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ABSTRACT

Adversarial training significantly improves adversarial robustness, but superior
performance is primarily attained with large models. This substantial performance
gap for smaller models has spurred active research into adversarial distillation
(AD) to mitigate the difference. Existing AD methods leverage the teacher’s log-
its as a guide. In contrast to these approaches, we aim to transfer another piece
of knowledge from the teacher, the input gradient. In this paper, we propose a
distillation module termed Indirect Gradient Distillation Module (IGDM) that in-
directly matches the student’s input gradient with that of the teacher. Experimental
results show that IGDM seamlessly integrates with existing AD methods, signifi-
cantly enhancing their performance. Particularly, utilizing IGDM on the CIFAR-
100 dataset improves the AutoAttack accuracy from 28.06% to 30.32% with the
ResNet-18 architecture and from 26.18% to 29.32% with the MobileNetV2 archi-
tecture when integrated into the SOTA method without additional data augmenta-
tion.

1 INTRODUCTION

Recently, adversarial attacks have revealed the vulnerabilities of deep learning-based models (Good-
fellow et al., 2014; Carlini & Wagner, 2017; Madry et al., 2017), raising critical concerns in safety-
important applications (Grigorescu et al., 2020; Ma et al., 2021; Wang et al., 2023a). Thus, much
research has been done on defense technologies to make deep learning more reliable (Das et al.,
2017; Carmon et al., 2019; Cohen et al., 2019; Xie et al., 2019; Zhang et al., 2022; Jin et al., 2023).
Among adversarial defense mechanisms, adversarial training is one of the most effective methods
to enhance adversarial robustness (Pang et al., 2020; Bai et al., 2021a; Wei et al., 2023). However,
there is a significant performance gap between large and small models in adversarial training. Since
light models with less computational complexity are preferred in practical applications, increasing
the robustness of light models is necessary. To address this, adversarial training incorporates dis-
tillation methodologies which are commonly employed to boost the performance of light or small
models (Goldblum et al., 2020; Zhu et al., 2021; Zi et al., 2021; Huang et al., 2023).

In the teacher-student architecture of knowledge distillation, prevailing methods leverage the
teacher’s features or logits (Hinton et al., 2015; Ji et al., 2021; Kim et al., 2021; Yang et al., 2022).
Adversarial distillation (AD) approaches extend this paradigm by incorporating the teacher’s log-
its as a guide within their adversarial training framework (Goldblum et al., 2020; Zhu et al., 2021;
Maroto et al., 2022). Recent studies have specifically focused on tailoring the inner maximization
problem of adversarial training, particularly by involving the teacher model in the generation of ad-
versarial examples (Zi et al., 2021; Huang et al., 2023). We leverage input gradients, which have
been studied in relation to robustness in adversarially trained models (Tsipras et al., 2018; Engstrom
et al., 2019; Srinivas et al., 2023).

We additionally demonstrate that matching the input gradients between teacher and student con-
tributes to point-wise alignment, which has been studied in state-of-the-art AD methods (Huang
et al., 2023). In the top right of Figure 1a, if the input gradients between the teacher and the student
match as depicted in the red line, then the output of the points located on the red line, denoted as
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(a) Conceptual diagram of IGDM (b) Performance of IGDM

Figure 1: (a) We match the gradient in the input space with knowledge distillation. Since adversarial
robust models are locally linear, matching the gradient has the effect of matching the output points
of the surrounding input marked with ‘stars’, as illustrated in the top right figure. Consequently,
gradient matching involves matching the teacher and student point by point in the output space,
as depicted in the bottom right. (b) Clean and Autoattack accuracy on ResNet-18 with BDM-AT
teacher on CIFAR-100 dataset. IGDM demonstrates significantly improved AutoAttack accuracy
compared with other adversarial distillation methods.

stars, will also match. We show that the output of random points around x also becomes similar
to the teacher as illustrated in the bottom right of Figure 1a. This alignment causes the student to
mimic the teacher and reduces the capacity gap between teacher and student.

In this paper, we propose Indirect Gradient Distillation Module (IGDM), which indirectly aligns
the student’s gradient with that of the teacher. We can easily match input gradients through Taylor
expansion, leveraging the locally-linear property of adversarial training. Since existing AD meth-
ods are mainly designed to match logits, IGDM can be used in conjunction with them. Through
extensive experimental results, we verify that our method successfully complements the robustness
of existing AD methods. We significantly improve existing AD methods as depicted in Figure 1b.
Our contributions are as follows:

• We propose a methodology to transfer the gradient information from the teacher to the
student through the exploitation of the local linearity inherent in adversarial training. This
stands in contrast to prevailing AD methods, which primarily concentrate on the distillation
of logits.

• Based on the analysis, we propose the Indirect Gradient Distillation Module (IGDM),
which indirectly distills the gradient information. Its modular design allows easy inte-
gration into existing AD methods.

• We empirically demonstrate that IGDM significantly improves robustness against various
attack scenarios, datasets, student models, and teacher models.

2 RELATED WORK

2.1 ADVERSARIAL TRAINING

Adversarial training (AT) involves generating adversarial examples during the training process to
improve model robustness. The adversarial training is a minimization-maximization problem as
follows:

argmin
θ

E(x,y)∼D [Lmin (fθ(x+ δ), y)] , where δ = argmax
∥δ′∥p≤ϵ

Lmax (fθ(x+ δ′), y) . (1)

Here, θ is parameters of model f , D is a data distribution of x and corresponding labels y, δ is pertur-
bation causing the largest loss within lp norm of ϵ, Lmax is an inner maximiazation loss, and Lmin

is an outer minimization loss. Multi-step PGD attack (Madry et al., 2017) is commonly utilized to
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solve the inner maximization loss, and various regularization loss functions have been introduced for
the outer minimization loss. TRADES (Zhang et al., 2019) incorporates the Kullback-Leibler (KL)
divergence loss between the predictions of clean and adversarial images. MART(Wang et al., 2020)
introduces per-sample weights based on the confidence of each sample. Due to their simplicity and
effectiveness, TRADES and MART are commonly used as baseline methods in adversarial training
(Wu et al., 2020; Bai et al., 2021b; Jin et al., 2022; Tack et al., 2022; Jin et al., 2023; Wei et al.,
2023; Qin et al., 2019). Moreover, several strategies such as data augmentation (Rebuffi et al., 2021;
Li & Spratling, 2023), and diverse loss functions (Wu et al., 2020), have been introduced.

Although defending against strong adversarial attack strategies(Croce & Hein, 2020a;b; An-
driushchenko et al., 2020) is challenging, highly robust models have also been developed. Low
Temperature Distillation (LTD) (Chen & Lee, 2021) points out the shortcomings of one-hot labels
in adversarial training and advocates the use of soft labels as an alternative approach. Better Dif-
fusion Models for Adversarial Training (BDM-AT) (Wang et al., 2023b) explores methods for the
more efficient utilization of diffusion models within the context of adversarial training. Improved
Kullback–Leibler Adversarial Training (IKL-AT) (Cui et al., 2023) inspects the mechanism of KL
divergence loss and proposes the Decoupled Kullback-Leibler divergence loss. However, given the
use of large architectures in these models, there is a necessity to enhance adversarial robustness in
smaller models.

2.2 ADVERSARIAL ROBUST DISTILLATION

Adversarial distillation (AD) is an effective technique to distill the robustness from large teacher
model to small student model (Goldblum et al., 2020; Zhu et al., 2021; Maroto et al., 2022; Zi
et al., 2021; Huang et al., 2023; Kuang et al., 2023; Jung et al., 2024; Yin et al., 2024; Dong et al.,
2025). Adversarial Robustness Distillation (ARD) (Goldblum et al., 2020) reveals that students can
more effectively acquire robustness when guided by a robust teacher within an adversarial training
framework. RSLAD (Zi et al., 2021) emphasizes the importance of smooth teacher logits in robust
distillation, integrating the teacher’s guidance directly into the adversarial image generation process.
Introspective Adversarial Distillation (IAD) (Zhu et al., 2021) concentrates on assessing the relia-
bility of the teacher and introduces a confidence score of the information provided by the teacher.
AdaAD (Huang et al., 2023) generates more sophisticated adversarial images through the integra-
tion of the teacher during the inner maximization process. Previous AD methods utilize the teacher’s
logits as a guide, but our approach also incorporates the distillation of gradient information.

2.3 GRADIENT DISTILLATION AND INPUT GRADIENT

In knowledge distillation, gradient information has been used in various ways (Czarnecki et al.,
2017; Du et al., 2020; Zhu & Wang, 2021; Lan & Tian, 2023; Wang et al., 2022), computed in either
input space or weight space. For example, an exploration of the diversity among teacher models in
the weight gradient space aids in identifying an optimal direction for training the student network
(Du et al., 2020). Another study examines the capacity gap between teachers and students, focusing
on the perspective of weight gradients similarity (Zhu & Wang, 2021). Conversely, input space
gradients find applications in knowledge distillation for tasks such as classification (Czarnecki et al.,
2017), object detection (Lan & Tian, 2023), or language model (Wang et al., 2022). These methods
all compute the gradient directly, which is different from our approach.

Additionally, input gradients of adversarially trained models contain semantically meaningful infor-
mation, aligning with human perception, where image modifications for a specific class resemble
human-recognized features (Tsipras et al., 2018; Engstrom et al., 2019; Srinivas et al., 2023). This
suggests that robust models capture more human-aligned features, underlining the potential of dis-
tilling such valuable insights from robust teacher models to enhance student model performance in
adversarial settings.

3 METHOD

In this section, we elaborate on how to distill the input gradients from the robust teacher models. In
the analysis of Appendix A.4, direct gradient matching is shown to be ineffective. Therefore, we
propose a novel approach for gradient matching that avoids direct gradient computation.
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3.1 LOCAL LINEARITY OF ADVERSARIAL TRAINING

First, we show that adversarially trained models are capable of first-order Taylor expansion on the
input unlike natural training. For small noise ϵ, the output of x + ϵ can be expressed as follows.
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Figure 2: The proportion occupied by the remainder
in Taylor expansion. (a) The remainder proportion of
an adversarially robust teacher model on CIFAR-100
dataset.

(b) The proportion along with training epochs in
natural training, adversarial training, and adversarial
distillation using ResNet-18 on CIFAR-100 dataset.

f(x+ϵ) = f(x) +
(
∂f(x)
∂x

)T

ϵ︸ ︷︷ ︸
first-order approximation

+O(∥ϵ∥2)︸ ︷︷ ︸
remainder

.

(2)
Here, f denotes the model, where we use
f for brevity instead of fθ, and ϵ is suf-
ficiently small noise with the same dimen-
sion as the x. To explore the influence of
the remainder, we calculate the proportion
occupied by the remainder in Equation (2)
by introducing uniform noise with a mag-
nitude of 8/255 as the perturbation ϵ. We
calculate the remainder proportion as the ra-
tio of the remainder to the total value, i.e.,
∥f(x+ϵ)−f(x)−( ∂f(x)

∂x )
T
ϵ∥

∥f(x+ϵ)∥ . We first examine
the remainder proportion in an adversari-
ally well-trained model: LTD (Chen & Lee,
2021), BDM-AT (Wang et al., 2023b), and IKL-AT (Cui et al., 2023) where we summarized the per-
formance in Table 1. In Figure 2a, the remainder proportions are computed to be very small, with
values of 0.012, 0.012, and 0.016 for three adversarially-trained models LTD, BDM-AT, and IKL-
AT, respectively. In other words, f(x + ϵ) can be approximated to the first-order Taylor expansion
since the remainder proportion is negligible. Thus, we utilize this local linearity of the adversarially
well-trained models to match input gradients.

Next, we investigate whether the model retains the local linearity in adversarial training, not in the
case of a fully-trained model. We test three training strategies: natural training, adversarial training
via ten steps of PGD (Madry et al., 2017), and adversarial distillation (Goldblum et al., 2020) using
the BDM-AT teacher. In Figure 2b, the remainder proportion continuously increases in natural
training, while it consistently remains small in both adversarial training and adversarial distillation.
Therefore, employing first-order Taylor expansion is feasible during adversarial training. In the
following section, we demonstrate how the locally linear property enables the matching of input
gradients between the teacher and the student.

3.2 GRADIENT MATCHING VIA OUTPUT DIFFERENCES

For an input x, we define xϵ1 and xϵ2 as follows:
xϵ1 = x + ϵ1, xϵ2 = x + ϵ2, (3)

where ϵ1 and ϵ2 represent small random perturbations of the same dimension as the input x. For
adversarially trained or training model f , the output of xϵ1 and xϵ2 can be approximated using first-
order Taylor expansion through the input space:

f(xϵ1) ≈ f(x) +
(
∂f(x)
∂x

)T

ϵ1, f(xϵ2) ≈ f(x) +
(
∂f(x)
∂x

)T

ϵ2, (4)

where we neglect the remainder term based on the observations in Section 3.1. To extract and
align the gradients between the student and the teacher models, we utilize the output differences as
follows:

L = D (fS(xϵ1)− fS(xϵ2) , fT (xϵ1)− fT (xϵ2)) , (5)
where fS and fT represent the student and teacher models, while D denotes a discrepancy metric
like L2 or KL divergence loss. This loss can be reformulated using Equation (4) as follows:

L = D

((
∂fS(x)
∂x

)T

(ϵ1 − ϵ2) ,

(
∂fT (x)
∂x

)T

(ϵ1 − ϵ2)

)
. (6)
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If we consider ϵ1− ϵ2 is an arbitrary perturbation vector, varying through the optimization process,
minimizing this loss encourages the alignment of the gradients between the student and the teacher
models, meaning

∂fS(x)
∂x

≈ ∂fT (x)
∂x

. (7)

3.3 INDIRECT GRADIENT DISTILLATION MODULE (IGDM)

To effectively integrate the gradient matching through output differences into AD methods, we select
the ϵ1 and ϵ2 as constant multiples of the adversary perturbation δ from the AD methods, i.e.,
ϵ1 − ϵ2 ∝ δ. Since the adversarial perturbations obtained during the training process continuously
change, the gradients can be aligned. Specifically, as the adversarial perturbation δ employs gradient
information, the inner product of gradient and ϵ1 − ϵ2 in Equation (6) can be effectively increased
with the adversarial perturbation. In other words, (∂fS(x)

∂x )T (ϵ1 − ϵ2) ∝ (∂fS(x)
∂x )T δ remains large,

facilitating the enhanced alignment of gradients using loss function in Equation (6) during training.

Finally, Indirect Gradient Distillation Module (IGDM) loss is formulated as:

LIGDM = D (fS(x + δ)− fS(x− δ) , fT (x + δ)− fT (x− δ)) . (8)

Since IGDM complements the loss function by matching the gradients between the teacher and
student models, the integration of IGDM with other AD methods becomes feasible in the following
manner:

Lmin = LAD + α · LIGDM , (9)
where α is a hyperparameter and LAD stands for the outer minimization loss of other AD methods
such as ARD (Goldblum et al., 2020), RSLAD (Zi et al., 2021), AdaAD (Huang et al., 2023), etc.

4 EXPERIMENTS

We explain the experimental setup, followed by comparative performance evaluations of the pro-
posed IGDM method against various AT and AD methods.

4.1 SETTINGS

Teacher and Student Models We selected three teacher models including LTD (Chen & Lee,
2021), BDM-AT (Wang et al., 2023b), and IKL-AT (Cui et al., 2023) for CIFAR-10/100. The LTD
model is widely adopted in prior AD research, while the others have achieved high-ranking perfor-
mance in RobustBench (Croce et al., 2021), demonstrating superior robustness against AutoAttack
(Croce & Hein, 2020a). For Tiny-ImageNet, we employed a pre-trained RiFT model (Zhu et al.,
2023), and for SVHN, we trained a WideResNet-34-10 (Zagoruyko & Komodakis, 2016) with PGD-
AT. For student models, we employed the ResNet-18 (He et al., 2016a) and MobileNetV2 (Sandler
et al., 2018) for CIFAR-10/100, ResNet-18 for SVHN, and PreActResNet-18 (He et al., 2016b) for
Tiny-ImageNet.

Table 1: Performance (%) of the teacher models. Experiments with teacher models in italics are
provided in the supplementary material.

Dataset Teacher name Architecture Clean PGD AA

CIFAR-100
BDM-AT (Wang et al., 2023b) WideResNet-28-10 72.58 44.24 38.83
LTD (Chen & Lee, 2021) WideResNet-34-10 64.07 36.61 30.57
IKL-AT (Cui et al., 2023) WideResNet-28-10 73.80 44.14 39.18

CIFAR-10
LTD (Chen & Lee, 2021) WideResNet-34-10 85.21 60.89 56.94
BDM-AT (Wang et al., 2023b) WideResNet-28-10 92.44 70.63 67.31
IKL-AT (Cui et al., 2023) WideResNet-28-10 92.16 71.09 67.73

SVHN PGD-AT (Madry et al., 2017) WideResNet-34-10 93.90 61.78 54.28
Tiny-ImageNet RiFT (Zhu et al., 2023) WideResNet-34-10 52.54 25.52 21.78
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Table 2: Adversarial distillation result on ResNet-18 with two teacher models on CIFAR-100. The
Clean, PGD, FGSM, C&W, and AA each indicate performance (%). Bold indicates cases where
IGDM improved accuracy by more than 0.5 percentage points.

Method
CIFAR-100 with BDM-AT teacher CIFAR-100 with LTD teacher

Clean FGSM PGD C&W AA Clean FGSM PGD C&W AA
PGD-AT 55.80 23.51 19.88 20.46 18.86 55.80 23.51 19.88 20.46 18.86
+IGDM 60.83 38.11 35.09 30.21 29.16 60.49 37.22 33.72 29.61 28.02
TRADES 53.56 29.85 25.85 23.32 22.02 53.56 29.85 25.85 23.92 22.02
+IGDM 60.88 36.26 32.26 26.50 25.50 59.29 36.08 32.08 26.10 26.10
ARD 61.51 34.23 30.23 26.97 24.77 61.34 35.19 31.19 27.74 25.74
+IGDM 61.62 39.75 35.75 30.99 28.79 61.58 37.45 33.45 29.94 27.84
IAD 59.92 35.47 31.47 26.91 25.15 60.12 36.91 32.91 28.29 26.29
+IGDM 62.99 37.32 34.76 29.55 27.76 62.73 37.69 33.69 29.65 27.49
AKD 60.27 35.38 31.38 26.29 25.09 60.46 35.53 31.53 27.29 25.37
+IGDM 60.42 37.63 33.62 29.27 28.86 60.31 38.15 34.15 29.44 28.44
RSLAD 60.22 36.16 32.16 27.96 26.76 60.01 36.39 32.39 28.94 26.94
+IGDM 62.06 39.67 35.67 30.98 29.78 60.43 38.02 34.02 29.94 28.51
AdaAD 64.43 37.33 33.21 29.53 28.06 63.34 37.39 33.39 29.73 27.81
AdaIAD 64.13 37.33 33.33 29.02 27.82 63.24 37.45 33.45 29.04 27.83
+IGDM 64.44 39.31 36.19 31.75 30.32 63.44 38.23 34.23 31.09 28.87

Table 3: Adversarial distillation result on ResNet-18 on CIFAR-10 and SVHN. The Clean, PGD,
FGSM, C&W, and AA each indicate performance (%). Bold indicates cases where IGDM improved
accuracy by more than 0.5 percentage points.

Method
CIFAR-10 with LTD teacher SVHN with PGD-AT teacher

Clean FGSM PGD C&W AA Clean FGSM PGD C&W AA
PGD-AT 84.52 52.42 42.80 42.98 41.12 91.62 65.93 48.07 48.34 42.46
+IGDM 84.15 59.21 53.70 51.19 49.63 92.57 72.19 60.55 56.10 52.12
TRADES 82.46 56.97 49.13 47.98 47.09 89.91 69.81 57.52 51.32 50.74
+IGDM 83.50 60.84 54.64 49.34 48.83 91.98 71.85 60.09 56.68 54.15
ARD 85.04 60.31 53.27 50.27 49.49 92.32 70.46 55.62 53.07 48.24
+IGDM 85.18 61.24 54.75 51.31 50.20 92.19 72.01 60.07 56.56 52.95
IAD 84.33 61.21 54.24 50.97 50.09 91.62 70.82 56.42 53.01 47.76
+IGDM 84.49 62.45 56.55 53.01 51.09 93.03 71.85 58.86 54.66 51.45
AKD 85.10 59.07 51.53 49.13 48.04 92.49 70.44 56.49 53.91 50.17
+IGDM 84.94 61.36 54.89 51.55 50.87 92.50 71.15 59.38 55.97 52.51
RSLAD 83.59 60.97 55.98 53.15 52.13 90.52 62.74 53.80 50.01 48.41
+IGDM 83.67 62.41 57.34 54.00 53.10 90.71 64.71 56.14 53.98 50.69
AdaAD 84.74 61.87 56.78 53.51 52.79 93.27 67.14 57.43 54.88 52.93
AdaIAD 84.75 61.98 57.04 53.57 52.88 93.39 67.10 57.26 54.76 52.74
+IGDM 84.83 62.54 57.61 55.09 54.02 93.48 68.34 58.74 56.03 53.89

Evaluation Metrics After training, we evaluate performance using five metrics: Clean, FGSM,
PGD, C&W, and AutoAttack (AA) accuracy. Clean refers to the accuracy on the test dataset. We
measure FGSM and PGD accuracy against fast gradient sign method (FGSM) (Goodfellow et al.,
2014) and 20-step projected gradient descent (PGD) attacks (Madry et al., 2017), respectively. The
C&W attack measures accuracy against Carlini & Wagner (2017), while AA evaluates accuracy
against the AutoAttack method (Croce & Hein, 2020a). All attacks were conducted within an l∞-
norm bound of 8/255.
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Implementation We utilized the CIFAR-10/100 (Krizhevsky et al., 2009), SVHN (Netzer et al.,
2011), and Tiny-ImageNet (Le & Yang, 2015) datasets for our experiments. Random crop and
random horizontal flip were applied, while other augmentations were not utilized. Our training
methods encompassed conventional adversarial training methods, PGD-AT (Madry et al., 2017)
and TRADES (Zhang et al., 2019), as well as adversarial distillation techniques including ARD
(Goldblum et al., 2020), IAD (Zhu et al., 2021), AKD (Maroto et al., 2022), RSLAD (Zi et al.,
2021), and AdaAD (Huang et al., 2023). In our comparative analysis, we integrated IGDM into
all of these methods, and we used shortened notations to represent the methods with IGDM. For
example, when IGDM is combined with ARD, we denote it as ARD + IGDM or IGDMARD. We
employed the recommended inner loss functions for generating adversarial examples as outlined in
each baseline as specified in Appendix B. We fixed the hyperparameters of all given methods used
in the experiment as original paper. Then, we adjusted the hyperparameter α of IGDM. For the
surrogate loss of IGDM, we employed KL divergence loss, but using alternative surrogate losses,
such as L1 and L2 loss, yields nearly indistinguishable results. The detailed experimental setting
can be found in Appendix B.

4.2 RESULTS

Main Results We present the comprehensive results of integrating IGDM into other baseline
methods and their original versions in Table 2, Table 3. More experimental results are in the
appendix: distillation results on MobileNetV2 student (Appendix A.1), distillation with IKL-AT
teacher (Appendix A.2), and experiments on the Tiny-ImagNet dataset (Appendix A.3). IGDM sig-
nificantly improves robustness against various attacks with consistent clean accuracy, regardless of
the original methods, datasets, student models, or teacher models. IGDM demonstrates notably en-
hanced AA robustness on the CIFAR-100 dataset, achieving 30.32% on ResNet-18 with a BDM-AT
teacher.

Table 4: Gradient alignment on CIFAR-100, using the
ResNet-18 student model. The numbers in bold indi-
cate enhanced gradient alignment.

Method
BDM-AT LTD

AA GD⇓ GC⇑ AA GD⇓ GC⇑
ARD 24.77 0.142 0.439 25.74 0.108 0.592
+IGDM 28.79 0.101 0.571 27.84 0.082 0.688
IAD 25.15 0.135 0.443 26.29 0.102 0.596
+IGDM 27.76 0.104 0.549 27.49 0.086 0.674
AKD 25.09 0.127 0.438 25.37 0.113 0.584
+IGDM 28.86 0.114 0.513 28.44 0.078 0.693
RSLAD 26.76 0.118 0.492 26.94 0.089 0.658
+IGDM 29.78 0.096 0.582 28.51 0.077 0.709
AdaAD 28.06 0.107 0.567 27.81 0.077 0.736
AdaIAD 27.82 0.107 0.568 27.83 0.077 0.733
+IGDM 30.32 0.086 0.643 28.87 0.070 0.769

Gradient Alignment We justify that
IGDM can align the student’s input gradient
with the teacher’s input gradient. To quan-
tify this alignment between the two input
gradients, we introduce two metrics: mean
Gradient Distance (GD) and mean Gradient
Cosine similarity (GC). GD quantifies the
average L2 distance between the input gra-
dients of the teacher and student models for
all test samples, with smaller values indi-
cating closer alignment. GC measures the
cosine similarity between these gradients,
where a value closer to one signifies bet-
ter alignment. In Table 4, IGDM improves
gradient alignment with the teacher model,
with improved robustness. As shown in
Figure 3, the robustness of the student
model increases as GD decreases and GC
rises, confirming the positive correlation be-
tween gradient alignment and student model performance.

Point-wise Alignment Existing adversarial distillation methods have largely overlooked the im-
portance of input gradients, instead focusing on point-wise alignment. For example, RSLAD (Zi
et al., 2021) and AdaAD (Huang et al., 2023) explicitly aim to align clean and adversarial outputs
with the teacher’s clean output. Thus, we reinterpret point-wise alignment in terms of input gradient
matching, where IGDM demonstrates superior performance compared to existing AD methods in
achieving this alignment. We define point-wise distance D(x, δ) = ∥fT (x+δ)−fS(x+δ)∥. Then
given x, the upper bound of D(x, δ) for sufficiently small δ is as follows.

D(x, δ) ≤ ∥(fT (x)− fS(x)∥+

∥∥∥∥∥
(
∂fT (x)
∂x

− ∂fS(x)
∂x

)T

δ

∥∥∥∥∥ . (10)
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Figure 3: Correlation between GC and AA (left) and between GD and AA (right). All results were
obtained using ResNet-18 and a BDM-AT teacher on CIFAR-100. The values for IGDM and AD
methods match those in Table 2, while ’Others’ represent results from additional experiments under
the same configuration. ρ denotes the correlation coefficient.

Hence, the better the gradient matching, the smaller the upper bound of D(x, δ) becomes, aligning
the teacher and student in a point-wise manner.

To empirically substantiate this assertion, we compared the distances between the teacher and the
student models. We calculated D(fS(x+δ), fT (x+δ)) with L2 distance for random noise from the
uniform distribution and adversarial perturbation in Table 5. For the adversarial noise, we conducted
an adversarial attack using the inner maximization loss corresponding to each method, with a fixed
number of steps set to 20. In all cases, we observed an improvement in alignment when using
IGDM. In particular, IGDM enhanced alignment against not only adversarial noise but also random
noise. This outcome demonstrates that our module contributes to point-wise alignment, improving
overall robustness by significantly reducing local invariance during training, as asserted in Huang
et al. (2023).

Table 5: Point-wise alignment with IGDM on CIFAR-100, using the ResNet-18 student model and
two teacher models. The δ ∼ U indicates uniformly selected δ from U [−8/255, 8/255]. The
numbers in bold indicate enhanced point alignment.

Method
BDM-AT Teacher LTD teacher IKL-AT teacher

δ ∼ U δ = adv δ ∼ U δ = adv δ ∼ U δ = adv
ARD 0.2392 0.2848 0.1822 0.2176 0.4030 0.4734
+IGDM 0.1312 0.1533 0.1301 0.1501 0.1504 0.1690
IAD 0.2374 0.2811 0.1905 0.2190 0.3939 0.4568
+IGDM 0.1342 0.1684 0.1194 0.1395 0.1524 0.1971
AKD 0.3184 0.3622 0.2017 0.2323 0.4325 0.4810
+IGDM 0.1704 0.2081 0.1156 0.1312 0.1521 0.1698
RSLAD 0.1903 0.2375 0.1686 0.2019 0.2227 0.2856
+IGDM 0.1233 0.1516 0.1219 0.1424 0.1361 0.1681
AdaAD 0.1794 0.2529 0.1348 0.2028 0.2499 0.3400
AdaIAD 0.1803 0.2518 0.1331 0.2010 0.2504 0.3479
+IGDM 0.1294 0.1857 0.1253 0.1833 0.1338 0.2002

4.3 COMPARISON WITH THE STATE-OF-THE-ART METHOD: ADAAD

Simple Inner Maximization with IGDM AdaAD (Huang et al., 2023) employs a teacher model
for inner maximization to enhance student model robustness. However, this approach significantly
increases computational overhead due to the teacher model’s large architecture. In contrast, IGDM
achieves competitive robustness without a teacher model in inner maximization, simplifying the
overall training process and reducing training time. In Table 6, we compare performance with and
without the teacher model for inner maximization. When AdaAD’s inner maximization is replaced
with a PGD attack on the student model alone, robustness drops significantly. However, IGDMAdaAD
achieves superior robustness more than the original AdaAD method, with reduced training time by

8
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a factor of three. This highlights the efficiency of IGDM, offering both robustness and flexibility by
eliminating the need for a teacher model on inner maximization.

Table 6: AutoAttack accuracy (%) and computational overhead of AdaAD and IGDMAdaAD with
different inner loss on CIFAR-100 with the ResNet-18 student. ‘T/E’ and ‘Mem’ refer to time per
epoch (in minutes) and memory usage. The ‘w/o Tin’ indicates that the inner loss is computed using
a PGD attack solely on the student model, without the teacher’s involvement.

Method BDM-AT teacher LTD teacher IKL-AT teacher
AA T/E⇓ Mem⇓ AA T/E⇓ Mem⇓ AA T/E⇓ Mem⇓

AdaAD 28.06 10.62 4711M 27.81 12.12 4900M 26.89 10.91 4711M
AdaAD w/o Tin 25.62 2.26 2063M 26.57 2.42 2634M 23.37 2.27 2063M
IGDMAdaAD 30.32 11.21 4711M 28.87 13.27 4900M 29.22 11.30 4711M
IGDMAdaAD w/o Tin 29.34 3.36 2611M 28.12 3.64 3187M 28.94 3.38 2611M

Comparison of IGDM and AdaAD under Same Experimental Conditions We replicated
AdaAD’s experimental setup using the same teacher-student model configuration for a fair compar-
ison. Specifically, we used the CIFAR-100 dataset with the LTD teacher and the CIFAR-10 dataset
with the LTD2 teacher. (In the AdaAD paper, the LTD teacher was trained on WideResNet-34-20
for CIFAR-10, so we refer to it as LTD2 to reflect this difference.) Both setups were evaluated with
a ResNet-18 student, as shown in Table 7. While the AdaAD paper proposed two methods, AdaAD
and AdaIAD, and noted a performance gap of about 1 percentage point, our experiments showed a
smaller difference. As a result, we focused on applying the module specifically to AdaAD in our
implementation. Notably, IGDMAdaAD consistently demonstrated a significant improvement in ro-
bustness accuracy. This demonstrates that even in a fair comparison, the IGDM module consistently
enhances adversarial robustness, underscoring its effectiveness.

Table 7: Comparison between AdaAD paper results and our implementation results with identical
experimental settings.

Method Result from CIFAR-100 with LTD CIFAR-10 with LTD2

Huang et al. (2023) Ours Clean AA Clean AA
AdaAD ✓ 62.19 26.74 85.58 51.37
AdaIAD ✓ 62.49 27.98 85.04 52.96
AdaAD ✓ 63.34 27.81 85.47 52.47
AdaIAD ✓ 63.24 27.83 85.34 52.30
IGDMAdaAD ✓ 63.44 28.87 85.50 53.45

Table 8: Comparison between AdaAD with vari-
ous hyperparameter.

Method Clean AA GD⇓ GC⇑
AdaAD(λ = 0.25) 66.48 25.51 0.118 0.526
AdaAD(λ = 0.50) 65.44 27.24 0.108 0.564
AdaAD(λ = 0.75) 64.98 27.42 0.109 0.560
AdaAD(λ = 1.0) 64.43 27.82 0.107 0.568
IGDMAdaAD 64.44 30.32 0.086 0.643

Limitations of Hyperparameter Tuning in
AdaAD for Gradient Alignment AdaAD
utilizes a single hyperparameter, λ, to con-
trol the balance between the distillation of ad-
versarial and clean inputs, as λ · KL(fS(x +
δ)∥fT (x + δ)) + (1 − λ) · KL(fS(x)∥fT (x)).
However, in their implementation, λ is always
set to one. Initially, we hypothesized that ad-
justing λ could facilitate the distillation of both
adversarial and clean inputs, potentially align-
ing the gradients. Yet, as shown in Table 8,
modifying λ degraded both robustness and gradient matching. This suggests that while point-
wise matching is achieved in AdaAD, simply distilling two points is insufficient for capturing the
teacher’s gradients. In contrast, our approach enables effective gradient alignment and better distil-
lation of the teacher model’s robustness.

9



Published as a conference paper at ICLR 2025

4.4 ABLATION STUDIES

In this section, we conduct more extensive experiments, including robustness against unseen attacks
and distillation results with various teacher models. Here, we chose the CIFAR-100 dataset with
ResNet-18 architecture of student model.

Table 9: The CIFAR-100 performance, eval-
uated with OODRobustBench.

Method Clean Acc (%) Robust Acc (%)
OODd OODd OODt

ARD 49.92 15.70 14.91
+ IGDM 50.65 16.98 17.36
IAD 48.75 16.21 15.03
+ IGDM 51.43 18.20 17.35
AKD 49.74 15.95 14.96
+ IGDM 49.83 18.52 17.07
RSLAD 48.96 17.41 16.46
+ IGDM 50.45 19.66 18.53
AdaAD 51.53 17.77 17.32
AdaIAD 51.18 17.75 17.26
+ IGDM 51.52 19.66 18.65

Robustness against Unseen Attacks In Table 9,
we measured performance against the different
attack scenarios in out-of-distribution (OOD) to
demonstrate that we effectively distill the robustness
of a teacher model. OODRobustBench (Li et al.,
2023) is designed to simulate real-world distribution
shifts and evaluate adversarial robustness. It focuses
on two types of shifts: dataset shifts (OODd) and
threat shifts (OODt), offering a more comprehen-
sive assessment compared to relying solely on Au-
toAttack accuracy. The term OODd encompasses
natural and corruption shifts, which consist of vari-
ant datasets of CIFAR-100 and common corruptions
such as noise and blur. Meanwhile, OODt considers
six unforeseen attacks, such as the Recolor (Laidlaw
& Feizi, 2019) and StAdv (Xiao et al., 2018), etc.
Overall, our module improves the performance of
existing adversarial distillation methods against var-
ious noise and unseen attacks.

Rice
20

20
Ove

rfit

tin
g (

18
.95

%)

Sit
aw

ari
n2

02
0Im

pro
vin

g

(24
.75

%)

Che
n2

02
0E

ffic
ie

nt 
(26

.94
%)

Hen
dry

cks
20

19
Us

ing
 (2

8.4
2%

)

Cui2
02

0Le
arn

ab
l

e_3
4_1

0_L
BG

AT
6

(29
.33

%)

LTD
 (3

0.5
9%

)

BDM-AT
 (3

8.8
3%

)

Teacher Models (Ordered by AutoAttack Accuracy)

20

22

24

26

28

30

St
ud

en
t A

ut
oA

tta
ck

 A
cc

ur
ac

y 
(%

)

ARD
IAD
AKD
RSLAD
AdaAD
IGDM

Figure 4: Performance comparison of different
adversarial distillation methods across various
teacher models.

Adversarial Distillation with Various Teacher
Model We conducted adversarial distillation
using several teacher models to further validate
the effectiveness of our approach. We utilized
multiple teacher models that were adversarially
trained on the CIFAR-100 dataset. All these
models are publicly available in RobustBench
(Croce et al., 2021), and we selected them based
on varying levels of robustness against AutoAt-
tack (Croce & Hein, 2020a). As shown in the
Figure 4, IGDM consistently outperforms other
distillation methods across different teacher se-
tups. Notably, even when using less robust
teachers, there is a substantial performance gap.
In contrast, while AdaAD demonstrates signif-
icant improvements with strong teachers com-
pared to other baselines, it shows minimal differences when employing weaker teachers. This high-
lights that our approach maintains meaningful performance advantages across all teacher models.

5 CONCLUSION

We have proposed a novel method Indirect Gradient Distillation Module (IGDM) for adversarial
distillation. In contrast to conventional adversarial distillation methods that primarily focus on dis-
tilling the logits of the teacher model, we concentrate on distilling the gradient information of the
teacher model. We obtain these gradients indirectly by leveraging the locally linear property, a
characteristic of adversarially trained models. Notably, IGDM can be seamlessly applied to exist-
ing adversarial distillation methods. Extensive experimental results demonstrate that the student
model with IGDM successfully follows the gradients of the teacher model, resulting in significantly
enhanced robustness.
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A FURTHER EXPERIMENTS

We conduct further experiments to corroborate our main contribution. These include distillation
results on MobileNetV2 student (Appendix A.1), distillation with IKL-AT teacher (Appendix A.2),
and experiments on the Tiny-ImagNet dataset (Appendix A.3). We also analyze the drawbacks of
direct gradient matching (Appendix A.4) and the role of logit difference (Appendix A.5). Finally,
hyperparameter tuning experiments are detailed in Appendix A.6.

A.1 ADVERSARIAL DISTILLATION ON MOBILENETV2 ARCHITECTURE

Table 10: Adversarial distillation results on MobileNetV2 with BDM-AT and LTD teacher models
on CIFAR-100. Bold indicates cases where IGDM improved accuracy by more than 0.5 percentage
points or better gradient matching.

Method
CIFAR-100 with BDM-AT teacher CIFAR-100 with LTD teacher

Clean PGD AA GD⇓ GC⇑ Clean PGD AA GD⇓ GC⇑
PGD-AT 59.23 24.04 21.58 0.204 0.408 59.23 24.04 21.58 0.194 0.486
+IGDM 59.52 32.88 27.28 0.109 0.528 59.70 32.59 27.14 0.091 0.636
TRADES 51.05 24.83 20.62 0.132 0.377 51.05 24.83 20.62 0.119 0.460
+IGDM 57.80 29.47 22.05 0.097 0.469 56.81 29.87 23.38 0.081 0.640
ARD 60.74 29.92 24.33 0.137 0.445 60.55 30.82 25.28 0.111 0.569
+IGDM 60.83 33.55 27.50 0.107 0.534 60.44 33.36 27.59 0.082 0.681
IAD 56.35 28.96 23.43 0.129 0.430 56.11 29.55 24.22 0.106 0.547
+IGDM 57.65 31.97 25.60 0.106 0.506 58.60 31.36 25.64 0.090 0.617
AKD 60.84 29.37 24.22 0.135 0.428 60.65 29.84 24.85 0.112 0.564
+IGDM 60.39 33.62 28.04 0.104 0.538 59.94 33.70 28.12 0.077 0.715
RSLAD 61.29 31.74 26.18 0.121 0.490 60.43 32.37 26.85 0.092 0.632
+IGDM 61.48 35.22 29.32 0.101 0.560 60.36 33.99 28.00 0.079 0.696
AdaAD 61.89 29.54 23.80 0.118 0.497 61.43 30.58 25.03 0.091 0.649
AdaIAD 60.83 29.94 23.83 0.116 0.499 61.22 30.78 25.22 0.088 0.652
+IGDM 61.43 33.51 27.43 0.097 0.583 61.57 33.14 27.65 0.076 0.721

Table 11: Adversarial distillation results on MobileNetV2 with BDM-AT and LTD teacher models
on CIFAR-10. Bold indicates cases where IGDM improved accuracy by more than 0.5 percentage
points or better gradient matching.

Method
CIFAR-10 with BDM-AT teacher CIFAR-10 with LTD teacher

Clean PGD AA GD⇓ GC⇑ Clean PGD AA GD⇓ GC⇑
PGD-AT 83.52 44.47 41.19 0.175 0.406 83.52 44.47 41.19 0.171 0.505
+IGDM 82.78 51.54 47.13 0.074 0.501 81.73 52.63 48.51 0.048 0.671
TRADES 81.57 50.49 46.88 0.074 0.492 81.57 50.49 46.88 0.062 0.605
+IGDM 82.33 52.94 47.70 0.050 0.502 81.82 52.96 47.47 0.039 0.645
ARD 84.38 48.26 44.02 0.091 0.371 84.18 52.16 48.11 0.054 0.578
+IGDM 84.53 52.45 45.06 0.071 0.467 84.25 54.03 49.53 0.042 0.684
IAD 83.79 48.36 44.02 0.088 0.385 83.38 52.71 48.45 0.051 0.592
+IGDM 84.27 52.42 45.08 0.063 0.497 83.65 54.57 50.14 0.038 0.704
AKD 83.75 47.15 43.43 0.093 0.368 84.46 50.84 46.96 0.057 0.566
+IGDM 83.29 53.29 48.41 0.064 0.527 83.98 54.40 49.99 0.040 0.691
RSLAD 84.69 50.94 47.38 0.074 0.491 82.60 54.55 50.44 0.040 0.706
+IGDM 84.64 52.33 49.27 0.068 0.515 82.61 55.02 51.01 0.039 0.706
AdaAD 84.51 50.67 46.56 0.069 0.516 84.24 55.47 51.36 0.034 0.777
AdaIAD 85.04 51.33 47.62 0.068 0.519 84.14 55.58 51.48 0.034 0.778
+IGDM 84.75 52.35 48.34 0.065 0.526 84.27 56.15 52.15 0.033 0.790
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In Table 10 and Table 11, we present additional experiments on the CIFAR-10 and CIFAR-100
datasets using MobileNetV2 (Sandler et al., 2018) as the student model, with two distinct teacher
models: LTD and BDM-AT. Across both datasets, applying IGDM consistently improved robust-
ness under PGD and AutoAttack, compared to the baseline adversarial training methods. Notably,
IGDM enhanced the model’s performance on both CIFAR-10 and CIFAR-100, particularly in re-
ducing the Gradient Distance (GD) and improving Gradient Cosine similarity (GC). These results
underscore the effectiveness of IGDM in improving adversarial robustness and gradient alignment
across different datasets and architectures.

A.2 ADVERSARIAL DISTILLATION WITH IKL-AT TEACHER MODEL.

Table 12: Adversarial distillation results on ResNet-18 and MobileNetV2 with a IKL-AT teacher
model on CIFAR-100. Bold indicates cases where IGDM improved accuracy by more than 0.5
percentage points or better gradient matching.

Method
CIFAR-100 with ResNet-18 student CIFAR-100 with MobileNetV2 student

Clean PGD AA GD⇓ GC⇑ Clean PGD AA GD⇓ GC⇑
PGD-AT 55.80 19.88 18.86 0.460 0.306 59.23 24.04 21.58 0.211 0.392
+IGDM 62.91 35.25 28.89 0.122 0.534 59.75 33.59 27.02 0.120 0.517
TRADES 53.56 25.85 22.02 0.199 0.354 51.05 24.83 20.62 0.148 0.351
+IGDM 62.41 31.79 24.02 0.116 0.467 59.34 29.36 22.40 0.120 0.444
ARD 61.38 27.59 23.18 0.178 0.400 61.52 28.00 23.40 0.164 0.420
+IGDM 61.55 35.24 28.87 0.117 0.546 61.95 32.26 26.48 0.132 0.498
IAD 61.09 29.25 23.61 0.173 0.403 58.39 28.40 23.06 0.147 0.418
+IGDM 64.20 33.71 27.03 0.132 0.506 59.58 30.96 25.42 0.128 0.478
AKD 61.90 29.23 23.96 0.171 0.412 61.69 27.87 23.60 0.159 0.431
+IGDM 61.94 33.16 27.82 0.131 0.511 61.56 33.62 27.32 0.117 0.519
RSLAD 61.18 30.54 25.27 0.147 0.444 61.95 30.16 25.09 0.157 0.441
+IGDM 63.55 35.26 29.10 0.119 0.541 62.48 35.25 28.82 0.118 0.547
AdaAD 65.36 32.29 26.89 0.133 0.525 62.35 28.51 23.01 0.140 0.470
AdaIAD 65.29 32.47 26.80 0.133 0.527 62.17 28.48 23.39 0.139 0.473
+IGDM 66.00 34.47 29.22 0.119 0.582 62.02 32.85 26.11 0.119 0.533

Table 13: Adversarial distillation results on ResNet-18 and MobileNetV2 with a IKL-AT teacher
model on CIFAR-10. Bold indicates cases where IGDM improved accuracy by more than 0.5 per-
centage points or better gradient matching.

Method
CIFAR-10 with ResNet-18 student CIFAR-10 with MobileNetV2 student

Clean PGD AA GD⇓ GC⇑ Clean PGD AA GD⇓ GC⇑
PGD-AT 84.52 42.80 41.12 0.409 0.286 83.52 44.47 41.19 0.175 0.401
+IGDM 83.66 54.38 49.85 0.072 0.541 82.11 51.13 47.00 0.063 0.507
TRADES 82.46 49.13 47.09 0.131 0.425 81.57 50.49 46.88 0.073 0.489
+IGDM 83.14 54.91 48.76 0.098 0.455 81.67 52.32 47.40 0.057 0.492
ARD 85.41 49.36 45.32 0.087 0.389 84.68 48.03 44.11 0.087 0.376
+IGDM 85.78 54.37 46.52 0.072 0.467 84.72 50.89 46.13 0.070 0.473
IAD 85.22 49.70 45.96 0.083 0.393 84.25 48.58 44.15 0.082 0.390
+IGDM 83.78 54.77 50.24 0.061 0.521 83.89 51.46 46.48 0.069 0.458
AKD 83.62 51.81 46.01 0.080 0.395 84.52 47.56 43.27 0.154 0.421
+IGDM 83.70 53.69 49.45 0.067 0.539 84.33 50.36 45.37 0.089 0.438
RSLAD 85.55 52.13 48.83 0.069 0.531 84.62 51.43 47.69 0.072 0.503
+IGDM 85.67 53.30 49.58 0.065 0.541 84.30 53.14 48.91 0.066 0.523
AdaAD 86.59 54.25 50.86 0.062 0.570 85.31 52.10 48.03 0.066 0.524
AdaIAD 86.57 54.59 50.61 0.062 0.572 85.47 52.05 47.96 0.066 0.523
+IGDM 86.10 55.41 51.29 0.060 0.587 85.11 53.07 49.08 0.061 0.541
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In Table 12 and Table 13, we conduct additional experiments on the CIFAR-100 and CIFAR-10
datasets with the IKL-AT (Cui et al., 2023) teacher model. Similar to the outcomes observed with
the LTD (Chen & Lee, 2021) and BDM-AT (Wang et al., 2023b) teachers on those datasets, IGDM
demonstrates substantial enhancements in robustness with the IKL-AT teacher, regardless of the
original methods, datasets, or student models, while maintaining consistent clean accuracy. Further-
more, consistent results are observed across all experiments, with a decrease in GD and an increase
in GC upon applying IGDM.

A.3 ADVERSARIAL DISTILLATION ON TINY-IMAGENET

Table 14: Adversarial distillation result on PreActResNet-18 with a WideResNet-34-10 teacher
model on Tiny-ImageNet. Bold indicates cases where IGDM improved accuracy by more than
0.5 percentage points or better gradient matching.

Method Clean PGD AA GD⇓ GC⇑
PGD-AT (Madry et al., 2017) 50.13 17.10 14.58 0.126 0.490
+IGDM 51.46 25.04 20.10 0.071 0.672
TRADES (Zhang et al., 2019) 46.51 19.51 14.89 0.094 0.447
+IGDM 51.31 24.10 18.92 0.073 0.649
ARD (Goldblum et al., 2020) 50.81 23.37 19.48 0.081 0.613
+IGDM 50.86 25.39 20.57 0.069 0.683
IAD (Zhu et al., 2021) 49.89 23.89 19.10 0.079 0.614
+IGDM 50.02 25.57 20.69 0.066 0.704
AKD (Maroto et al., 2022) 51.70 23.86 19.69 0.082 0.612
+IGDM 51.38 25.25 20.99 0.063 0.720
RSLAD (Zi et al., 2021) 47.12 22.14 17.65 0.081 0.567
+IGDM 47.54 23.95 18.35 0.074 0.620
AdaAD (Huang et al., 2023) 51.54 24.65 20.60 0.064 0.738
+IGDM 51.21 25.73 21.17 0.060 0.764

The results in Table 14 confirm the effectiveness of IGDM in enhancing adversarial robustness,
especially on the challenging Tiny-ImageNet dataset Le & Yang (2015). Consistent with findings on
other datasets, IGDM improves robustness metrics such as PGD and AA accuracy, while maintaining
comparable clean accuracy. This improvement is particularly significant given the complexity of
Tiny-ImageNet, where achieving high robustness is often challenging. Moreover, IGDM facilitates
better alignment between teacher and student models, evidenced by a reduction in mean Gradient
Distance (GD) and an increase in mean Gradient Cosine similarity (GC), further underscoring the
impact of gradient matching of our method.

A.4 DRAWBACKS OF DIRECT GRADIENT MATCHING IN CONTRAST TO IGDM

IGDM achieves gradient matching indirectly by leveraging the differences in logits. One might
assume that distilling directly calculated gradients could achieve gradient matching more intuitively,
as expressed by the following equation:

LDirect = T (α) ·D
(
∂fS(x)
∂x

,
∂fT (x)
∂x

)
. (11)

In Table 15, we conduct experiment on IGDMARD and direct gradient matching (DirectARD). To
ensure a fair comparison between the two methods, we kept all other factors the same, varying only
the gradient calculation method (logits differences vs. direct calculation). The results reveal that
direct gradient distillation fails to meaningfully enhance robustness compared to the original ARD
method. Although it shows a slight enhancement in gradient matching, its performance significantly
lags behind IGDM.

To provide a comprehensive interpretation, we analyze GD and training loss over training time,
epoch, and step in Figure 5. The limitations of direct gradient matching are evident due to optimiza-
tion challenges; a small α fails to match the gradient, while a large α results in poor convergence of
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Table 15: Adversarial distillation result of ARD variant methods on ResNet-18 with BDM-AT
teacher on CIFAR-100. DirectARD represents the direct distillation of gradients, and the α is the
hyperparameter of the gradient distillation loss.

Method Clean PGD AA GD⇓ GC⇑
DirectARD(α = 1) 60.92 30.56 25.23 0.136 0.447
DirectARD(α = 3) 60.98 30.29 24.88 0.137 0.444
DirectARD(α = 6) 61.13 30.34 25.27 0.135 0.448
DirectARD(α = 10) 61.05 30.80 25.33 0.132 0.453
DirectARD(α = 30) 61.43 30.45 25.29 0.127 0.455
DirectARD(α = 60) 61.14 30.17 24.73 0.124 0.450
DirectARD(α = 100) 60.36 30.48 24.62 0.121 0.445
DirectARD(α = 300) 59.63 29.72 23.99 0.116 0.440
DirectARD(α = 600) 58.79 29.76 24.06 0.111 0.441
DirectARD(α = 1000) 57.08 29.89 24.14 0.108 0.445
DirectARD(α = 3000) 51.30 29.13 22.85 0.104 0.441
DirectARD(α = 6000) 46.95 27.33 20.70 0.105 0.424
DirectARD(α = 10000) 43.22 25.67 19.18 0.105 0.404
ARD (Goldblum et al., 2020) 61.51 30.23 24.77 0.142 0.439
+IGDM 61.62 35.75 28.79 0.101 0.571

the training loss. More interestingly, even with a large α, direct matching results in GD values higher
than those achieved by IGDM. We interpret these optimization issues as arising from the low-level
features of the input gradient, similar to the input itself. In other words, directly matching low-level
feature gradients is comparable to matching pixel-wise image differences. This leads to the model’s
inability to effectively capture the training objective, failing to match the gradient and, consequently,
diminished robustness. One potential solution to address these optimization challenges is to employ
an additional discriminator model, as proposed in (Chan et al., 2020). However, this approach re-
quires training an additional discriminator model, whereas IGDM does not necessitate any other
model or training procedure. In summary, IGDM significantly enhances robustness by indirectly
matching the gradient using high-level feature logits, thereby achieving superior robustness.

Figure 5: Comparision between IGDM and direct gradient matching. GD and training loss are
measured at the training epoch and step, respectively.
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A.5 IMPORTANT ROLE OF LOGIT DIFFERENCE IN IGDM

Adversarial training aims to make the network output almost constant within a ball around the input
point. Therefore, one might assume that the distilling logit difference of the adversarially trained
teacher model in IGDM loss is close to distilling 0. In other words, IGDM can be simplified as
expressed by the following equation:

LIGDMTRADES-like = T (α) ·D(fS(x + δ)− fS(x− δ) , 0)

= T (α) ·D(fS(x + δ) , fS(x− δ)).
(12)

We refer to this method as IGDMTRADES-like because it resembles a TRADES (Zhang et al., 2019)
regularization loss (TRADESreg), and empirically, its performance closely aligns with the addition
of the TRADES regularization loss:

LTRADESreg = T (α) ·D(fS(x + δ) fS(x)). (13)

Table 16: Adversarial distillation result of ARD variant methods on ResNet-18 with BDM-AT
teacher on CIFAR-100. TRADESreg represents the regularization loss of TRADES. and the α is
the hyperparameter of the gradient distillation loss.

Method Clean PGD AA GD⇓ GC⇑
ARD + TRADESreg(α = 1) 57.86 31.44 25.95 0.125 0.459
ARD + TRADESreg(α = 5) 58.07 32.13 26.06 0.117 0.466
ARD + TRADESreg(α = 10) 53.58 32.01 26.27 0.116 0.463
ARD + TRADESreg(α = 15) 52.05 31.53 26.23 0.115 0.464
ARD + TRADESreg(α = 20) 50.87 31.92 26.30 0.115 0.462
ARD + TRADESreg(α = 25) 50.28 31.92 26.15 0.115 0.458
ARD + TRADESreg(α = 30) 49.20 31.93 25.87 0.115 0.456
ARD + IGDMTRADES-like(α = 1) 57.73 31.72 25.64 0.119 0.461
ARD + IGDMTRADES-like(α = 5) 54.18 31.71 25.79 0.117 0.466
ARD + IGDMTRADES-like(α = 10) 52.21 32.08 25.98 0.118 0.464
ARD + IGDMTRADES-like(α = 15) 50.50 31.85 25.91 0.118 0.457
ARD + IGDMTRADES-like(α = 20) 49.67 31.76 25.78 0.118 0.452
ARD + IGDMTRADES-like(α = 25) 48.21 31.33 25.38 0.119 0.445
ARD + IGDMTRADES-like(α = 30) 47.61 31.04 25.05 0.119 0.439
ARD (Goldblum et al., 2020) 61.51 30.23 24.77 0.142 0.439
+IGDM 61.62 35.75 28.79 0.101 0.571

In Table 16, we conduct experiments on these two methods in conjunction with the ARD (Gold-
blum et al., 2020) method. For TRADESreg, as the regularization term strengthens, the robustness
slightly increases; however, it lags far behind IGDM in terms of robustness. IGDMTRADES-like fol-
lows a similar trend to the TRADESreg method with the increase in hyperparameter. These results
indicate that the logit difference of the teacher model provides valuable information for teaching
the student model to achieve robustness through gradient matching, resulting in superior robustness.
This finding corroborates our main contribution in the main paper.

A.6 ANALYSIS ON HYPERPARAMETER SENSITIVITY OF IGDM

The proposed IGDM loss is defined as follows:

LIGDM = T (α) ·D (fS(x + δ)− fS(x− δ) , fT (x + δ)− fT (x− δ)) .

In Table 17 and Table 18, we analyze the sensitivity of hyperparameters α using IGDMPGD-AT and
IGDMARD. In these tables, a value of 0 for α represents the original methods, PGD-AT and ARD,
respectively. As α increases, gradient matching becomes more prominent, leading to enhanced
robustness for both methods. However, excessively large values of α do not provide additional
enhancements and may even reduce robustness. Based on the insights from the hyperparameter
sensitivity analysis, we employed grid search to adapt the IGDM module for all experiments.
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Table 17: Analysis of hyperparameter of IGDM using PGD-AT variant methods on ResNet-18 with
BDM-AT teacher on CIFAR-100. α is the hyperparameter of IGDM loss. The gray row indicates
the reported values.

Method Clean PGD AA GD⇓ GC⇑
PGD-AT (Madry et al., 2017) 55.80 19.88 18.86 0.452 0.389
IGDMPGD-AT(α = 20) 56.95 28.10 24.02 0.157 0.427
IGDMPGD-AT(α = 40) 58.23 30.36 25.71 0.139 0.457
IGDMPGD-AT(α = 60) 58.74 31.69 26.57 0.131 0.483
IGDMPGD-AT(α = 80) 59.01 32.02 27.08 0.123 0.504
IGDMPGD-AT(α = 100) 59.20 33.09 27.48 0.118 0.519
IGDMPGD-AT(α = 120) 59.42 33.60 27.95 0.114 0.531
IGDMPGD-AT(α = 140) 59.32 34.18 28.26 0.111 0.542
IGDMPGD-AT(α = 160) 60.06 34.38 28.47 0.108 0.550
IGDMPGD-AT(α = 180) 60.53 34.47 28.51 0.105 0.556
IGDMPGD-AT(α = 200) 60.83 34.90 28.84 0.104 0.562
IGDMPGD-AT(α = 220) 60.68 35.09 29.16 0.102 0.569
IGDMPGD-AT(α = 240) 59.65 35.34 29.10 0.101 0.572
IGDMPGD-AT(α = 260) 59.71 35.37 29.09 0.100 0.573
IGDMPGD-AT(α = 280) 59.83 35.23 28.84 0.099 0.576
IGDMPGD-AT(α = 300) 59.95 35.39 29.13 0.098 0.579

Table 18: Analysis of hyperparameter of IGDM using ARD variant methods on ResNet-18 with
BDM-AT teacher on CIFAR-100. α is the hyperparameter of IGDM loss. The gray row indicates
the reported values.

Method Clean PGD AA GD⇓ GC⇑
ARD (Goldblum et al., 2020) 61.51 30.23 24.77 0.1422 0.439
IGDMARD(α = 20) 59.74 33.97 27.85 0.112 0.523
IGDMARD(α = 40) 60.13 34.21 28.56 0.106 0.546
IGDMARD(α = 60) 61.08 34.54 28.42 0.104 0.557
IGDMARD(α = 80) 60.78 35.21 28.73 0.102 0.568
IGDMARD(α = 100) 61.18 35.75 28.79 0.101 0.571
IGDMARD(α = 120) 61.15 35.17 28.67 0.099 0.578
IGDMARD(α = 140) 61.24 35.32 28.75 0.098 0.583
IGDMARD(α = 160) 60.76 35.81 28.71 0.096 0.584
IGDMARD(α = 180) 60.19 35.67 28.78 0.095 0.585
IGDMARD(α = 200) 59.95 35.19 28.67 0.095 0.585
IGDMARD(α = 220) 59.42 35.24 28.76 0.096 0.588
IGDMARD(α = 240) 59.76 34.78 28.74 0.095 0.587
IGDMARD(α = 260) 59.04 35.01 28.36 0.095 0.586
IGDMARD(α = 280) 59.56 35.21 28.59 0.095 0.589
IGDMARD(α = 300) 58.91 34.78 28.58 0.095 0.582

B TRAINING DETAILS

B.1 SETTINGS

We utilized the CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), SVHN Netzer et al. (2011), and
Tiny-ImageNet (Le & Yang, 2015) datasets with random crop and random horizontal flips, exclud-
ing other augmentations. We trained all AT, AD, and IGDM incorporated methods using an SGD
momentum optimizer with the same initial learning rate of 0.1, momentum of 0.9, and weight decay
of 5e-4.

For CIFAR-10 and CIFAR-100, we adhered to the training settings of other adversarial distillation
methods, training for 200 epochs, except for RSLAD and IGDMRSLAD, which were trained for 300
epochs. RSLAD suggested that increasing the number of training epochs could enhance model
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robustness; thus, we followed their recommendation to train for 300 epochs. The learning rate
scheduler reduced the learning rate by a factor of 10 at the 100th and 150th epochs. However, for
RSLAD and IGDMRSLAD, the learning rate decreased by 10 at the 215th, 260th, and 285th epochs, as
suggested in the original paper. For SVHN, we trained for 50 epochs with the learning rate decayed
by a factor of 10 at the 40th and 45th epochs for all methods. For Tiny-ImageNet, we trained for 100
epochs with the learning rate decayed by a factor of 10 at the 50th and 80th epochs for all methods.

The adversarial perturbation settings were as follows: the number of iterations for inner maximiza-
tion was set to 10, with a step size of 2/255, and a total perturbation bound of L∞ = 8/255.
Specifically, we employed the recommended inner loss functions as outlined in the original paper:
PGD attack on student model for PGD-AT, ARD, and IAD; TRADES attack on student model for
TRADES; RSLAD inner loss for RSLAD; and AdaAD inner loss for AdaAD. Moreover, the IGDM-
incorporated method followed the inner maximization method of the original AT or AD method. For
formulaic representation as follows,

PGD attack: δ = argmax
∥δ′∥p≤ϵ

CE(fS(x+ δ′), y), (14)

TRADES attack: δ = argmax
∥δ′∥p≤ϵ

KL(fS(x+ δ′), fS(x)), (15)

RSLAD attack: δ = argmax
∥δ′∥p≤ϵ

KL(fS(x+ δ′), fT (x)), (16)

AdaAD attack: δ = argmax
∥δ′∥p≤ϵ

KL(fS(x+ δ′), fT (x+ δ′)). (17)

Here, CE represents cross-entropy loss, KL represents KL-divergence loss.

B.2 HYPERPARAMETER

The parameters of AT, AD, and the AD component in IGDM-incorporated methods were strictly set
to the value suggested in the original paper. On the other hand, a parameter of IGDM varied depend-
ing on the original AT or AD method, dataset, teacher model, and student model. We experimentally
employed an increasing hyperparameter function, defined as T (α) = Current Epoch

Total Epochs ·α, and the α value
varied in each training scenario. The following paragraphs provide detailed information on the α
in each experimental setting, determined through grid search results. IGDMAdaAD and IGDMAdaIAD
have same value of hyperparameter in all cases.

B.2.1 RESNET-18 MODEL TRAINED ON CIFAR-100 DATASET

For IGDMPGD-AT, to 100 for LTD and IKL-AT, 220 for BDM-AT. For IGDMTRADES, 5 for all teach-
ers. For IGDMARD, 50 for LTD and 100 for BDM-AT and IKL-AT. For IGDMIAD, 20 for LTD and
50 for BDM-AT and IKL-AT. For IGDMAKD, 50 for LTD, 25 for BDM-AT, and 40 for IKL-AT.
For IGDMRSLAD, 3 for LTD and 10 for BDM-AT and IKL-AT. For IGDMAdaAD, 15 for LTD, 70 for
BDM-AT, and 50 for IKL-AT.

B.2.2 RESNET-18 MODEL TRAINED ON THE CIFAR-10 DATASET

For IGDMPGD-AT, 60 for LTD and 70 for BDM-AT and IKL-AT. For IGDMTRADES, 20 for all teach-
ers. For IGDMARD, 5 for LTD and 10 for BDM-AT and IKL-AT. For IGDMIAD, 50 for LTD and
30 for BDM-AT and IKL-AT. For IGDMAKD, 7 for LTD, 10 for BDM-AT, and 15 for IKL-AT. For
IGDMRSLAD, 0.9 for LTD and BDM-AT, and 1 for IKL-AT. For IGDMAdaAD, 5 for LTD and IKL-AT,
and 10 for BDM-AT.

B.2.3 MOBILENETV2 MODEL TRAINED ON CIFAR-100 DATASET

For IGDMPGD-AT, 150 for LTD, 160 for BDM-AT, and IKL-AT. For IGDMTRADES, 10 for LTD and
BDM-AT, and 3 for IKL-AT. For IGDMARD, 70 for all teachers. For IGDMIAD, 20 for LTD and 50
for BDM-AT and IKL-AT. For IGDMAKD, 30 for all teachers. For IGDMRSLAD, 3 for LTD, 4 for
BDM-AT, and 10 for IKL-AT. For IGDMAdaAD, 20 for LTD, 50 for BDM-AT, and 40 for IKL-AT.
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B.2.4 MOBILENETV2 MODEL TRAINED ON CIFAR-10 DATASET

For IGDMPGD-AT, 70 for LTD, 40 for BDM-AT, and 50 for IKL-AT. For IGDMTRADES, 1 for LTD,
0.5 for BDM-AT, and 0.2 for IKL-AT. For IGDMARD, 10 for LTD, 8 for BDM-AT, and 9 for IKL-AT.
For IGDMIAD, 50 for all teachers. For IGDMAKD, 15 for all teachers. For IGDMRSLAD, 0.5 for LTD
and 0.7 for BDM-AT and IKL-AT. For IGDMAdaAD, 10 for all teachers.

B.2.5 RESNET-18 MODEL TRAINED ON THE SVHN DATASET

We set 60 for IGDMPGD-AT, 30 for IGDMTRADES, 50 for IGDMARD, 40 for IGDMIAD, 10 for
IGDMAKD, 3 for IGDMRSLAD, and 9 for IGDMAdaAD.

B.2.6 PREACTRESNET-18 MODEL TRAINED ON TINY-IMAGENET DATASET

We set 30 for IGDMPGD-AT, 20 for IGDMTRADES, 10 for IGDMARD, 20 for IGDMIAD, 10 for
IGDMAKD, 1 for IGDMRSLAD, and 10 for IGDMAdaAD.

C MAIN ALGORITHM

Algorithm 1 Main Algorithm
Input: Robust teacher model fT , inner loss (Lmax) and outer loss (LAD) of base AT or AD

method, and batched training dataset {(x, y)} with n batch size.
Output: Robust stduent model fS

Randomly initialize θ, the weights of fS
repeat
δ = argmax

∥δ′∥∞≤ϵ

(Lmax(x+ δ′, y))

LIGDM (x, δ) = T (α) ·D(fS(x + δ)− fS(x− δ), fT (x + δ)− fT (x− δ))

Lmin(x, y) = LAD(x, y) + LIGDM (x, δ)

θ ← −η 1
n

∑n
i=1∇θLmin(xi, yi)

until training converged
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