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Abstract

To address the storage and computational demands of Transmission Electron
Microscopy (TEM), we propose a two-phase pruning strategy that reduces model
size and enhances speed while maintaining performance across diverse datasets,
practical for TEM analysis. Unlike traditional pruning methods that focus solely
on weight magnitude, our approach also considers weight variability to preserve
feature diversity, crucial for generalization in the varied context of TEM images.
Our strategy first prunes filters with low magnitude and variability, then removes
redundant filters with high linear similarity. This two-phase pruning, followed by
fine-tuning, effectively reduces parameters and computational load while ensuring
high accuracy and generalizability.

1 Introduction

Transmission electron microscopy (TEM) is essential for observing materials at the nanoscale, but
traditional manual segmentation of TEM images is time-consuming and error-prone. Recent deep
learning advancements have enhanced automated segmentation, enabling efficient identification of
nanoscale features [1, 2, 3]. However, deep learning for TEM analysis faces challenges due to limited
TEM hardware memory capacity, necessitating pruning techniques to reduce computational demands
while maintaining accuracy. Preserving filter diversity is crucial for effective image segmentation
[4, 5], as high filter similarity can impair model generalization. Thus, maintaining diversity in filter
weights while minimizing parameter count is key. Please refer to Appendix A for further details.

To address these challenges, we propose a Diversity-Based Two-Phase Pruning Strategy that balances
weight diversity preservation with parameter reduction, optimizing model performance for TEM
image analysis.

2 Related Work

Ref. [6] introduced magnitude-based filter pruning, using the L1-norm of all kernels to assess
filter importance and removing those below a threshold, including their corresponding kernels in
subsequent layers. Their strategy for residual blocks considers only the weights of projection shortcut
connections (1x1 kernels). Our approach expands this by including the weights of subsequent layers
with 3x3 kernels, enhancing diversity in feature extraction.

Ref. [7] evaluates filters and kernels as high-dimensional vectors rather than scalars. We apply this
perspective to assess filter capability based on the diversity among kernel vectors, recognizing that
greater diversity improves generalization in image segmentation and recognition tasks.
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Ref. [8, 9] identify high similarity in convolutional filters as a source of redundancy, showing that
ignoring similarity leads to accuracy loss. Our method addresses this by retaining only the filter with
the largest L1-norm among similar filters, eliminating redundant weights. Unlike pairwise pruning
[9], our approach groups all highly correlated filters, retaining only the one with the highest L1-norm.

The sequence of pruning is also critical. Ref. [10] demonstrates that pruning by weight importance
first, followed by similarity, minimizes accuracy loss. Unlike the hybrid pruning in ref. [10], which
emphasizes scalar weights and their differences, our approach integrates the geometric implications
of filters and kernels in high-dimensional vector space, enabling a more comprehensive pruning
strategy that enhances generalization capabilities and complexity-performance trade-off.

3 Methods

3.1 Backbone Model Structure

For TEM nanoparticle detection, we use a residual U-Net with three encoder-decoder layers and a
bottleneck, each with two residual blocks for faster convergence and improved feature extraction.
Structured pruning [11, 12] removes redundant filters, adjusting connected kernels in subsequent
layers [6], resulting in significant model compression and reduced inference time.

For layers with residual shortcuts, filters are pruned at matching indices to maintain output alignment.
We evaluated filter magnitude by two methods: using shortcut weights alone [6] and by summing
weights from both the residual block and shortcut layers. Summing yielded higher accuracy, which
we use for all pruning evaluations in shortcut-connected layers.

3.2 Phase 1: Quantitative Score Pruning

Studies have demonstrated that filter magnitude significantly affects model performance, necessitating
its use as an evaluation metric. Accordingly, the L1-norms of all kernels within a filter are summed to
quantify its contribution to feature extraction [6].

For kernels larger than 1×1, multiplication with input feature maps can be seen as a linear transforma-
tion in a high-dimensional space. For example, 3×3 kernels are reshaped into 1×9 vectors [7], where
greater diversity among these vectors indicates better filter generalization for feature extraction.

Two metrics are proposed to evaluate diversity within this vector space: (1) variance in the magnitudes
(L2-norms) of kernel vectors, reflecting differences in feature intensity, and (2) variance in their
directional diversity, measured by the Euclidean distance between each kernel vector and the mean
kernel vector within a filter.

To standardize these metrics, min-max normalization scales them to the [0,1] range. The overall
significance score for each filter is calculated as:

Ip = ∥Fp∥1 + varq (∥Kp,q∥2 | q = 1, 2, . . . , Q) + varq (∥Kp,q −Kp,avg∥2 | q = 1, 2, . . . , Q)

where Fp denotes the p-th filter within a given layer, Kp,q represents the q-th kernel within the p-th
filter. The average kernel of the p-th filter is denoted as Kp,avg . Q denotes the total number of kernels
contained in the filter.

For filters with a single kernel or 1×1 kernels, the significance score is based solely on magnitude
(∥Fp∥1). Filters are ranked by significance scores, and a proportion of 1-pruning ratio is retained
according to the pruning strategy.

3.3 Phase 2: Similarity Pruning

After Phase 1 pruning, the remaining filters generally have higher magnitudes and greater diversity,
but some may still exhibit similar linear relationships, resulting in redundant outputs [8, 9, 13, 14,
15]. To further reduce computational burden, we remove these similar filters.

First, each filter is represented as a single vector by averaging its kernels. The Pearson correlation
coefficient is then used to measure similarity between these vectors [9, 13, 16], with values closer to
±1 indicating stronger correlation. The coefficient is calculated as:
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rX,Y = cov(X,Y )/σXσY

where cov(X,Y ) is covariance between vectors X and Y , and σX is standard deviation for vector X .

Filters with a correlation coefficient above a set threshold are considered redundant. The filter with the
smaller ∥Fp∥1 is removed, retaining the one with the larger L1-norm. This ensures greater diversity
among the remaining filters. The model is then fine-tuned to restore accuracy.

Illustrations, further details of the methods, and ablation study are provided in Appendix B.1 and D.

4 Experiments

4.1 Setup and Dataset

All tests used TensorFlow 2.14 on an Nvidia RTX A5000 (24GB) GPU and an AMD EPYC 7313
16-Core CPU. The TEM dataset [1] includes images of 2, 5, 10, and 20 nm gold nanoparticles, with
4,608 training and 1,352 validation images, randomly shuffled across particle sizes.

We applied our Diversity-Based Two-Phase Pruning Strategy to a pre-trained residual U-Net
(4,012,963 parameters, 15.31 MB, 96.33% initial accuracy). In both phases, one-shot pruning
across all layers was followed by fine-tuning with a gradually reduced learning rate to limit accuracy
loss to under 1%. Details are in Appendix B.2.

Computational complexity was evaluated using Multiply-Accumulate Operations (MACs), a stan-
dard metric representing multiplication and addition operations required in convolutional and fully
connected layers.

4.2 Results

Table 1: Performance of the diversity-based two-phase pruned model compared to the original model

Accuracy Parameters MACs Prediction (GPU) Prediction (CPU)
Original 96.33% 4012963 ≈ 79G 16.27ms / image 347.63ms / image
Pruned 95.50% 210097 ≈ 5.764G 5.92ms / image 99.11ms / image

Reduction 0.83% 95% 92.70% 63.61% 71.49%

Figure 1: Filter count per layer in residual U-Net before and after diversity-based two-phase pruning.

With 70% pruning in Phase 1 and a 0.8 Pearson correlation threshold in Phase 2, the model is reduced
to 210,097 parameters (820.69 KB), approximately 5% of its original size, as shown in Table 1. It
achieves 95.50% validation accuracy, with a 92.7% MAC reduction and a 0.83% accuracy drop,
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Figure 2: MACs per layer of the residual U-Net before and after diversity-based two-phase pruning.

Figure 3: Heat maps of filters in four layers showing notable differences among the retained filters.

within the 1% threshold. Fig. 1 and 2 illustrate filters and MACs before and after pruning. Detailed
comparisons are in Appendix B.2, with pruned performance across various ratios summarized in
Appendix C.

This method significantly reduces parameters and computational load with minimal accuracy loss. Fig.
3 shows heat maps of pruned filters in four layers, each retaining 10 diverse filters. The structured
pruning maintains the full 4D weight matrix, enhancing GPU efficiency and reducing inference
time. Appendix E compares this approach with state-of-the-art pruning methods, demonstrating its
competitiveness.

5 Conclusion and Future Work

We propose a two-phase pruning strategy to overcome limitations of magnitude-based pruning in
image recognition and segmentation, preserving filter diversity while reducing parameters. Phase 1
retains filters with high magnitude and diversity; Phase 2 prunes redundant filters based on Pearson
correlation. After pruning and fine-tuning, the residual U-Net maintained strong performance on
TEM images of gold nanoparticles. This approach enhances model generalization with minimal
computational cost and without retraining on new samples, provided the initial training dataset is
well-chosen. Ongoing work includes adopting different fine-tuning strategies, optimizing thresholds
for each layer, and even pruning at a finer granularity to achieve higher pruning precision and better
performance. This study shows that diversity-focused pruning effectively reduces parameters while
preserving accuracy, thereby accelerating TEM image analysis for materials characterization and
reducing computational storage requirements.
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Appendix

A Supplementary Information

A.1 Hardware Limitations in TEM: Impacts on Deep Learning for Real-Time Processing

The limited memory capacity of Transmission Electron Microscopy (TEM) hardware poses significant
challenges for the integration of deep learning methodologies in TEM analysis, primarily due to
the demands of real-time image processing applications. Many conventional TEM systems have
insufficient network connectivity and data transmission infrastructure, which complicates reliance
on external resources for prompt processing. In addition, the user time for TEM equipment is both
valuable and limited; consequently, any delays or inefficiencies in data processing can adversely
affect productivity and escalate costs, thereby exacerbating the challenges associated with hardware
capacity constraints. Furthermore, for organic samples or those sensitive to prolonged or high-
intensity beam exposure, delays in real-time TEM image analysis may result in sample degradation,
thereby compromising data acquisition. Therefore, this work presents a methodology to mitigate the
hardware limitations for transmission electron microscopy.

A.2 Challenges in Processing Transmission Electron Microscopy Datasets Compared to
Normal Image Datasets

Transmission electron microscopy datasets, particularly at high resolutions, exhibit significant dis-
tinctions from conventional image datasets, primarily attributed to elevated noise levels that can
obscure nanoscale details. This noise is generated by various factors, such as camera hardware con-
straints, electronic interference, fluctuations in sample thickness, sample preparation, and scattering
phenomena occurring during transmission.

Furthermore, TEM images necessitate precise calibration and alignment due to their high magnifi-
cation, in contrast to standard images captured under controlled lighting conditions. The inherent
complexity of TEM datasets is further exacerbated by the diverse imaging modes available—such as
bright-field, dark-field, and high-angle annular dark field (HAADF)—which complicate segmentation
processes. The conditions for capturing TEM data also differ with sample type, which results in the
wide variation for TEM images.

In addition to these challenges, TEM datasets are susceptible to artifacts, including those induced by
the electron beam, which further complicates the analytical process. Collectively, these factors render
the automated processing and segmentation of TEM images particularly challenging, necessitating
the application of advanced methodologies to effectively address their unique characteristics.

A.3 Analytical Tasks and Segmentation Complexities in TEM Image Processing

To illustrate the specific challenges encountered in the analysis of TEM images, we present a range
of representative tasks:

1. Phase Segmentation: Differentiating and segmenting distinct material phases within TEM images,
a fundamental process for revealing the microstructural characteristics of materials. Phases may be
intertwined, exhibit transition regions, or possess indistinct boundaries, making it challenging to
differentiate them using basic thresholding or contrast-based methods.

2. Defect Detection: Identifying structural imperfections, such as dislocations or voids, that critically
influence material properties. The small size of defects and their potential low contrast relative to the
surrounding matrix complicate their detection.

3. Feature Recognition: Delineating nanoscale features, such as nanoparticles or thin films, essential
for the precise characterization of advanced materials. Variability in imaging conditions and feature
type can influence the visibility and contrast of feature recognition, leading to inconsistencies in
detection.

4. Quantitative Analysis: Conducting precise quantitative measurements, including feature and
phase size distribution, to provide detailed insights into the composition and structure of materials.
The accuracy of these measurements depends on the ability to detect and segment TEM images
correctly.
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Through these examples, we demonstrate the diverse applications of TEM image segmentation and
the relevance of our proposed approach in effectively addressing these critical analytical tasks.

B Methodology and Experimental Supplementary Analysis

B.1 Illustrative Explanation of Diversity-Based Two-Phase Pruning Strategy

Figure 4: Filters with shortcut connections (e.g., Conv_0, Conv_2, Conv_4) must align to preserve
feature maps. A joint evaluation (e.g., Conv_0, Conv_2, Conv_4 together) enhances performance
compared to relying solely on the identity projection mapping layer (Conv_0).

In the Residual U-Net architecture, each encoder, decoder, and bottleneck layer contains two residual
blocks. When there is a change in the number of channels between blocks, an additional identity
projection mapping convolution layer (Conv_0) is introduced to match dimensions. Thus, unlike
ResNet-56 or ResNet-110, where shortcut connections directly add zero padding to accommodate
increased dimensions, this approach avoids simple, direct addition throughout. Consequently, when
pruning, the individual encoder, decoder, and bottleneck layers can be considered independently.
Experimental results indicate that, compared to evaluating the identity projection layer with original
features in isolation, incorporating the feature extraction information from subsequent residual blocks
yields relatively better performance, as illustrated in Fig. 4.

Fig. 5 illustrates the concept of Phase 1: quantitative score pruning. Beyond simply considering
the magnitude of filters, additional focus is placed on the diversity of kernels within each filter to
maintain generalization in feature extraction. In this figure, each 3x3 kernel can be viewed as a
9-dimensional vector, with each kernel vector having distinct magnitudes and directions. Greater
vector diversity enables the extraction of more varied feature values from the feature maps.

Fig. 6 illustrates the concept of Phase 2: Similarity Pruning. In this phase, the average of all kernels
within a filter is used to represent the filter as a 9-dimensional vector. If multiple filters yield feature
maps that are highly similar, this indicates that the filters serve redundant functions. For instance,
the vectors F⃗2 and F⃗3 in the figure exhibit excessive similarity as determined by Pearson correlation
coefficient calculations. During pruning, filters with high similarity are grouped together, retaining
only the one with the largest L1-norm magnitude as a representative, while the others are pruned.
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Figure 5: To assess filter significance, we compute the L1-norm of each filter and evaluate kernel
diversity by treating 3x3 kernels as 9-D vectors. Kp,q represents the q-th kernel within the p-th filter.
Diversity is quantified by the variance of both vector lengths and distances of these vectors from the
mean vector.

Figure 6: Each filter is represented by the average of its kernels, and the Pearson correlation coefficient
is computed between filters. Highly correlated filters (e.g., F⃗2 and F⃗3 are pruned, keeping only the
one with the largest L1-norm.)

B.2 Experimental Setup and Segmentation Results Pre- and Post-Pruning

The channel numbers for the first three encoder layers of the Residual U-Net are 32, 64, and 128,
respectively, with corresponding values in the decoder and a bottleneck of 256. During pre-training,
the model was trained for 30 epochs using the AdamW optimizer with a fixed learning rate of 5e-5
and a weight decay of learning rate multiplied by 1e-4. The final validation accuracy achieved was
96.33%. After pruning, fine-tuning was conducted for 20 epochs, with learning rates set at 2e-5
for epochs 1 to 6, 1e-5 for epochs 7 to 12, and 1e-6 for epochs 13 to 20. The loss function used
during pre-training and fine-tuning of the model is a combination of the Dice coefficient and Binary
Cross-entropy. The learning rate during fine-tuning was fixed and decreased over the epochs; thus,
the fine-tuning process did not adjust hyperparameters based on the validation set performance.
Consequently, the validation set did not serve an optimization role in this training procedure but was
solely used to evaluate the model’s final performance, effectively functioning as a test set.

In Fig. 7, we present a series of TEM images to evaluate the model’s segmentation performance
before and after pruning. The pruning criteria was set to 70% pruning in Phase 1 and a Pearson
correlation coefficient of 0.8 in Phase 2. From the figure, it is evident that despite the model’s size
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being significantly reduced from 15.31 MB to 820.69 KB, its segmentation performance remains
notable, demonstrating that the reliability of the pruned model is still well-maintained.

Figure 7: (a) Original TEM image (b) Corresponding ground truth (c) Segmentation results before
pruning (d) Segmentation results after pruning.

C Comparison of Variations Across Different Phase 1 and Phase 2
Parameters

In this section, we present the model performance under various Phase 1 and Phase 2 pruning criteria.
For Phase 1, we used increments of 10% as pruning thresholds, while for Phase 2, we selected high
correlation coefficients r = 0.7, r = 0.8, and r = 0.9. The results of each criterion are shown in a
line chart in Fig. 8 and Table 2. It can be observed that at r = 0.8 and r = 0.9, accuracy generally
decreases as the Phase 1 pruning ratio increases. However, at r = 0.7, two phenomena emerge: first,
pruning 40% of parameters in Phase 1 results in a higher parameter reduction than pruning 50%,
indicating that when more parameters are retained in Phase 1, Phase 2 is able to identify and remove
more groups of highly similar filters for these two criteria. Secondly, the accuracy for the 50% Phase
1 pruned model is higher than that of the 30% pruned model, suggesting that redundant filters may
negatively impact feature discrimination accuracy.

Table 2 presents the model accuracy along with the parameters and their corresponding memory size
under different Phase 1 and Phase 2 pruning criteria. The results, highlighted in bold text, represent
the case of 70% pruning in Phase 1 and a Pearson correlation coefficient of r = 0.8 in Phase 2,
achieving a size reduction of 95% with an accuracy drop of less than 1%. Meanwhile, the values
in red text for the case of 10% pruning in Phase 1 and a Pearson correlation coefficient of r = 0.8
indicate the configuration with accuracy closest to the original model. This configuration has a
parameter count of 880,971 (3.36 MB), representing a size reduction of 78.05% compared to the
original model, while still maintaining performance levels comparable to those of the original model.
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Figure 8: Different pruning ratios in Phase 1 are explored with various Pearson correlation coefficients
of r = 0.7, r = 0.8, and r = 0.9 in Phase 2, with values of r ≥ 0.7 indicating high correlation.

Figure 9: Comparison of Model Size Between Phase 1-Only and Post-Phase 2 Incorporation.
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Table 2: Model accuracy and size as a function of Phase 1 pruning ratio (PR) and Phase 2 Pearson
coefficient r

r = 0.7 r = 0.8 r = 0.9

PR Original Model Acc. = 96.33% / Parameters = 4012963 (15.31MB)
0% 95.21% / 172861(675KB) 96.29% / 977174(3.7MB) 96.37% / 3155064(12.0MB)

10% 95.15% / 158689(620KB) 96.33% / 880971(3.4MB) 96.41% / 2595853(9.9MB)
20% 95.32% / 156214(610KB) 96.28% / 758610(2.9MB) 96.44% / 2111431(8.1MB)
30% 95.04% / 129677(507KB) 96.17% / 623998(2.4MB) 96.42% / 1648719(6.3MB)
40% 94.85% / 121289(474KB) 96.16% / 536166(2.1MB) 96.40% / 1202421(4.6MB)
50% 95.26% / 125957(492KB) 96.01% / 418850(1.6MB) 96.24% / 905017(3.5MB)
60% 94.98% / 107688(421KB) 95.68% / 294806(1.1MB) 95.94% / 562465(2.2MB)
70% 94.84% / 80177(313KB) 95.50% / 210097(821KB) 95.62% / 337421(1.3MB)
80% 94.36% / 54173(212KB) 94.56% / 107730(421KB) 94.61% / 155121(606KB)
90% 93.81% / 18980(74KB) 94.35% / 31086(121KB) 94.10% / 39628(155KB)

Fig. 9 illustrates the accuracy achieved during the Phase 1-only experiments, as well as the reduction
in the number of parameters for the Phase 1-only pruned model following the implementation of
Phase 2. It is evident that, at a ratio of r = 0.8 in Phase 2, a substantial reduction in parameters can
be achieved while maintaining an acceptable level of accuracy compared to the Phase 1-only results.

Figure 10: Scatter plot of model parameters, and accuracy across various Phase 1 and Phase 2 criteria.
Different r values for Phase 2 are represented by distinct colors, with each color corresponding to
parameter counts arranged from high to low, reflecting Phase 1 pruning ratios of 0%, 10%, 20%, up
to 90% (except for the case of r = 0.7, where the parameter count for Phase 1 with 40% pruning is
smaller than that for Phase 1 with 50% pruning ).

In Fig. 10, we present scatter plots of model parameters and corresponding fine-tuning accuracy
under different criteria selections, illustrating the relationship between changes in model parameters
and accuracy. The relationship between the overall parameters and accuracy demonstrates a positive
correlation. Notably, the group corresponding to r = 0.7 tends to cluster in the lower-left quadrant,
indicating structural and accuracy degradation associated with this correlation coefficient. In contrast,
the remaining three groups exhibit a more balanced distribution. The scatter trends provide valuable
insights for making informed selections of correlation coefficients during the Phase 2 pruning process.
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The highest accuracy was attained not with the configuration containing the maximum number of
model parameters but with a configuration reduced to approximately 50.88% of the original model’s
parameter count. This finding suggests that excessive, non-essential weights can inadvertently
detract from model performance, highlighting the advantages of targeted pruning strategies. By
reducing model parameters to just 10.44% of the original size, we maintain an accuracy exceeding
96%, utilizing a Phase 1 pruning ratio of 50% and a Pearson correlation coefficient of r = 0.8.
Furthermore, within similar parameter ranges, r = 0.8 outperforms r = 0.9, while r = 0.7 shows
variability in performance relative to r = 0.8. This inconsistency is attributed to variations in Phase 1
pruning ratios, which impact the retention of essential filters. Despite reducing parameter size by
over 100-fold, accuracy only marginally declined from the original 96.33% to 94.35% at a Phase 1
pruning ratio of 90% and a Phase 2 Pearson correlation coefficient of r = 0.8. Additionally, the Phase
1-only approach demonstrates suboptimal performance when parameter sizes fall below 106, thereby
underscoring the necessity of incorporating Phase 2 pruning to enhance overall model efficacy.

D Ablation study

We perform ablation studies on our proposed methods to assess the contribution of the individual
algorithmic components we have introduced using a Residual U-Net architecture. To ensure fairness,
we implement a 70% pruning in Phase 1, as the outcomes following Phase 2 pruning vary significantly
based on the combinations of different components.

In this study, we explore two distinct fine-tuning strategies. Fine-tuning Strategy 1 consists of 1 to
10 epochs with a learning rate of 1e-5, followed by 11 to 20 epochs with a learning rate of 1e-6.
Fine-tuning Strategy 2 involves 1 to 6 epochs at a learning rate of 2e-5, 7 to 12 epochs at a learning
rate of 1e-5, and 13 to 20 epochs at a learning rate of 1e-6.

Table 3: Ablation study on various combinations of pruning algorithmic components

Method Name Fine-tuning 1 Fine-tuning 2
Filter Magnitude-only 95.39% 95.61%

Filter Magnitude + var(Kernel Vector Length) 95.16% 95.58%
Filter Magnitude + var(Kernel Vector Distance) 95.14% 95.47%

Proposed Phase 1 Comprehensive Pruning Framework 95.44% 95.70%

The results presented in Table 3 indicate that among the various fine-tuning approaches, the method
that incorporates the filter magnitude as well as differences in length and directional distances of
the internal kernels performs the best. This approach demonstrates a comprehensive understanding
of the underlying feature extraction mechanisms within the model, as it captures both the overall
significance of the filters and the nuanced characteristics of individual kernels. By considering
these additional factors, this method enhances the model’s ability to retain essential features while
discarding redundant information, ultimately leading to improved performance in segmentation tasks.

Furthermore, the findings from the ablation study indicate that pruning strategies should not solely
rely on filter magnitudes but should also account for the intricate relationships between kernels. This
insight can inform future pruning methodologies and fine-tuning processes, encouraging researchers
to explore multi-faceted approaches that leverage both magnitude and kernel diversity. Our findings
underscore the importance of a comprehensive approach to model optimization, which may yield
significant improvements in performance while reducing model complexity.

E Comparisons

E.1 Residual U-Net Compression: Proposed Pruning Strategy Versus SqueezeNet Fire
Module

We compare our proposed pruning approach with the established compression technique employed
in SqueezeNet [17]. The fire module in SqueezeNet has been shown to significantly reduce the
parameter count in convolutional layers and has recently been adapted for U-Net architectures [18,
19]. For convolutional layers with a 3x3 kernel size, the fire module replaces the conventional
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structure with a combination of squeeze and expand layers. The squeeze layer utilizes a 1x1 kernel
and reduces the number of output channels to one-fourth of the original, while the expand layer is
divided into two parts, utilizing kernel sizes of 1x1 and 3x3, each producing output channels at half
the original count.

We applied the principles of the fire module to all convolutional layers with a kernel size of 3x3 in the
original residual U-Net architecture. This adaptation reduced the model’s parameter count from the
original 4,012,963 (15.31 MB) to 766,027 (2.92 MB). Consequently, we trained the squeeze residual
U-Net for 30 epochs, starting with an initial learning rate of 1e-4, which was decreased by a factor of
0.1 every 10 epochs to facilitate improved convergence due to the significant reduction in parameters,
while also aligning the final learning rate with that used in the original fine-tuning experiments.

Table 4: Performance of the squeeze residual U-Net compared to the diversity-based two-phase
pruned model

Accuracy Parameters MACs Prediction(GPU) Prediction(CPU)
Original 96.33% 4012963 ≈ 79G 16.27ms / image 347.63ms / image

SqueezeNet 95.97% 766027 ≈ 14.35G 16.25ms / image 306.21ms / image
Reduction 0.36% 80.91% 84.84% 0.12% 11.91%

Ours 96.28% 758610 ≈ 27.69G 12.38ms / image 170.86ms / image
Reduction 0.05% 81.10% 64.95% 23.91% 50.85%

The comparative results are presented in Table 4. To facilitate a comparison with the squeezed model,
we selected the pruning model based on Phase 1 with 20% pruning and Phase 2 utilizing a Pearson
correlation coefficient of 0.8, as it yields a parameter count of 758,610 (2.89 MB), which is closest
to that of the squeezed model. The two-phase pruning strategy demonstrates superior performance
across all evaluated metrics except for one (MAC reduction), particularly excelling in prediction time.
Notably, for the squeeze model, despite the significant reduction in the number of parameters and
MACs, its prediction time did not exhibit a significant decrease and remained nearly equivalent to that
of the original model. However, our methodology exhibited a 23.91% reduction in GPU prediction
and 50.85% reduction in CPU prediction. This demonstrates that our proposed strategy not only
effectively reduces parameter count while maintaining accuracy but also significantly accelerates
real-time image processing.

E.2 Implementation of Two-Phase Pruning Strategy to ResNet-56 and ResNet-110 on
CIFAR-10

To validate the generalizability of the proposed pruning strategy across various model architectures
and tasks, and to compare it with other state-of-the-art structured pruning methods, we applied the
pruning approach to the CIFAR-10 dataset using ResNet-56 and ResNet-110. Unlike the previously
utilized residual U-Net architecture, ResNet-56 and ResNet-110 do not incorporate identity projection
mapping convolution layers when there is a change in the number of channels. Instead, their
shortcut connections directly add zero padding to accommodate increased dimensions, resulting
in a configuration where layers associated with shortcut connections are linked end-to-end. The
distance between the initial and final layers is considerable, with significant differences in feature
extraction, and the indices of the shortcut connection layers must remain consistent. Therefore, in
this evaluation, we focused solely on pruning the first convolution layer within the residual blocks
that are independent of the shortcut connections.

The pre-training and fine-tuning strategies were consistent, employing a total of 165 epochs. We
utilized stochastic gradient descent (SGD) as the optimizer, with a momentum of 0.9. The initial
learning rate was set at 0.01, which was increased tenfold after 500 steps, followed by a reduction by
a factor of 0.1 at 32,000 and 48,000 steps, respectively. The accuracy of the pre-trained ResNet-56
was 92.87%, while ResNet-110 achieved an accuracy of 93.40%, serving as a baseline for evaluating
the two-phase pruning strategy.

All data pertaining to SOTA pruning methods presented in Table 5 are derived from their respective
original publications or third-party replicated publication. In comparing the pruned versions of
ResNet-56 and ResNet-110, we selected a pruning criterion of 20% in Phase 1, along with a Pearson
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Table 5: Performance comparison of ResNet-56 and ResNet-110 on the CIFAR-10 dataset

Method Name Original Acc. Pruned Acc. Acc. Diff. Params. Reduction
ResNet-56 on CIFAR-10 Ours: Phase 1 20% pruned; Phase 2 correlation threshold r = 0.8

L1-norm pruned-A [6] 93.04% 93.10% -0.06% 9.4%
L1-norm pruned-B [6] 93.04% 93.06% +0.02% 13.7%

RFP [8] 93.39% 93.12% -0.27% 23.7%
ABCPruner [20] 93.26% 93.23% -0.03% 54.2%
TMI-GKP [21] 93.78% 94.00% +0.22% 43.5%

HRank [22] 93.26% 93.17% -0.09% 54.2%
OED [23] 93.97% 92.29% -1.68% 60.0%
GAL [24] 93.97% 91.58% -2.39% 65.9%

ResRep [25] 93.71% 93.71% 0.00% -
KSE [26] 93.03% 92.88% -0.15% 57.6%

FPGM [28] 93.59% 93.26% -0.33% -
DHP [29] 92.95% 92.94% -0.01% 58.9%

Ours 92.87% 92.90% +0.03% 67.3%
ResNet-110 on CIFAR-10 Ours: Phase 1 20% pruned; Phase 2 correlation threshold r = 0.8

L1-norm pruned-A [6] 93.53% 93.55% -0.06% 2.3%
L1-norm pruned-B [6] 93.53% 93.30% +0.02% 32.4%

RFP [8] 93.65% 93.27% -0.38% 34.2%
ABCPruner [20] 93.50% 93.58% +0.08% 67.4%
TMI-GKP [21] 94.26% 94.90% +0.64% 43.5%

HRank [22] 93.50% 93.36% -0.14% 59.2%
OED [23] 94.10% 93.60% -0.50% 48.8%
GAL [24] 94.10% 92.74% -1.36% 44.8%

ResRep [25] 94.64% 94.62% -0.02% -
FPDNC [27] 93.82% 93.78% -0.04% 48.2%
FPGM [28] 93.68% 93.74% +0.06% -
DHP [29] 94.69% 94.63% -0.06% 36.8%

Ours 93.40% 93.42% +0.02% 68.2%

correlation coefficient r = 0.8 in Phase 2, aiming for an accuracy that closely matches the original
model. For ResNet-56, the original accuracy was 92.87%. After pruning, despite a substantial
reduction of 67.3% in the number of parameters, the accuracy did not decline; instead, it improved by
0.03%, reaching 92.90%.

For ResNet-110, the original accuracy was 93.40%. After pruning, the number of parameters was
significantly reduced by 68.2%, and the accuracy improved by 0.02%, reaching 93.42%. Among the
pruning methods, TMI-GKP exhibited the best accuracy post-pruning, with a parameter reduction
amounting to approximately only two-thirds of that achieved by our method. By solely pruning
the first layer of the residual block and significantly reducing the number of parameters, our two-
phase pruning strategy still achieved comparable performance with ResNet-56 and ResNet-110, even
slightly outperforming the original models. The results demonstrate the efficacy of our pruning
strategy in maintaining or improving model accuracy while substantially reducing parameter count,
displaying its potential for further optimization in future applications. Furthermore, this research
paves the way for exploring the adaptability of our strategy across various architectures and tasks,
potentially facilitating broader applications in resource-constrained environments where model size
and computational efficiency are critical.
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