1

l1
(θ, ϕ)Y m2

l2
(θ, ϕ) ∝

l1+l2∑
l=|l1−l2|

(
l1 l2 l

m1 m2 − (m1 +m2)

)(
l1 l2 l
0 0 0

)
Y m
l (θ, ϕ). (11)
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There are several rules we can used to generate more basis that satisfies the properties. Here we will
show one of them:
Theorem 5 (Basis-multiplication.). If B1 and B2 be the basis of Rd → R and satisfy Definition 1.2,
then Bmult = {b1b2|b1 ∈ B1, b2 ∈ B2} also satisfy Definition 1.2.

Proof. Let b1b2 and b3b4 from Bmult. Assume bi =
∑

n ai,nbki,n , where i ∈ {1, 2, 3, 4}, ki,n is an
index into B1 if i ∈ {1, 2} and B2 if i ∈ {3, 4}, and ai,n are coefficients. Then we have

(b1b2)(b3b4) =

(∑
n

a1,nbk1,n

)(∑
n

a2,nbk2,n

)(∑
n

a3,nbk3,n

)(∑
n

a4,nbk4,n

)
(12)

=

∑
n,n′

a1,na3,n′bk1,n
bk3,n′

∑
n,n′

a2,na4,n′bk2,n
bk4,n′

 . (13)

Since both bk1,n
and bk3,n′ are in B1 and B1 satisfies Definition 1.2, so we can assume the following

(and similarly logics can be applied to bk2,n and bk4,n′ for B2):

bk1,nbk3,n′ =
∑
m

c1,n,n′,mbl1,n,n′,m , bl1,n,n′,m ∈ B1 (14)

bk2,n
bk4,n′ =

∑
m

dn,n′,mbl2,n,n′,m , bl2,n,n′,m ∈ B2. (15)

Plugging abovementioned equations into Eq. (13) we get∑
n,n′

a1,na3,n′bk1,n
bk3,n′ =

∑
n,n′

a1,na3,n′

(∑
m

c1,n,n′,mbl1,n,n′,m

)
(16)

=
∑

n,n′,m

a1,na3,n′c1,n,n′,mbl1,n,n′,m =
∑

n,n′,m

c̃1,n,n′,mbl1,n,n′,m , (17)

for c̃1,n,n′,m = a1,na3,n′c1,n,n′,m. Similarly, we have∑
n,n′

a2,na4,n′bk2,n
bk4,n′ =

∑
n,n′

a2,na4,n′

(∑
m

c2,n,n′,mbl2,n,n′,m

)
(18)

=
∑

n,n′,m

a2,na4,n′c2,n,n′,mbl2,n,n′,m =
∑

n,n′,m

c̃2,n,n′,mbl2,n,n′,m , (19)

for c̃2,n,n′,m = a2,na4,n′c2,n,n′,m. Finally we can put these two together:

(b1b2)(b3b4) =

 ∑
n,n′,m

c̃1,n,n′,mbl1,n,n′,m

 ∑
n,n′,m

c̃2,n,n′,mbl2,n,n′,m

 (20)

=
∑

n,n′,m,n′′,n′′′,m′

c̃1,n,n′,mc̃2,n′′,n′′′,m′bl1,n,n′,mbl2,n′′,n′′′,m′ , (21)

which is a linear combination of basis Bmult since bl1,n,n′,m ∈ B1 and bl1,n′′,n′′′,m′ ∈ B2.

1.3 PNF as Linear Sum of Basis

In this section, we will show that PNF can be expressed as linear sum of basis if the basis function
satisfies Definition 1.2.
Lemma 6 (Power-product of Basis). If B satisfies Definition 1.2, then power-products of the form∏N

n=1 b
αn
n , 0 ≤ αn < ∞ is a linear sum of the basis B.

Proof. We will show by induction on the degree of the power-product: d =
∑

n αn.

Base cases. If d = 0, then
∏N

n=1 b
αn
n = 1 ∈ B since B is a basis function of Rd → R.
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Inductive case. The inductive hypothesis is: assume that for some degree d such that d ≥ 0, all finite
power-product of degree d are linear sums of basis B. We want to show that all finite power-product
of degree d+ 1 is also linear sums of basis B. Condider a power-product of degree d+ 1 in the form
of
∏N

n=1 b
αn
n and assume without lost of generality that α1 ≥ 1. Then we have

N∏
n=1

bαn
n = b1

(
b
(αn−1)
1

N∏
n=2

bαn
n

)
= b1p, (22)

where p = b
(αn−1)
1

∏N
n=2 b

αn
n . It’s easy to see that the degree of p is d, so p can be written as a linear

sum of B:
∑

m ambm. With that we have:

N∏
n=1

bαn
n = b1

∑
m

ambm =
∑
m

amb1bm, (23)

where bi ∈ B. Since B satisfies Definition 1.2, so b1bm can be written as a linear sum of basis B:∑
j cjbj . Putting this in Eq. (23) gives a linear sum of basis B.

Theorem 7. Let F be a PNF with basis B. ∀b1, b2 ∈ B, b1(x)b2(x) =
∑

i∈I aibi(x), |I| < ∞, then
the output of F is a finite linear sum of the basis functions from B.

Proof. Let F = gL ◦ · · · ◦ g1 ◦ γ, with gi being a multivariate polynomial. Let z0 = γ. Let
zi = gi ◦ · · · ◦ g1 ◦ γ for i ≥ 1. Let zi[j] be the jth dimensional value of zi. We will show by
induction that for all i, zi[j] is a linear sum of basis functions from B for all j.

Base case : i = 0. zi[j] = γj(x) ∈ B by definition of γ in Definition 1.1.

Inductive case. The inductive hypothesis is: for k ≥ 1, if zk[j] is linear sum of B for all j, then
zk+1[l] is linear sums of B for all l.

By definition of z, we know that zk+1 = gk(zk), where gk is a multivariate polynomial of finite
degree d. With that said, we can assume zk+1[l] ∈ R is a linear sum of power-product terms in the
form of

∏
j zk[i]

αlj , where αlj ≥ 0 and
∑

l αl ≤ d. It’s sufficient to show that each of this term is
linear sum of the basis function B.

By the inductive hypothesis, we can assume that zk[j] =
∑

n βjnbjn, with bjn ∈ B. Then we have:

∏
j

zk[i]
αlj =

∏
j

(∑
n

βjnbjn

)αlj

=
∑
m

am
∏
n

bα̂nm
n , (24)

for some am ∈ R, and α̂nm ≥ 0 and
∑

m α̂nm ≤ d. By Theorem 6, the terms
∏

n b
α̂nm
n are linear

sums of B. Then Eq. (24) is linear sums of linear sums of B, which will be linear sums of B.

1.4 Controllable Sets of Subbands

In this section, we will develop theories to build controllable sets of subbands and use that to design
PNFs. In this section, we will use definition that a subband is a subset of the basis function.

Definition 1.3 (Subband). A subband S is a subset of B.

Definition 1.4 (Subband limited PNF). A PNF F of basis B is limited by subband S ⊂ B if each
dimension of the output (i.e. Fi) is in the span of S.

One naive way to construct a subband limited PNF is to restrict γ to take only basis functions from
the subband: γi ∈ S, and then restricted no multiplication in the layers gi (since multiplication is the
only operation that can change the composition of the basis functions used in the linear sum).

But this will simply create a very shallow network as the composition of linear layers amounts to only
one linear layer. As a result, we will need a very wide network in order to achieve expressivity. This
means the number of basis function we used will grow linear with the number of network parameters.
When it requires exponential number of basis functions to approximate a signal well, then we are not
capable of achieving it compactly, throwing away a key virtual of neural fields.
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In order to achieve compactness, we want to be able to generate a lots of basis, all of with within
the subband of interest, without instantiating a lot of network parameters. One way to achieve this
is to use function composition with non-linearity. In our case, since the functions are restricted to
be polynomials, then the only non-linearity we can use is multiplication. But multiplication can
potentially create basis functions outside of the subband as Definition 1.2 does not restrict the linear
sum to be within certain subband. As a result, we need to study how multiplication transform the
subband. More specifically, we will first define a set of subbands, within which multiplication in
function space can translate in someway to an operation of subbands:

Definition 1.5 (PNF-controllable Set of Subbands). S = {Sθ|Sθ ⊂ B}θ is a PNF-Controllable Set
of Subbands for basis B if (1) Sθ1 ∪ Sθ2 ∈ S and (2) there exists a binary function ⊗ : S × S → S
such that if b1 ∈ Sθ1 , b2 ∈ Sθ2 =⇒ b1b2 =

∑
n anbn, bn ∈ Sθ1 ⊗Sθ2 for some coefficients an ∈ R

(i.e. b1b2 is in the span of Sθ1 ⊗ Sθ2 ).

Theorem 8. Let S be a PNF-controllable set of subbands of basis B with its corresponding binary
function ⊗. Suppose F and G are polynomial neural fields of basis B that maps Rn to Rm1 and Rm2

respectively. Furthermore, suppose F and G are subband limited by S1 ∈ S and S2 ∈ S. Then we
have the following:

1. A(x) = wT
1 F (x) +w2G(x) is a PNF of B limited by subband S1 ∪ S2 with w1 ∈ Rm1

and w2 ∈ Rm22; and

2. M(x) = F (x)TWG(x) is a PNF of B limited by subband S1 ⊗ S2 with W ∈ Rm1×m2 .

Proof. By Definition 1.4, we can assume that

∀1 ≤ i ≤ m1, Fi(x) =
∑
j

af,jbf,j(x), bf,j ∈ S1 (25)

∀1 ≤ i ≤ m2, Gi(x) =
∑
j

ag,jbg,j(x), bg,j ∈ S2. (26)

Then we can compute A(x):

A(x) =

m1∑
i=1

w1[i]Fi(x) +

m2∑
i=1

w2[i]Gi(x) (27)

=

m1∑
i=1

w1[i]

∑
j

af,jbf,j(x)

+

m2∑
i=1

w2[i]

∑
j

ag,jbg,j(x)

 (28)

=

m1∑
i=1

∑
j

(w1[i]af,j)bf,j(x)


︸ ︷︷ ︸

Subband limited by S1

+

m2∑
i=1

∑
j

(w2[i]ag,j)bg,j(x)


︸ ︷︷ ︸

Subband limited by S2

. (29)

It’s easy to see that Eq. (29) is subband limited by S1 ∪ S2.

2In the main text, we show a o-dimensional version: W1F (x) + W2G(x), where W1 ∈ Rm1×o and
W2 ∈ Rm2×o. The o-dimensional version can be seen as an easy extension of this single dimensional version as
we can view W1 = [wT

11; . . . ;w
T
1o] where w1i ∈ Rm1 and similarly for W2.
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Similarly, we can apply the computation to M(x):

M(x) =

i,j≤m1,m2∑
i,j≥1

W [i, j]Fi(x)Gj(x) (30)

=

i,j≤m1,m2∑
i,j≥1

W [i, j]

(∑
k

af,kbf,k(x)

)(∑
k

ag,kbg,k(x)

)
(31)

=

i,j≤m1,m2∑
i,j≥1

W [i, j]

∑
k,k′

af,kag,k′bf,k(x)bg,k′(x)

 (32)

=

i,j≤m1,m2∑
i,j≥1,k,k′

(W [i, j]af,kag,k′)bf,k(x)bg,k′(x). (33)

By Definition 1.5, we can assume

bf,k(x)bg,k′(x) =
∑
l

ck,k′,lbk,k′,l(x), bk,k′,l(x) ∈ S1 ⊗ S2. (34)

Putting it into Eq. (33), we have:

M(x) =

i,j≤m1,m2∑
i,j≥1,k,k′

(W [i, j]af,kag,k′)
∑
l

ck,k′,lbk,k′,l(x) (35)

=

i,j≤m1,m2∑
i,j≥1,k,k′,l

(W [i, j]af,kag,k′ck,k′,l)bk,k′,l(x), (36)

which is subband limited by S1 ⊗ S2 since bk,k′,l ∈ S1 ⊗ S2.

With this theorem, we are able to leverage the PNF-controllable sets of subbands to compose PNFs
with multiplication and additions in a band-limited ways. For example, if we want to construct a PNF
that’s band-limited by S, we can do it in the following steps:

1. Identify a PNF-controllable set of subbands that contains S, let that be S with the associated
operation to be ⊗.

2. Factorize S into a series of subband by the associated operation : S = S1 ⊗ S2 ⊗ · · · ⊗ Sn.

3. For each Si, we can creates a shallow PNF with Fi = g(i) ◦ γ(i), where γ
(i)
j ∈ Si for all j

and g(i)(z) = Wz is a linear layer (without bias).
4. Composed these layers together using rule-2 of Theorem 8.

One can see that the abovementioned way to construct PNF has the ability to create exponential
number of basis functions, all of which within S. Following is the intuitive reason why that’s the
case. Suppose each neuron Fi is a linear sum of d different basis functions (i.e. the set of basis
chosen for Fi is different from those of Fj if i ̸= j). Furthermore, suppose that Definition 1.2 creates
different sets of basis in the right-hand-side of the multiplication. then every time we apply rule-2
of Theorem 8 on d-dimensional inputs (i.e. assume that we have d-numer of W matrix in rule-2 to
create an output of d-dimensional everytime), we creates d-number of different basis for every-single
existing cases. As a result, if we apply rule-2 L-times, then we will have dL number of different basis.
At the same time, the number of parameters we used is d2 for each Fi and d3 for each multiplication.
This means that the number of parameter is O(Ld3) while the number of basis functions we create
in the final linear sum is O(dL). As a result, such construction can potentially lead to a compact,
expressive, and subband-limited PNF.

Note that what’s described above is merely an intuitive argument, since many of the conditions might
be difficult to hold strictly (e.g. different basis are created for multiplication on the right-hand-sides
of Definition 1.2). Empirically, we found that while these conditions are only loosely held true, such
construction is still capable of creating a large number of basis functions. This observation aligns
with the analysis of MFN-like network can a large number of basis functions, presented in MFN [9]
and BACON [13]. In the rest of the subsection, we will show some construction of PNF-controllable
set of subbands with various basis functions.
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1.4.1 Fourier Basis

In this section, we will consider Fourier basis of Rd → R parameterized by ω ∈ Rd: BFourier =
{exp(iωTx)}ω . A commonly used subband definition (as shown in Equation (1) of the main text) is
following:
Definition 1.6 (Fourier Subband). The Fourier subband for Fourier basis of Rd → R functions can
be defined with a lower band limit α ∈ R+, an upper band limit β ≥ alpha, an orientation d ∈ Rd

and an angelar width γ ∈ R+:

RF (α, β,d, γ, p) =
{
ω|α ≤ ∥ω∥p ≤ β, ∥d∥ = 1,ωTd ≥ cos(γ) ∥ω∥2

}
. (37)

With these subbands, we can find PNF-controllable set of subbands in the following format:
Theorem 9 (Fourier PNF-Controllable Set of Subbands with L2 norm). For |γ| < π

4 , define
SFourier−L2(d, γ) = {RF (α, β,d, γ, 2)|∀0 ≤ α ≤ β}. Each subband in S can be parameterized
with tuple (α, β). SFourier−L2(d, γ) is a PNF-Controllable Set of Subbands with the following
definition of binary relation ⊗FF :

(α1, β1)⊗FF (α2, β2) = (
√
cos(2γ)(α1 + α2), β1 + β2). (38)

Proof. It’s sufficient to show that ω1 ∈ R(α1, β1,d, γ, 2), and ω2 ∈ R(α2, β2,d, γ, 2), then ω1 +

ω2 ∈ R(
√

cos(2γ)(α1 + α2), β1 + β2,d, γ, 2). Let’s start with the bound in the norm:

∥ω1 + ω2∥ =
√
∥ω1∥+ ∥ω2∥+ 2ωT

1 ω2 (39)

=

√
∥ω1∥2 + ∥ω2∥2 + 2 ∥ω1∥ ∥ω2∥ cos(θ), (40)

where θ is the radius of the angle between ω1 and ω2. Since cos(θ) ≤ 1, it’s easy to show that:

∥ω1 + ω2∥ =

√
∥ω1∥2 + ∥ω2∥2 + 2 ∥ω1∥ ∥ω2∥ cos(θ) (41)

≤
√

β2
1 + β2

2 + 2β1β2 = β1 + β2. (42)

Now we need to show that ∥ω1 + ω2∥ ≥ α1 + α2. By Eq. (37), we know that ω1’s angle with
d is at most γ. Similarly, ω2’s angle with d is also at most γ. With that said, the largest angle
between ω1 and ω2 should be less than 2γ. As a result, cos(θ) ≥ cos(2γ). Note that |γ| ≤ π

4 , so
cos(θ) ≥ cos(2γ) ≥ cos(π2 ) = 0. With that, we can show:

∥ω1 + ω2∥ =

√
∥ω1∥2 + ∥ω2∥2 + 2 ∥ω1∥ ∥ω2∥ cos(θ) (43)

≥
√
α2
1 + α2

2 + 2 ∥ω1∥ ∥ω2∥ cos(θ) (44)

≥
√
α2
1 + α2

2 + 2α1α2 cos(2γ) (Possible since cos(θ) ≥ cos(2γ) ≥ 0) (45)

=
√
cos(2γ)(α2

1 + α2
2 + 2α1α2) + (1− cos(2γ))(α2

1 + α2
2) (46)

≥
√
cos(2γ)(α2

1 + α2
2 + 2α1α2) Since cos(2γ) ≤ 1 and α1, α2 ≥ 0 (47)

=
√
cos(2γ)(α1 + α2). (48)

Finally, we want to show that (ω1 + ω2)
Td ≥ cos(γ) ∥ω1 + ω∥:

(ω1 + ω2)
Td = ωT

1 d+ ωT
2 d (49)

≥ cos(γ) ∥ω1∥+ cos(γ) ∥ω2∥ (50)
= cos(γ)(∥ω1∥+ ∥ω2∥) (51)
≥ cos(γ) ∥ω1 + ω2∥ by Triangular inequiality of L2-norm. (52)
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Intuitively, the smaller the angel γ is, the tighter we are able to guarantee the lower-bound compared
to α1 + α2. With this said, if we want to build a subband with lower-bound l and angle γ, one way to
achieve it is to set α1 = 0 and α2 = l√

cos(2γ)
. But we found empirically that the network perform

better when the lower-band-limit is overlap with the upper-band-limit. We will discuss this more in
Sec. 2.

1.4.2 Fourier L1

As mentioned in Section 3.3.2 of the main paper, when working in image domain, a preferable way
to define the PNF-controllable set of subbands is through L-∞ norm. This is because the L-∞ norm
creates subband that can tile the corner of the frequency domain created by the image without going
over the Nyquist rate. But to achieve it, we need to restrict each subband within a total-vertical
or total-horizontal region. Intuitively, those regions contains vectors whose L-∞ norm is taking
absolute value of the same dimension:
Definition 1.7 (L-∞ dimension consistent region). We call a region R∞(n, s) ⊂ Rd has consistent
L-∞ dimension of n and sign s ∈ {+1,−1}if:

1. ∀d ∈ R, ∥d∥∞ = |d[n]|, where d[n] denotes the nth value of vector d; and

2. ∀d1,d2 ∈ R, sign(d1[n]) = sign(d2[n]) = s.

Figure 1: Visualization
of the four L-∞ consis-
tent regions in R2, one
color for each.

Please refer to Fig. 1 for the four L-∞ dimension consistent region in R2.
In general, for Rd, there are 2d number of such regions.

It’s easy to see the following property of R∞(n):
Lemma 10. If d ∈ R∞(n, s), then ad ∈ R∞(n, s) for a ∈ R and a > 0.

Proof.
argmax

i
|(ad)[i]| argmax

i
|ad[i]| = argmax

i
|a||d[i]| = argmax

i
|d[i]| = n.

(53)

Since a > 0, sign(ad[n]) = sign(d[n]).

With this, we are able to prove a similar version of Theorem 9 for L-∞
norm but restricted each set of subband to be within only a region with
consistent L-∞ dimension:
Theorem 11 (Fourier PNF-Controllable Set of Subbands with L-∞ norm). Let R∞(n, s) be a region
of consistent L-∞ dimension of n defined for Rd. Define the set of subbands as following:

SFF−L∞(d, γ, n) = {RF (α, β,d, γ,∞)|∀0 ≤ α ≤ β,RF (α, β,d, γ,∞) ⊂ R∞(n, s)}. (54)
Each subband in SFF−L∞ can be parameterized with tuple (α, β). SFF−L∞(d, γ) is a PNF-
Controllable Set of Subbands with the following definition of binary relation ⊗FF :

(α1, β1)⊗FF∞ (α2, β2) = (α1 + α2, β1 + β2). (55)

Proof. Similar to the proof in Theorem 9, we will show that if ω1 ∈ RF (α1, β1,d, γ,∞) =
R1 ∈ SFF−∞ and ω2 ∈ RF (α2, β2,d, γ,∞) = R2 ∈ SFF−∞, then we will have ω1 + ω2 ∈
RF (α1 + α2, β1 + β2,d, γ,∞) ∈ SFF−∞.

First, we show that ω1 + ω2 is still within R∞(n). As shown in the proof for Theorem 9, we have
(ω1 + ω2)

Td ≥ cos(γ) ∥ω1 + ω2∥ . This means that ω1 + ω2 ∈ R∞(n) by Theorem 10.

Since R1, R2, and ω1 + ω2 are both in SFF−∞, we will use this property to derive the upper bound:
∥ω1 + ω2∥∞ = |(ω1 + ω2)[n]| ≤ |ω1[n]|+ |ω2[n]| = ∥ω1∥∞ + ∥ω2∥∞ = β1 + β2. (56)

If s > 0, then we know ω1[n], ω2[n] > 0 and (ω1 + ω2)[n] > 0. As a result, ∥ω1,2∥∞ = ω1,2[n] ≥
α1,2 respectively. This implies ∥ω1 + ω2∥∞ = ω1[n] + ω2[n] ≥ α1 + α2.

Similar arguement can be applied when s < 0.

9



Figure 2: Illustration of how subbands within PNF-Controllable Sets of subbands transform under
multiplication. We illustrate subbands defined in ??. So x-axis is ω[1] and y-axis is ω[2]. The left
four figures shows the operation under ⊗FF (Theorem 9) and the right four figures shows operations
under ⊗FF∞ (Theorem 11). The top two rows are S1 and S2, and the last row is S1 ⊗ S2 with ⊗ to
be the corresponding binary functions defined in the PNF-controllable set of subbands.

Note that this theorem shows that the rectangular tiling mentioned in Equation (3) of the main text is
actually operating under a PNF-controllable set of subbands. We also provide an illustration of these
two subband binary functions in Fig. 2.

1.4.3 RBF

Theorem 12 (RBF PNF-Controllable Set of Subbands). Assume the RBF-basis functions for Rd → R
in the form BRBF = {exp(− 1

2γ ∥x− µ∥)} parameterized by tuple (γ, µ), where γ ∈ R and µ ∈ Rd.
Define subband in the following way:

SRBF (M,γ) = {exp(−1

2
γ ∥x− µ∥)|µ ∈ Cvx(M)}, (57)

where M ⊂ Rd and Cvx(M) denotes the convex hull using all vectors of M . Then

SRBF = {SRBF (M,γ)|∀M ⊂ Rd, |M | < ∞, γ > 0} (58)

is a PNF-controllabl Set of Subbands with the following definition of binary relation ⊗RBF :

(M1, γ1)⊗RBF (M2, γ2) = (M1 ∪M2, γ1 + γ2). (59)

Proof. (Sketch) This is because by applying Eq. (7) , we have µ′ is a weighted sum of µ1 and µ2

with weights normalized to 1. With that said, µ′ is in the convex hull of where µ1 and µ2 is sampling
from. The operation on γ is taken directly from Eq. (7).

We can easily generalize Theorem 12 to subband definition where γ samples from an interval since it
only makes sense when γ > 0. The abovementioned theory suggests that every-time we multiply two
RBF basis PNF, we will increase the region of the convex hull of M and increase the γ (which is
inverse to the scale of the RBF).

1.4.4 Gabor

We will show how to combine RBF and Fourier cases of the PNF-controllable set of subbands to
create a PNF-controllable set of subband for Gabor basis.
Theorem 13 (Multiplication Rule of PNF-Controllable Set of Subbands). Let B1 and B2 be two basis
for function Rd → R that satisfies Definition 1.2. Let S1,⊗1 and S2,⊗2 be the PNF-controllable
set of subbands for B1 and B2 respectively. Assume the subbands for B1 and B2 are parameterized
by θ1 ∈ Rn and θ2 ∈ Rm correpsondingly. Define B3 = {b1b2|b1 ∈ B1, b2 ∈ B2}. Define subband
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as S3(θ1, θ2) = {b1b2|b1 ∈ S1(θ1), b2 ∈ S2(θ2)}, where S1 and S2 are subbands for B1 and B2

correspondingly. Then following is a PNF-controllable set of subbands for basis B3:

S3 = {S3(θ1, θ2)|S1(θ1) ∈ S1, S2(θ2) ∈ S2}, (60)

whose corresponding binary function is defined as :

(θ1,a, θ2,a)⊗3 (θ1,b, θ2,b) = (θ1,a ⊗1 θ1,b, θ2,a ⊗2 θ2,b). (61)

Proof. (Sketch) It’s easy to show that B3 satisfies Definition 1.2 using Theorem 5. Then we can show
that multiplication of two basis function in B3 moves S3 according to ⊗3 by leveraging the definition
of S1,⊗1 and S2,⊗2.

The PNF-controllable sets of subbands for Gabor basis can be obtained by applying Theorem 13 to
combine a Fourier set of subbands (e.g. Theorem 9) and the RBF set of subbands (e.g. Theorem 12).

1.5 Different Instantiation of PNFs

In the previous sections, we’ve shown that 1) PNF allows different architectures, and 2) PNF allows
different choices of basis, and 3) PNF can be designed to be subband-limited without losing its
compositionality. In this section, we will show several instantiation of the PNFs. Specifically, for
each design of the PNF, we will use the following steps:

1. Identify the subband of interests. These subbands should be able to cover all necessary basis
functions needed to reconstruct the signal correctly.

2. Organize the subbands according to the PNF-Controllable sets of subbands.
3. For each PNF-Controllable set of subband, create a PNF whose outputs are subband-limited

to the corresponding subband of interests in the set.
4. The final PNF is subs of all the previous PNF.

In this section we will use the abovementioned framework to show how PNF can be instantiated in a
different forms, using different basis and network architectures. The detailed instantiation of Fourier
PNF will be discussed in Sec. 2.

Gabor PNF. Similar to MFN [9], we use the same network architecture as Fourier PNF, but
changing the basis into a Gabor basis (as shown in Theorem 3). With the Gabor basis, the definition
of the subbands requires to include a partition in the spatial domain as shown in Theorem 12. For
simplicity, we can set γ ∈ [0,∞) (i.e not trying to control γ) and set M in the following way:

M =

{
siei + sjej |i ̸= j, si,j ∈ {0.5,−0.5}, ei[k] =

{
1 if k = i

0 otherwise

}
. (62)

Intuitively, ei is an one-hot vector with the ith dimension to be 1. An example of M in 2D is
{[0.5, 0.5], [0.5,−0.5], [−0.5, 0.5], [−0.5,−0.5]}, which includes all the points in the rectangle of
[−0.5, 0.5]2. Since all data are sampled withitn [−0.5, 0.5]d, this means the only contorl we want to
enforce on µ is that it should live within the boundary [−0.5, 0.5]d. With this, we are able to create a
subband-limited version of Gabor MFN, whose output is a linear sums of the Gabor basis.

RBF PNF. Here we will show an interesting way to design an RBF PNF which corresponds to
subdividing a rectangular grid and interpolating it with a Gaussian. Here we will use the subband
defined by Definition 1.5. We are interesting in modeling the following sets of subbands, one for each
level l: SRBF (l) = SRBF (Ml, 2

nγ0), where Ml = {
∑d

i=1
ki

2l
ei|ki ∈ [−2l−1, 2l−1)} is a set of grid

with resolution 2l. While Ml contains 22l number of basis, this can be created through function
composition very compactly through PNF. First, define f(x) ∈ Rd2

that each f(x)[i] is an RBF
function which takes a corner in [−0.5, 0.5]d as µ and γ0 as the scale. Then we define the network in
the following recursive way:

F0 = f(x), Fk+1 = (Ak+1Fk(x))⊙ (Bk+1Fk(x)), (63)
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where ⊙ denotes Hardarmard product and A,B are real-value matrices. We can use Theorem 8 and
Theorem 12 to show that Fk is subband limited by SRBF (k) and it creates all µ’s that’s defined by
Ml. The output of Fk can be viewed as an Gaussian interpolated version of points Ml, where the
value of each Ml is given by the network parameters A’s and B’s.

Pairwise Gabor PNF. For the previous definition of Gabor PNF, we are not attempting to control
the spatial content of the signal (i.e. there is no ability to pull out a network output with specific
γ and M region). Fortunately, the PNF allows us to design a netowrk architecture to enable such
control for both the spatial RBF part and the Fourier part. The idea is to have a branch of the network
to generate RBF PNF Hk,l that’s subband limited by different Mk at different levels of 2lγ0. This
is achievable by creating an essemble of network using equation Eq. (63). Similarly, Fourier PNF
creates a series of PNFs Gn,m, each of which is subband limited in different scale (indexed by n) and
different orientation (indexed by m). We want to design the Pairwise Gabor PNF to be the sum of
pairwise product of Fk,l and Gn,m:

F (x) =
∑

k,l,n,m

a(k, l, n,m)Hk,l(x)Gn,m(x), (64)

where ak,l,n,m are trainable parameters. It’s easy to show that the output of such design is subband
limited applying Theorem 13. And this network design allows us to remove either certain spatial area
by setting ak,l,·,· = 0, or to remove certain frequency content by setting a·,·,n,m = 0.

We will show results of some of these designs in the image expressivity experiments (i.e. Fig. 4.

2 Implementation Details

As mentioned in Sec. 3.3.3 of the main text, we leverage Theorem 2 to factorize F

F (x) =
∑

j Fj(x), Fj(x) = Gj(x, bj , bj)WjnZj,n(x), (65)

Zj,1(x) = Gj(x, 0,∆1), Zj,k(x) = Gj(x, 0,∆k)WiZj,k−1(x), (66)

where Gj(x, a, b) is subband limited in RF (a, b, d(θj), δ,∞) and ∆k = bk − bk−1. We instantiate
this architecture by setting Gj(x, a, b) into a linear transform of basis sampled from the subband to
be limited:

Gj(x, a, b) = Wiγj(x), γj ∈ RF (a, b, d(θj), δ,∞)d,Wi ∈ Rh×d, (67)

where h and d is the dimension for the output and the feature encoding. We realize the Wi as linear
layers with no bias. γj ∈ RF (a, b, d(θj), δ,∞)d are initialized randomly, with θ and the radius
chosen uniformly in RF (a, b, d(θj), δ,∞)d.

For experiments involving 2D images (e.g., image fitting, texture manipulation), the output dimension
h for Gj(x, bj , bj) is set to be 3 (RGB output values). The input dimension d for Zj,1(x) =
Gj(x, 0,∆1) is set to be 2 (x and y coordinates). Otherwise the hidden dimensions are chosen to be
128. For 3D SDF fitting, a hidden dimension of size 100 is chosen, and for NeRF, a hidden dimension
of 86 is chosen. The input dimension for 3D SDF fitting and for NeRF is 3 (we follow BACON’s
setting of modeling irradiance fields). The output dimension is 1 for 3D SDF fitting and 4 for NeRF
(RGB and Occupancy values).

Tiling For images, the region of interest chosen for tiling is [−B,B]2 where B is band limit, set
to be 64, following BACON [13]. Eq. 2 and Eq. 3 describe a potential tiling with no overlapping
fans. In practice, for fitting tasks we found it beneficial to use overlapping fans, and so consider the
following, modified tilings:

Tcirc = {Sij = RF (bi, b
′
i+1,d(θj), δ, 2)|b1 ≤ · · · ≤ bn−1, b

′
2 ≤ · · · ≤ b′n,

θj = jδ, δ =
π

m
, 1 ≤ j ≤ 2m},

Trect = {Sij = RF (bi, b
′
i+1,d(θj), δ,∞)|b1 ≤ · · · ≤ bn−1, b

′
2 ≤ · · · ≤ b′n,

θj = jδ, 1 ≤ j ≤ 2m, j ̸= m}.
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BACON PNF

BACON PNF

Figure 3: BACON: The bottom row shows the output of each layer which is upper band limited. The
top row (columns 2-4) shows the difference between the output of a given layer and the one before it.
PNF: The top row shows the output of each layer which is both upper and lower band limited. The
bottom row (columns 2-4) shows the addition of the output at a given layer and the one before it.

This allows us to cover the space of frequency basis more compactly and learn a more faitfull fitting
of a given signal. In particular, we set b1 ≤ · · · ≤ bn−1 to be 0, 1

16 ,
1
8 ,

1
4 and b′2 ≤ · · · ≤ b′n to be

0, 1
8 ,

1
8 ,

1
4 ,

1
2 . m is chosen to be 1

8 , covering the frequency band with 8 orientations. By default we
use rectangular tiling for our experiments with PNF.

For experiments that requires higher dimensional inputs (e.g. 3D), we mainly use a generalization of
the rectangular tiling. We will first create a tile for each L-∞ dimensional consistent region. In the
case of 3D, we will create one PNF-controllable set of subbands for each of the following: R∞(1, 1),
R∞(2, 1), and R∞(3, 1). We use the same division of bandwidth within the construction of each
of these PNF-controllable subband sets, but scaled it to correpsnding max bandwidth according
to different applications. While this already covers all the basis function of interests, we found it
improves the performance if we tile the frequency space in an overcomplete way. Specifically, for each
pairs of the eight octants in [−B,B]3 where B is the band-limit, we will create three non-overlapping
PNF-controllable sets of subbands with the L-∞ norm. One interesting trick we leveraged is that the
three non-overlapping PNF-controllabel sets of subband within the same octant can be implemented
with one band-limited PNF. With this said, for 3D, we will need one band-limited PNF for each axis
and one for each pairs of octants. This leads to an enssemble 7 band-limited PNFs.

3 Experiment Details

3.1 Expressivity

Images For the image fitting task (Sec. 4.1, Tab. 1), we use the DIV2K [1] dataset and downsample
images to 2562 resolution. For evaluation, we sample the fields at 512 and compare with the original
resolution images. We compare our method against state-of-the-art neural fields of BACON [13],
Random Fourier Features [16] and SIREN [15]. Fig. 4 corresponds to Tab.1 of the main paper. We
add here SD values corresponding to an averaged over all 25 images in DIV2K [1] dataset. In the
paper we report values rectangular tiling. In Fig. 4 we also add the values corresponding to circular
tiling. Additional results corresponding to Fig. 2 of the main paper are given in Fig. 3
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Figure 4: Image Fitting on the DIV2K dataset. BAC stands for BACON. Rectangular stands for PNF
using Trect tiling, and Circular stands for PNF using Tcirc tiling. Gabor is Gabor PNF and PWGabor
is the Pairwise Gabor PNF, both are described in Sec. 1.5

Method PSNR SSIM

RFF 28.72 ± 2.88 0.834 ± 0.053
SIREN 29.22 ± 3.08 0.866 ± 0.053
BAC 28.67 ± 2.83 0.838 ± 0.048
BAC-L 29.44 ± 3.03 0.871± 0.047
BAC-M 29.44 ± 3.03 0.871 ± 0.047

PNF (Rectangular) 29.47 ± 3.08 0.874 ± 0.047
PNF (Circular) 28.83 ± 3.04 0.856 ± 0.052
PNF (Gabor) 29.39 ± 2.97 0.875 ± 0.047
PNF (PWGabor) 29.22 ± 2.95 0.872 ± 0.047

Neural Radiance Field The method devised by NeRF [14] can be used for novel view synthesis. It
operates on a dataset of images from different views with known camera parameters. NeRF queries a
neural field M for an RGB and occupancy value, given a 3D point on a ray which passes through an
image pixel that extends from a camera center. The RGB and occupancy values are then aggregated
using standard volumetric rendering pipeline. After training, novel views are rendering by evaluating
the relevant rays. For test views, evaluation is performed by measuring the difference between
generated views and ground truth views, using SSIM and PSNR measures.

For the choice of neural field M , we evaluate our method on the multiscale Blender dataset [2] with
images at full (64×64), 1/2, 1/4, and 1/8 resolution. We compare our method to BACON which is
state-of-the-art on this task. We use the same training scheme as in BACON for this task. In Fig. 4,
we also provide a visual comparison for the drums scene, trained at full (512×512), 1/2, 1/4, and
1/8 resolution.

An Adam optimizer is used for training with 1e6 training iterations. Learning rate is annealed
logarithmically from 1e − 3 to 5e − 6. For BACON, 8 hidden layers are used with 256 hidden
features. As mention in Sec. 2, for our network, 4 layers are used with hidden dimension of 86.
This results in the total memory which is slightly below that of BACON. Rays for the multiscale
Blender dataset are in [−4, 4]3. We follow follow BACON in setting the maximum bandwidth to be
64 cycles per unit interval and in evaluating without the viewing direction as input. We also adapt
the hierarchical sampling of NeRF [14]. For a fair comparison to BACON we consider BACON’s
per-scale supervision using the loss of

∑
i,j,k

∥(Ik(ri, tj)− IGT,k(ri)∥22, for i, j, and k being index rays,

ray positions, and dataset scales. Tab. 3 of the main text provides the result averaged over all scenes
in the Blender dataset for 1x (64×64) resolution and for the average over 1x, 1/2, 1/4, and 1/8
resolution. Full results are provided in Tab. 1.

3D Signed Distance Field As mentioned in the main text, we evaluate the performance of our
method against the Stanford 3D scanning repository3. In Tab. 2 of the main text we report the
averaged for the scenes of Armadillo, Dragon, Lucy, and Thai Statue. Individual per-object scores
are provided in Tab. 2 where we consider an additional evaluation metric of normal consistency.
Normal consistency (NC), first computes the nearest points using Campfer Distance and then then
computes whether the surface normal is within certain threshold. NC is the percentage that lands
within the threshold. In Tab. 2, oracle corresponds to the upper bound for the performance, computed
by sampling two sets of points form the ground truth and computing the evaluation metrics on them.
We compare our method to SIREN [15] and BACON [13]. We train each network to fit a signed
distance function (SDF). For BACON and SIREN, 8 hidden layers are used with 256 hidden features.
The models are extracted at 5123 resolution using marching cubes and evaluated using F-score and
Chamfer distance.

3http://graphics.stanford.edu/data/3Dscanrep/
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Table 1: NeRF Fitting for 642 resolution. Full results on 1x (642), 1/2, 1/4, 1/8 resolutions.

BACON [13] PNF (Ours)

300 epochs 500 epochs 300 epochs 500 epochs

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

LEGO 1x 29.62 0.969 30.07 0.973 30.40 0.967 31.10 0.965
LEGO 1/2x 29.90 0.955 30.65 0.957 30.41 0.962 31.17 0.951
LEGO 1/4x 29.91 0.939 30.46 0.939 31.08 0.947 31.75 0.944
LEGO 1/8x 28.87 0.913 28.85 0.917 30.39 0.921 30.86 0.934

Chair 1x 29.89 0.914 30.93 0.958 31.05 0.966 30.91 0.983
Chair 1/2x 30.97 0.898 34.93 0.968 35.00 0.949 34.88 0.975
Chair 1/4x 30.40 0.943 37.04 0.973 37.16 0.937 37.06 0.956
Chair 1/8x 29.65 0.947 35.92 0.964 36.29 0.929 36.55 0.956

Drums 1x 26.10 0.937 28.24 0.923 28.30 0.932 28.12 0.958
Drums 1/2x 28.38 0.942 30.20 0.956 30.05 0.939 30.16 0.960
Drums 1/4x 28.63 0.924 31.09 0.946 31.52 0.925 31.44 0.955
Drums 1/8x 32.79 0.950 32.25 0.940 32.64 0.954 32.96 0.946

Ficus 1x 25.61 0.925 28.18 0.953 29.31 0.965 30.34 0.976
Ficus 1/2x 31.49 0.955 33.12 0.975 30.37 0.957 30.45 0.962
Ficus 1/4x 35.48 0.973 35.55 0.979 30.96 0.945 30.33 0.943
Ficus 1/8x 37.98 0.971 38.00 0.977 30.35 0.922 28.09 0.912

Hotdog 1x 30.82 0.981 33.82 0.981 34.62 0.966 34.80 0.983
Hotdog 1/2x 29.39 0.973 34.37 0.974 34.15 0.949 34.35 0.975
Hotdog 1/4x 29.79 0.929 32.44 0.953 32.49 0.937 32.55 0.956
Hotdog 1/8x 28.72 0.939 32.28 0.940 31.87 0.929 32.15 0.956

Materials 1x 23.67 0.901 22.17 0.902 25.13 0.924 24.92 0.956
Materials 1/2x 25.70 0.946 24.17 0.915 28.23 0.935 27.85 0.972
Materials 1/4x 26.70 0.928 25.46 0.924 27.01 0.913 26.72 0.951
Materials 1/8x 26.01 0.806 24.47 0.842 27.68 0.860 26.62 0.863

Mic 1x 30.53 0.981 29.67 0.979 30.55 0.983 30.12 0.979
Mic 1/2x 34.02 0.972 31.72 0.973 33.98 0.975 33.52 0.976
Mic 1/4x 34.69 0.965 33.37 0.954 35.95 0.957 34.60 0.957
Mic 1/8x 35.54 0.958 36.00 0.954 35.35 0.953 35.52 0.952

Ship 1x 28.30 0.878 24.99 0.789 29.74 0.795 24.35 0.795
Ship 1/2x 29.74 0.901 27.02 0.812 27.11 0.899 27.17 0.829
Ship 1/4x 30.40 0.910 28.54 0.854 30.70 0.914 27.41 0.828
Ship 1/8x 31.42 0.931 29.00 0.892 31.40 0.891 28.17 0.888

We follow a similar training procedure to BACON [13]. Training data consists of sampled locations
from the zero level set, where Laplacian noise is added for each point, as in [6]. As noted in BACON,
the width of the Laplacian has a large performance impact, and so we use the same coarse and
fine sampling procedure of BACON, where “fine” samples are produced using a small variance of
σ2

L = 2e-6 and “coarse” samples with σ2
L = 2e-2. Samples are drawn in the domain [−0.5, 0.5]3 and

the following loss is used: λSDF∥yc − yc
GT∥22 + ∥yf − yf

GT∥22, where y is the generated output, yGT
is the ground truth value, the f and c indicate fine and coarse samples. As in BACON, λSDF is set to
0.01 for all experiments. SIREN and BACON are used as baselines, each trained for 200, 000 with a
batch size of 5000 coarse and 5000 fine samples. The same optimization as for neural radiance field
is used here.
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Table 2: 3D shape fitting. CD is Chamfer Distance (×106). FS stands for F-score and NC stands for
normal consistency.

Armadillo Dragon

#Iters CD NC FS CD NC FS

SIREN 2.86 99.16 99.92% 11.9 97.03 99.43%

BACON 2.86 99.12 99.91% 9.57 96.94 99.65%
BACON-last 2.88 99.05 99.91% 5.11 96.92 99.67%
BACON-mean

200k

2.86 99.07 99.91% 9.80 96.83 99.57%

200k 2.87 99.14 99.91% 1.72 97.02 99.99%
100k 2.86 99.14 99.92% 1.73 96.99 99.99%
60k 2.87 99.13 99.91% 1.74 96.93 99.99%
40k 2.88 99.11 99.90% 1.76 96.84 99.99%

Ours

20k 2.91 99.05 99.91% 1.82 96.67 99.99%

Oracle 2.85 99.15 99.92% 1.67 97.84 100.00%

Lucy Thai

#Iters CD NC FS CD NC FS

SIREN 18.7 98.00 99.74% 2.61 94.71 99.96%

BACON 18.1 97.79 99.82% 2.60 94.57 99.97%
BACON-last 4.95 97.03 99.73% 2.60 94.59 99.97%
BACON-mean

200k

22.1 97.94 99.94% 2.61 94.42 99.97%

200k 1.75 97.89 100.00% 2.61 94.56 99.97%
100k 1.75 97.87 100.00% 2.60 94.57 99.96%
60k 1.76 97.81 100.00% 2.64 94.45 99.96%
40k 1.77 97.78 100.00% 2.67 94.30 99.97%

Ours

20k 1.81 97.66 100.00% 2.75 93.95 99.96%

Oracle 1.71 98.54 99.99% 2.54 95.55 99.97%

L-1 L-2 L-3 L-1 L-2 L-3

Te
xt

ur
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Figure 5: Additional texture transfer results. We optimize specific layers of the neural field. L-1
(layers 1-4), L-2 (layers 2-4), L-3 (layers 3-4).
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3.2 Texture Transfer

For texture transfer, a random cat image is used (free-use licence) and texture image is used from
[7]. As noted in the main text, we query the network on a 1282 grid and apply either (a) Content and
style loss objectives as given in [10], or (b) Text-based texture manipulation objectives as given by
CLIPStyler [12]. For baseline comparison, the same objectives are applied directly on the cat image,
and the cat image pixel values are directly optimized.

For (a), we use the same objectives (content and style loss), loss weights and optimizer as used
in the public code of https://pytorch.org/tutorials/advanced/neural_style_
tutorial.html and [10]. Similarly, for (b), we similarly use the same we objectives, loss
weights and optimizer as used in the official code of CLIPStyler [12] in https://github.com/
cyclomon/CLIPstyler. Additional texture transfer corresponding on the Fig. 5(a) is given in
Fig. 5.

3.3 Scale-space Representation

In this section, we will first show the derivation of the PNF used for the scale-space representation.
Then we will provide detailed description of the experiment and provide numerical results.

3.3.1 Derivation of Scale-space Fourier PNF

Suppose the signal of interest can be represented by Fouier bases as g(x) =
∑

n αn exp (ω
T
i x),

then we know analytically the Gaussian convolved version should be f(x,Σ) =∑
n αn exp(ω

T
i Σωi) exp(iω

T
i x). If we assume that our Fourier PNF can learn the ground

truth representation well, then one potential way to achieve this is setting γ(x,Σ)n =
exp(− 1

2ω
T
nΣωn) exp(−iωT

nx). Doing this naively with Fourier PNF only yields a bad approxi-
mation, since each coefficient is off by an error term E(n, In) from the ground truth. We will derive
such error term in detail below.

For a particular Fk (Equation (4) in the main text), let F̃k(x,Σ) be the output of naively replacing the
Fourier basis encoding γ with the intergrated Fourier basis encoding: γ(x,Σ). Then we have:

E
x∼N (µ,Σ)

[Fk(x)] (68)

=
∑
n

αn exp

(
−1

2
ωT
nΣω

T
n

)
exp(iωT

nx) (69)

=
∑
n

exp

(
−1

2
ωT
nΣω

T
n

) ∑
I∈In

αnI exp

i

∑
j∈I

ωj

T

x

 (70)

=
∑
n

∑
I∈In

exp

(
−1

2
ωT
nΣω

T
n

)
αnI exp

i

∑
j∈I

ωj

T

x

 (71)

=
∑

n,I∈In

αnI exp

−1

2

∑
j∈I

ωT
j Σω

T
j

 exp

−1

2

∑
j ̸=l,j,l∈I

ωT
j Σω

T
l

 exp

i

∑
j∈I

ωj

T

x


(72)

=
∑

n,I∈In

αnI

(∏
l∈I

exp

(
−1

2
ωT
l Σω

T
l + iωT

nx

))
︸ ︷︷ ︸

PNF output:F̃k(x,Σ)

exp

−1

2

∑
l,j∈I,l ̸=j

ωT
l Σω

T
j


︸ ︷︷ ︸

Error terms Ek(n,In)

, (73)

where In include all indexes to choose one basis per γj layer (as defined in Equation (6) of the main
text) such that ∀I ∈ In,

∑
l∈I ωl = ωn. We use αnI to denotes the coefficients gathered along the

index of I . We can compute these coefficients analytically by applying similar analysis as MFN [9].
The formua above shows that F̃k(x,Σ) is not a good approximation since each term αn,I is off by
different factor Ek(n, In).
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Table 3: Numerical results for scale-space interpretation experiments. IPE: intergrated positional
encoding [2]; RIPE: intergrated positional encoding with randomly fourier features; IPE-sup: su-
pervised IPE with both 1x and 1/4x resolution. While PNF is only supervised with 1x, it’s capable
of inerpolating into smaller scale without breaking the image structure (as shown in good SSIM).
This is more impressive as the basis functions for PNF is sampled from random directions (i.e. not
necessarily aligned with the eigenvectors directions of the test-time Gaussian covariances). Doing the
same thing to IPE results in worse performance as shown in RIPE.

PSNR SSIM

Model 1x 1/2x 1/4x 1/8x 1x 1/2x 1/4x 1/8x

RIPE 39.41 6.35 6.54 6.63 96.95 20.43 22.73 23.8
IPE 37.58 24.62 21.94 14.68 94.67 73.88 58.51 37.95
BACON 40.63 8.88 7.19 7.2 97.39 43.11 28.16 29.66
PNF 36.45 27.07 29.74 24.6 95.98 86.30 83.33 72.66
RIPE-sup 50.11 11.91 26.64 10.69 99.62 15.51 73.24 11.27
IPE-sup 34.76 26.8 30.00 18.41 90.97 84.81 89.65 65.7

Fortunately, we know that all bases chosen from In must come from a specific set of that shares
the same angle (i.e. the limiting-subbands all shared a direction vector d and an angular width γ
by the definition of Fi), but with different range of for the norm ∥ω∥p. This suggests that we can
approximate the error terms in the following way:

Ei(·, I) ≈ exp

−1

2
dT
I Σd

T
I

∑
k,l∈I,k ̸=l

r̄kr̄l

 = Ai(Σ), (74)

where r̄k, r̄l are the medium radius of each subband within the subband series Si. Specifically,
r̄l =

1
2 (αl + βl) if the lth subband used for Fk is Sl ∈ Si lower- and upper- bounded by αl and

βl. This way, the error estimation only depends on the PNF-controllable set of subbands used to
developed the network Fk, but not the network parameter. This means we can modify the network
architecture of each Fi in test-time to compute Ak(Σ) to approximate error term Ek(·, I):

E
x∼N (µ,Σ)

[Fk(x)] (75)

≈
∑

n,I∈In

αnI

(∏
l∈I

exp

(
−1

2
ωT
l Σω

T
l + iωT

nx

))
Ak(Σ) (76)

= Ai(Σ)
∑

n,I∈In

αnI

∑
n,I∈In

(∏
l∈I

exp

(
−1

2
ωT
l Σω

T
l + iωT

nx

))
(77)

= Ai(Σ)F̃k(x,Σ) (78)

With this, our scale-space interpolation Fourier PNF can be written as sums of outputs of all subband
series Sk:

F̃ (x,Σ) =
∑
k

Ak(Σ)F̃k(x,Σ). (79)

This approximation will be exact if γ = 1 and α = β for all subbands. But it also means we need
infinite number of Fk to tile the space. The smaller γ is, the more error can this potentially occurs.
Similarly, the larger |α− β| is, the more error this approximate can creates. This shows a trade-off
between compute and the approximation error.

3.3.2 Details

The image used for Scale-space Representation is taken from the Set12 dataset [17] and downsampled
to 1282 resolution. We train all models for 1500 iterations with early stopping when the training
PSNR reaches 40. All models use Adam optimizer with learning rate 1e− 3. The ground truth is
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generated from applying Gaussian filter of size 3× 3 (for 1/2x), 5× 5 (for 1/4x), and 65× 65 (for
1/8x). We compute the ground truth using OpenCV [3]. For Σ, we use anisotropic covariance matrix
of the form Σ = σ2I with I being the 2× 2 identity matrix. We set σ2 = 1 for 1x, σ = 2 for 1/2x,
σ = 4 for 1/4x, and σ = 8 for 1/8x. For PNF, we used the spherical tiling Trect with 10 subbands
with 2-times overcomplete. So each subband has angular width of 2

12 as we need to restrict the
subband into either total-vertical or total-horizontal area (i.e. R∞(1,+1) or R∞(0,+1) as definted
in Definition 1.7). The band limits for each intermediate residual output are set to be the following
fraction of the Nyquist rates: [0, 1

8 ], [
1
16 ,

1
4 ], [

1
8 ,

1
2 ], and [ 14 , 1]. In this experiment, we compare to the

following baselines:

1. RIPE: we use intergrated random Fourier features in the following form:
exp

(
− 1

2ω
TΣω

)
sin(ωTx). These intergrated random Fourier features will be fol-

lowed by a ReLUMLP.
2. IPE: we use ReLUMLP on axis-aligned intergrated positional encodings as shown in [2].
3. BACON: replacing BACON’s filter with the intergrated random Fourier Features.
4. RIPE-sup: same as RIPE, but supervised with both 1x and 1/4x.
5. IPE-sup: same as IPE, but supervised with both 1x and 1/4x.

All baselines have about 0.3M parameters (which is about the same number of floating points
as the 128x128 image). All models are trained on 1x images except for IPE-sup, which is also
supervised for 1/4x. The results are shown in Tab. 3. As we can see from the table, PNF is capable of
representing 1/2x, 1/4x, and 1/8x resonably well while supervised only on 1x resolution. Comparing
to IPE-sup, PNF is able to match the performance at 1/4, eventhough PNF is not supervised at 1/4x.
Moreover, PNF used random Fourier features instead of the axis-align basis functions. As shown
in the comparison between RIPEs and IPEs, axis-align positional encoding performs better in this
setting, which we hypothesize the reason being that during the test-time the Σ’s eigenvectors are also
axis-align. PNF model choose direction randomly within the angle of the PNF-Controllable set of
subbands, and it still achieves very strong performance.

3.4 Licenses

DIV2K [1] dataset is available for academic use only. The multiscale Blender dataset [2] is provided
under the creative commons public license. The Stanford 3D scanning repository4 dataset is available
to use for research purposes. Data used for texture transfer is available for academic use or is free to
use. Set12 dataset [17] is available under under the creative commons public license. All data does
not contain personally identifiable information or offensive content.

3.5 GPU Resources

Image based experiments require a single GPU such as an NVIDIA Titanx/Titanrtx GPU. For Neural
fields and 3D Signed Distance Fields, a higher GPU number is required per experiment, and up to 4
NVIDIA Titanrtx GPUs. An internal GPU cluster was used for experiments.

3.6 Negative Societal Impact

On some experimental settings, our framework requires a large GPU and memory requirement, which
may have an adverse environmental impact. Neural fields have been used in a verity of generative
settings, our framework may be used in potential negative use of such generative models. For instance,
for neural radiance fields, creating realistic novel views of fake scenes, could be used maliciously.
Such cases could be better handled by developing tools to detect fake scenes, or any other content
generated using neural fields such as our PNF.

4http://graphics.stanford.edu/data/3Dscanrep/
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