
Deep Reinforcement Learning with Plasticity Injection

Anonymous Author(s)
Affiliation
Address
email

Abstract

A growing body of evidence suggests that neural networks employed in deep1

reinforcement learning (RL) gradually lose their plasticity, the ability to learn from2

new data; however, the analysis and mitigation of this phenomenon is hampered by3

the complex relationship between plasticity, exploration, and performance in RL.4

This paper introduces plasticity injection, a minimalistic intervention that increases5

the network plasticity without changing the number of trainable parameters or6

biasing the predictions. The applications of this intervention are two-fold: first,7

as a diagnostic tool — if injection increases the performance, we may conclude8

that an agent’s network was losing its plasticity. This tool allows us to identify9

a subset of Atari environments where the lack of plasticity causes performance10

plateaus, motivating future studies on understanding and combating plasticity loss.11

Second, plasticity injection can be used to improve the computational efficiency of12

RL training if the agent has to re-learn from scratch due to exhausted plasticity or13

by growing the agent’s network dynamically without compromising performance.14

The results on Atari show that plasticity injection attains stronger performance15

compared to alternative methods while being computationally efficient.16

1 Introduction17

“You cannot teach an old dog new tricks” an old proverb says. While the common wisdom is not18

necessarily a source of absolute truth, neuroscientists recognized a long time ago that biological agents19

indeed gradually lose adaptability with age [Livingston, 1966]. This phenomenon is referred to as loss20

of plasticity in brains [Nelson, 1999, Mateos-Aparicio and Rodríguez-Moreno, 2019] and happens21

for multiple reasons, including natural degradation of neurons and their connections [Mahncke et al.,22

2006, Kolb and Gibb, 2011].23

Since the biological causes of loss of plasticity do not apply to artificial agents, in principle there is no24

reason to expect that this phenomenon also happens in the context of machine learning. Surprisingly,25

several recent works show that reinforcement learning (RL) agents that use neural networks may26

gradually lose the ability to learn from new experiences [Dohare et al., 2021, Lyle et al., 2022,27

Nikishin et al., 2022].28

The precise mechanisms causing loss of plasticity in RL are not well understood. The problem is29

particularly challenging to study in this context because performance in RL is influenced by many30

factors. For example, an agent without plasticity issues may still struggle to learn if it fails to properly31

explore the environment [Taïga et al., 2019]. Past literature focused on using and controlling proxy32

measures of plasticity such as the number of saturated rectified linear units [Nair and Hinton, 2010]33

and feature rank [Kumar et al., 2021], but it is unclear how well these measures manage to capture34

the underlying phenomenon [Gulcehre et al., 2022].35

This paper complements past evidence about the existence of plasticity loss in deep RL and introduces36

plasticity injection, an intervention that augments plasticity of the agent’s neural network. The37

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

conceptual idea is simple: at any point in training, one can freeze the current network and create a38

new one that is going to be learning a change to the predictions, whilst ensuring that the change is39

initially zero. Crucially, plasticity injection does not increase the number of trainable parameters40

and does not affect the network’s predictions when it is applied. Because of these properties, the41

intervention enables careful analysis of the plasticity loss phenomenon in RL while keeping other42

confounding factors aside.43

We suggest two uses of plasticity injection, one as an analytic tool and another as a practical44

algorithmic technique. For analysis, we propose an experimental protocol that uses plasticity45

injection for diagnosing the problem of plasticity loss: for example, if an agent that was struggling46

to improve its behavior escapes a performance plateau after the intervention, we can conclude that47

the agent had been experiencing problems with its network plasticity. Using this protocol in the48

Arcade Learning Environment [Bellemare et al., 2013], we identify scenarios where loss of plasticity49

hinders the learning process. Furthermore, based on the intervention-enabled analysis, we provide50

recommendations for controlling the degree of plasticity loss.51

We also propose to use plasticity injection as a way to improve computational efficiency of RL52

training in the following scenarios. First, when the agent loses its plasticity because its network53

turns out to be too small, plasticity injection can be dynamically used to increase the capacity of54

the agent without having to re-train the agent with a larger network from scratch. We empirically55

show that our method improves the aggregate score across 57 Atari games by 20% compared to56

other methods for dynamically addressing plasticity loss. Second, plasticity injection can be used57

to minimize computation by switching from a small network to a larger network in the middle of58

training without compromising the performance compared to using the larger network from scratch;59

we also empirically verify it on Atari games.60

To summarize, our contributions include:61

1. A minimalistic intervention called plasticity injection that increases plasticity of the agent62

while preserving the number of trainable parameters and not affecting its predictions;63

2. Complementary evidence about the existence of the plasticity loss phenomenon in deep RL;64

3. An experimental protocol for diagnosing loss of plasticity using the intervention;65

4. A way to improve computational efficiency of RL training by dynamically expanding a66

neural network used by the agent.67

2 Related Work68

Plasticity in Continual Learning. Discussions about plasticity of neural networks date back (at69

least) to a seminal paper by McCloskey and Cohen [1989] outlining the plasticity-stability dilemma,70

a trade-off between preserving performance on previous tasks and maintaining adaptability to future71

ones. The continual learning community historically put a higher emphasis on the stability aspect,72

addressing catastrophic forgetting of past behaviors [French, 1999]. Recently, several works raised73

awareness of difficulties with learning on future tasks too. Ash and Adams [2020] demonstrated74

an instance of loss of generalization, when pre-training a network might unrecoverably damage75

generalization even if pre-training was done on a uniform subsample of the same dataset. Berariu76

et al. [2021] deepened the study and conjectured that the phenomenon might happen because of the77

reduction of gradient noise when warm-starting the network. Dohare et al. [2021] explicitly study the78

network plasticity in continual learning and demonstrate the reduced ability to minimize even the79

training error as the number of tasks increase. These works build an understanding of the problem by80

studying simplified settings that isolate different aspects of learning capabilities in continual learning,81

whereas our work aims at tackling the deep RL setting in its whole.82

Loss of Plasticity in Deep RL. Issues with plasticity and related phenomena have been recently83

highlighted in deep RL under a plethora of different names. Lyle et al. [2022] show loss of capac-84

ity for fitting targets in online RL and Kumar et al. [2021] demonstrate a related implicit under-85

parameterization phenomenon caused by bootstrapping with more emphasis on the offline RL case.86

Both of these works use the feature rank as a proxy measure for plasticity but later Gulcehre et al.87

[2022] question the reliance on such measure by demonstrating a weak correlation between the88

rank and the agent’s performance, partially motivating our study that focuses directly on agent’s89

performance to reason about plasticity. Works of Sokar et al. [2023] and Abbas et al. [2023] focus on90

2

0 4000 8000 12000 16000 20000
Iterations

10 1

100

Va
lu

e
Pr

ed
ict

io
n

M
SE

Up n Down

Reset Every Task Reset Never

Figure 1: Demonstration of plasticity loss in a sequence of policy evaluation tasks. The task (a policy
to evaluate) changes every 1000 iterations. The reset every task setting shows that newly-initialized
parameters are able to fit each task, whereas the reset never setting shows the diminishing capability
to fit the data when using the trained parameters from one task as the initialization for another task.

saturation of neurons over the course of training, but Lyle et al. [2023] demonstrate that the saturation91

alone cannot fully characterize the plasticity loss phenomenon. Nikishin et al. [2022] discuss the92

primacy bias in deep RL, a tendency to excessively train on early data damaging further learning93

progress, and propose to periodically reset a part of the network to address the issue while relying on94

the replay buffer as a knowledge transfer mechanism. Earlier, Igl et al. [2021] had observed that deep95

RL agents can lose the ability to generalize due to non-stationarity and proposed to use distillation as96

a mitigation mechanism. Plasticity injection closely relates to these approaches by leveraging newly97

initialized weights, but does not require re-training and directly continues learning.98

Architectures. The works above mainly discuss algorithmic aspects with less focus on the network99

architecture, although it is also an important component of the agent’s design [Mirzadeh et al., 2022].100

The closest work in this space is about progressive networks [Rusu et al., 2016] that considers a setting101

with multiple environments and adds a new network with cross-connections to the layers of previous102

networks. A network after plasticity injection can be viewed as a simplified version of the architecture103

with a motivation of increasing plasticity within a single task without affecting agent’s predictions. A104

line of work on the mixture of experts [Shazeer et al., 2017] and modular networks [Andreas et al.,105

2016] is also related, but the focus in these papers typically is compositionality or handling multiple106

modalities. The idea of growing network layers or neurons has also been investigated [Fahlman107

and Lebiere, 1989, Chen et al., 2015]; plasticity injection belongs to a family of these methods up108

to the differences in the growing strategy and in explicitly controlling for the number of trainable109

parameters. In the context of language modeling, Hu et al. [2022] explored a similar idea of freezing110

a pre-trained model and fine-tuning a low-rank addition to the weight matrices on a downstream task.111

Lastly, plasticity injection can be conceptually viewed as an instance of residual learning [He et al.,112

2016] and boosting [Schapire, 1990].113

3 An Illustration of Plasticity Loss114

Plasticity of a neural network is broadly defined as the ability to learn from new experiences. To115

provide intuition on how this ability can decrease over time, we present a didactic example before116

investigating the case with deep RL. Figure 1 shows the mean-squared error (MSE) on a sequence117

of supervised policy evaluation problems derived from the Up n Down Atari environment. We first118

trained an agent on this environment for 200M frames and stored the policies occurring at every119

10M frames. Then, for each stored policy, we sampled states from the corresponding stationary120

distribution and computed Monte-Carlo estimates of the value function for each state, resulting a121

training set composed of states and their values. We then trained a network to solve the resulting122

sequence of prediction problems. This sequence of related prediction problems differing in the input123

and target distribution aims to reproduce the scenario faced by an online RL agent [Dabney et al.,124

2021]. The curve labeled “reset never” corresponds to starting each prediction problem using the125

3

final parameters from the previous one, while “reset every task” corresponds to randomly initializing126

the network parameters at every prediction problem.127

The conventional wisdom about transfer learning suggests that, if two tasks are related, pre-training128

on the first might accelerate learning on the second [Pan and Yang, 2009]. Here we observe the129

opposite trend: it takes longer and longer for the network to decrease training error on the subsequent130

policy evaluation problems if its parameters are not re-initialized. This example gives a simple131

demonstration of how plasticity loss can occur; we refer to the work by Dohare et al. [2021] for an132

in-depth study of the phenomenon in the continual setting.133

After building intuition about loss of plasticity, we turn our attention to its analysis in deep RL. The134

key distinctive feature of RL is the presence of an exploration confounder: in contrast to the continual135

setting with a fixed sequence of datasets, an RL agent influences the future data it learns from. Thus,136

a failure of an RL system can be attributed not only to loss of plasticity but also to inability to explore.137

The next section presents a strategy to increase plasticity of an agent that addresses this difficulty138

with the analysis.139

4 Plasticity Injection140

Before describing the experimental design in detail, we list the motivating desiderata:141

• Unaffected predictions: the agent’s predictions should stay the same after the intervention142

to avoid abrupt changes. This criterion allows isolating confounding factors related to143

exploration;144

• Preserving the trainable parameter count: the intervention should not affect the number145

of trainable parameters to minimize confounding factors related to representational capacity.146

We now present the proposed intervention to increase plasticity of an RL agent. First, let us denote the147

neural network approximator employed by the agent (for example, used for action-value prediction)148

as hθ(x), where θ indicates the parameters. At some point in training, where the network might have149

started losing plasticity, we are going to freeze the parameters θ and introduce a new set of parameters150

θ′ sampled from random initialization. The key idea is to keep two copies of θ′, which we denote151

by θ′1 and θ′2; while θ′1 are free parameters used to learn a residual to the old network outputs, θ′2152

remains frozen throughout. The agent’s predictions after plasticity injection will be calculated using153

the following expression:154

hθ(x)︸ ︷︷ ︸
frozen

+hθ′
1
(x)︸ ︷︷ ︸

trained

−hθ′
2
(x)︸ ︷︷ ︸

frozen

. (1)

Since initially θ′1 = θ′2, immediately after plasticity injection the predictions of the neural network155

remain unaltered. As learning progresses, θ′1 deviates from θ′2 and hθ(x)− hθ′
2
(x) serves as a bias156

term for predictions.157

Note that if we apply plasticity injection to all parameters of the network, the new network will158

have to re-learn the representations encoded in hθ(·) from scratch. Thus, we apply our intervention159

to only a subset of the parameters and explain the idea further with a slight abuse of notation. We160

schematically split the network into an encoder ϕ(·), that denotes a mapping induced by first k layers161

of the network, and a head hθ(·) where θ now refers to parameters of the remaining layers of the162

network. After this relabelling, we can apply the intervention to hθ(·) as outlined above. Appendix B163

later presents an ablation of sharing the encoder.164

Figure 2 illustrates the strategy to apply plasticity injection. Note that gradients from the frozen heads165

affect the encoder too, i.e. we do not stop the gradient propagation from any of the components of the166

output. It is worth noting that the proposed intervention increases the total number of parameters167

of the network (but keeps the same number of trainable parameters), which in turn may result in an168

increase of training time. However, we later discuss in Section 5.3 how plasticity injection can save169

computational resources.170

The idea of learning with newly-initialized last layers has been explored by Nikishin et al. [2022],171

who suggested resetting the corresponding parameters of the network at fixed intervals and used the172

replay buffer [Lin, 1992] to re-learn after resets. Their experimental evidence supports the hypothesis173

that resets mitigate plasticity loss. However, resetting parameters of the network abruptly changes174

4

L®yÌÒ¡�¡Òèį(µ«��Ò¡ºµ

Figure 2: An illustration of the architecture before and after plasticity injection. Before the interven-
tion, the network is schematically separated into an encoder ϕ(·) and a head hθ(·), both parts are
learning. After plasticity injection, we freeze the parameters θ of the head (we use red to indicate
parameters that are not updated in the illustration) and create two copies of a randomly initialized
parameters θ′: one frozen and one unfrozen. The output of the agent is obtained by first passing the
input x to the encoder ϕ(·), next passing ϕ(x) to all three heads, and finally combining the heads’
outputs according to Expression (1).

its predictions, which results in a temporary decrease in performance and induces an exploration175

effect. From an analysis perspective, these abrupt changes make it more difficult to isolate the effect176

of additional plasticity on the agent’s performance. From a practical perspective, plasticity injection177

does not rely on the buffer; Section 5.3 demonstrates how this difference can be critical.178

5 Experiments179

This section presents results for two main applications of plasticity injection: as a tool for diagnosing180

plasticity loss and as a way to dynamically grow the network to efficiently use computations.181

5.1 Experimental Setup182

The baseline agent is Double DQN [Van Hasselt et al., 2016] learning for 200M interactions on a183

standard set of 57 Atari games from the Arcade Learning Environment benchmark [Bellemare et al.,184

2013]. The choice of Double DQN is motivated by the relative robustness and stronger performance185

with double Q-learning [Van Hasselt, 2010] compared to the vanilla DQN agent [Mnih et al., 2015]186

as well as simplicity compared to later DQN-based agents such as Rainbow [Hessel et al., 2018].187

The majority of the experiments use a single plasticity injection after 50M frames; otherwise, we188

explicitly specify the number and timesteps of injections. Appendix B discusses ablations on the189

design choices when using plasticity injection. A convolutional neural network employed by the190

Double DQN agent consists of 5 layers. The encoder corresponds to the first three of them (hence191

k = 3), while the head refers to the last two. Since DQN-based agents employ a target copy of the192

network parameters, we perform the same interventions on them.193

For reliable evaluation of the performance across environments, we adopt the protocol of Agarwal194

et al. [2021] with a focus on the interquartile mean (IQM). All experiments use 3 random seeds.195

5.2 Plasticity Injection as a Diagnostic Tool196

Consider the task of improving a deep RL system when an agent performs suboptimally. Practitioners197

know how non-trivial is the process of pinpointing exact reasons why an agent might be struggling198

to improve the behavior. One of the reasons, as we discussed, can be loss of network plasticity199

throughout training.200

We view the proposed intervention as a tool that can provide insight when analyzing deep RL systems.201

The procedure for using it is as follows: when an agent is on a performance plateau or has a slower202

5

0 25 50 75 100 125 150 175 200
Environment frames (millions)

0

500

1000

1500

Assault

0 25 50 75 100 125 150 175 200
Environment frames (millions)

0

5000

10000

15000

20000

25000

Phoenix

0 25 50 75 100 125 150 175 200
Environment frames (millions)

0

1000

2000

3000

4000

5000

Ep
iso

de
 re

tu
rn

Space invaders

0 25 50 75 100 125 150 175 200
Environment frames (millions)

0
10
20
30
40
50
60

Robotank

Baseline
Injection @ 25
Injection @ 50
Injection @ 100

Figure 3: A demonstration of diverse effects from plasticity injection applied to the Double DQN
agent after 25M, 50M, and 100M frames on a selection of Atari games comprising two examples
where the intervention improves the performance and two examples where it does not. The baseline
in Space invaders and Phoenix demonstrates the diminishing performance improvements and the
performance plateau respectively, whilst the agent after the injection is capable of achieving higher
returns. The stalled performance in Assault is due to exploration challenges (see Appendix D for
further details): adding plasticity could not alleviate them. If the agent does not show signs of the
diminishing ability to learn, like in Robotank, the injection would not lead to improved performance.
Varying the injection timestep allows identifying the moment when plasticity loss occurs. Results for
all 57 environments are available in Figure 7.

learning progress, take a saved copy of the agent, perform plasticity injection, and compare the203

training curves with and without the intervention. This way we answer a counterfactual question:204

what could have been the agent’s performance if the network had more plasticity?205

Figure 3 gives a set of example behaviors after following the procedure. In Space invaders, the206

baseline agent keeps learning but the post-injection agent improves at a faster rate towards the end of207

learning; we might interpret the observation as an indication of decreasing network plasticity over208

the course of training. In Phoenix, we see a completely stalled performance and the intervention209

allows doubling the final returns; such an observation point at possible catastrophic loss of plasticity,210

where additional interactions do not translate to improved behavior. In Assault, on the other hand,211

the agent has plateaued but the injection does not make a difference. Further inspection revealed that212

around a score of 2800, the environment transitions to a new regime where an agent needs to start213

using an action that was not relevant before (see Appendix D for a visualization). This observation214

suggests that performance stagnation is related to exploration. In Robotank, the learning progress215

shows no signs of pathologies, giving evidence that the agent does not experience problems with its216

plasticity.217

Plasticity injection can also demonstrate when loss of plasticity occurs. The post-intervention218

performance in Space invaders does not differ for varying injection timestep, suggesting that the219

agent might not start experiencing consequences of the lost plasticity until around 100M frames.220

On the other hand, in Phoenix, plasticity injection improves the performance earlier, implying that221

the agent lost its plasticity around 25M frames. Varying the moment of injection in Assault and222

Robotank does not change the performance significantly, supporting our previous conclusion about223

these games.224

Figure 4 summarizes when and to which extent the Double DQN agent benefits from plasticity225

injection across 57 Atari games. The observations about improvements from injection complement226

evidence of the existence of plasticity loss in deep RL [Kumar et al., 2021, Lyle et al., 2022, Nikishin227

et al., 2022]. We note that the argument here is nuanced: since the notion of plasticity is defined228

broadly and is challenging to measure, it is our best interpretation that the post-intervention agent229

can learn further because it addressed plasticity issues. But because of an experimental design that230

strived to be careful, we believe that it is the most likely explanation.231

What should we do after using the tool and observing loss of plasticity? Dohare et al. [2021], Nikishin232

et al. [2022], Gogianu et al. [2021] provide evidence that plasticity loss is strongly affect by the233

learning rate, the replay ratio (the number of gradient steps per an environment step), the network234

size1, and normalizations (such as spectral norm [Miyato et al., 2018]). We measure the sensitivity of235

the aggregate improvements of the final score from plasticity injection at 50M with respect to these236

choices of the agent specification. Results in Figure 5 are consistent with observations from previous237

1To make a network two times larger, we multiply the width of all hidden layers by
√
2.

6

As
sa

ul
t

Do
ub

le
 d

un
k

Ro
bo

ta
nk

De
m

on
 a

tta
ck

Pr
iv

at
e

ey
e

He
ro

M
on

te
zu

m
a

re
ve

ng
e

Fr
ee

wa
y

Po
ng

Pi
tfa

ll
So

la
ris

Te
nn

is
Ve

nt
ur

e
Ba

ttl
e

zo
ne

St
ar

 g
un

ne
r

Ka
ng

ar
oo

Ce
nt

ip
ed

e
Ice

 h
oc

ke
y

Bo
wl

in
g

Na
m

e
th

is
ga

m
e

Qb
er

t
Be

am
 ri

de
r

Cr
az

y
cli

m
be

r
Za

xx
on

Ku
ng

 fu
 m

as
te

r
At

la
nt

is
Ti

m
e

pi
lo

t
M

s p
ac

m
an

Bo
xi

ng
Ja

m
es

bo
nd

Ro
ad

 ru
nn

er
As

te
rix

Gr
av

ita
r

Tu
ta

nk
ha

m
Kr

ul
l

Am
id

ar
Sk

iin
g

Fi
sh

in
g

de
rb

y
Vi

de
o

pi
nb

al
l

Fr
os

tb
ite

De
fe

nd
er

Ba
nk

 h
ei

st
Ch

op
pe

r c
om

m
an

d
Sp

ac
e

in
va

de
rs

Ri
ve

rra
id

W
iza

rd
 o

f w
or

Up
 n

 d
ow

n
Br

ea
ko

ut
Be

rz
er

k
Go

ph
er

As
te

ro
id

s
En

du
ro

Al
ie

n
Se

aq
ue

st
Su

rro
un

d
Ya

rs
 re

ve
ng

e
Ph

oe
ni

x

10

0

10

20

30

40

50

Figure 4: Percentage improvement of the average performance after adding plasticity injection across
all 57 Atari games. We take the maximum score among the agents with plasticity injection after 25M,
50M, and 100M steps to roughly estimate the improvement as if plasticity injection was applied at
a proper timestep and to demonstrate what the performance could have been if plasticity loss was
mitigated. Table 1 later presents a categorization of environments into buckets where the agent does
and does not benefit from injection. Learning curves corresponding to each environment are available
in Appendix A.

works and suggest a recipe for controlling the degree of plasticity loss by decreasing the learning rate238

or the replay ratio, increasing the network size, or employing normalizations2.239

In addition to gaining scientific insight, we now discuss how the intervention can be useful in240

large-scale RL.241

5.3 Plasticity Injection for Computational Efficiency242

Over the recent years, RL agents have been trained at increasingly larger scales. For example,243

mastering particularly challenging environments required an equivalent of hundreds of years of244

human gameplay [Vinyals et al., 2019], or obtaining a diverse set of skills required a 1B+ parameter245

networks [Reed et al., 2022]. Given the trend, computational considerations become increasingly246

relevant.247

0.5 1 2
RR Multiplier

20

40

%
 Im

pr
ov

em
en

t

0.5 1 2
LR Multiplier

20

40

%
 Im

pr
ov

em
en

t

0.5 1 2
Size Multiplier

10

20

30

%
 Im

pr
ov

em
en

t

No SN SN
0

10

20

%
 Im

pr
ov

em
en

t

Figure 5: Percentage improvements of the IQM scores from plasticity injection in varying regimes
controlling the degree of plasticity loss. The intervention effect size monotonically increases with
the replay ratio (RR) and the learning rate (LR), monotonically decreases with the size of the neural
network, and is smaller yet positive for an agent employing spectral normalization (SN). These
observations can be seen as recommendations about how to address loss of plasticity.

2We follow the recommendation of Gogianu et al. [2021] and apply SN to the penultimate layer; since we
apply injection to the last two layers, issues with their plasticity might be partially alleviated by SN. Given
that Gogianu et al. [2021] notice that the spectral norm of other layers starts growing more and D’Oro et al.
[2023] observe that the first layers benefit from partial resets, we conjecture that first layers’ plasticity is still
declining even with SN.

7

1.04 1.12 1.20
Baseline
Injection

Resets
SnP

Width Scale
IQM

Human Normalized Score 50 100 150 200
Wallclock Time (Hours)

0.9

1.0

1.1

1.2

IQ
M

 N
or

m
al

ize
d

Sc
or

e

Larger Net
Injection

Figure 6: Left: Comparison of plasticity injection to other methods that can be applied to dynamically
address loss of plasticity. The difference in performance between all methods and the baseline is
insignificant except for injection; an agent with injection is capable of improving without having to
re-train from scratch. Right: Performance over wallclock time for an agent with plasticity injection
and an agents that uses a network with increased width from the beginning. Because Injection
switches from a small network to a larger network through plasticity injection at 50M frames and
uses less trainable parameters than Larger Net, it achieves similar IQM while saving an equivalent of
20 hours of computational resources.

Plasticity injection can be used to improve the computational efficiency of RL in the following ways.248

Reincarnating with Plasticity Injection. Recently, Agarwal et al. [2022] proposed a workflow249

called “Reincarnating RL” which reuses computations from previously trained agents during the250

iterative process of agent design. For example, if we trained an agent for several days or weeks and251

then decided to change its design (such as the network size), the workflow suggests to leverage the252

spent computations instead of training again from scratch. Plasticity injection can be useful from253

this perspective when the agent is unable to improve due to loss of plasticity and re-training from254

scratch is expensive. To see the effectiveness of plasticity injection in such setting, we compared255

plasticity injection with several alternatives that address loss of plasticity dynamically during training,256

including Shrink-and-Perturb (SnP) [Ash and Adams, 2020], resets [Nikishin et al., 2022], and naive257

width scaling (we describe the methods in detail in Appendix C). Figure 6 (left) shows that plasticity258

injection achieves a higher aggregate score across 57 Atari games compared to the alternatives. The259

results suggest that plasticity injection can be used to “reincarnate” agents more efficiently compared260

to the alternatives, without re-training from scratch.261

Minimizing Computations via Dynamic Growth. Although larger networks tend to maintain262

plasticity longer, they require more computations or can be more challenging to train [Team et al.,263

2023]. We hypothesize that the full capacity of a large network may not always be necessary early264

in training, even if it is useful to maintain plasticity later. If this hypothesis is true, we can save265

computations by starting from a smaller network and injecting plasticity during training, without266

compromising the final performance compared to using the large network from the beginning. To267

verify this hypothesis, we took a network with larger layer width, matching the total number of268

parameters in ϕ(·), hθ(·), and hθ1(·) combined. The results in Figure 6 (right) show that an agent269

with plasticity injection during training performs comparably to the alternative that uses a larger270

network from the start. At the same time, it saves about 20 hours of wallclock time on an A100 GPU271

since it uses a smaller network up to 50M frames and has fewer parameters that are updated after272

plasticity injection. These results confirm the hypothesis and suggest that plasticity injection can be273

used as a tool for minimizing computations when training RL systems at a large scale.274

6 Limitations275

The first and foremost limitation of plasticity injection is an increase in memory and training time276

compared to the baseline agent with a standard-sized network. When using plasticity injection as277

a diagnostic tool, we believe the overhead is largely justified since preserving the network output278

makes it easier to isolate confounding factors like exploration. From the deployment viewpoint, a279

practitioner should decide whether the increase in compute and memory is justified based on how280

much plasticity injection improves performance. While the effect of the intervention was positive on281

the aggregate performance on Atari, it varied considerably across individual games: in some cases, it282

did not change scores much, in other cases, it had a significant positive effect.283

8

Preserving the network outputs and keeping weights can be undesirable in case of parameter diver-284

gence that often occurs in the deep RL experimentation [Van Hasselt et al., 2018]. Such a scenario285

also qualifies as loss of plasticity; addressing it without drastic tools can be challenging. Lastly, while286

we propose a diagnostic and mitigation tool, we do not identify causal factors driving plasticity loss in287

deep RL. More research is needed here: understanding these causes could lead to avoiding plasticity288

loss in the first place.289

7 Discussion and Conclusion290

Results in this paper can serve as a clear study of the plasticity loss phenomenon in deep RL291

and evidence that the optimization aspect in RL still leaves room for improvement. The version292

of plasticity injection we propose may yet not be optimal: we strived for simplicity rather than293

performance and view the intervention as a blueprint for future methods.294

The experiments in this paper adopted the convolutional architecture from Van Hasselt et al. [2016]295

but modern deep RL practice not rarely involves ResNets [He et al., 2016, Espeholt et al., 2018]296

and Transformers [Vaswani et al., 2017, Chen et al., 2021, Reed et al., 2022]; we did not investigate297

settings with these advanced architectures. However, the idea of plasticity injection is agnostic to the298

choice of the architecture. For example, it can be applied for residual blocks in ResNets or decoder299

blocks in Transformers.300

An exciting avenue for future research is understanding trade-offs between architectural design301

decisions: RL agents typically employ networks that were originally proposed for stationary problems,302

but perhaps dynamically growing networks would suit the non-stationary nature of RL better.303

Applications of plasticity injection focus on diagnosing RL systems and their efficiency. We compli-304

ment a recent opinion paper from Mannor and Tamar [2023] by arguing that if deep RL is to become305

a technology that a non-expert can use, more research is needed on the process of iterating on the306

agent design and computational efficiency.307

Although this paper attempted to understand and mitigate loss of plasticity in RL, there are still308

remaining open questions. Can we solve the problem of plasticity loss completely? Which properties309

of newly initialized networks enable high plasticity? Answering these questions is a key challenge310

for training truly intelligent agents.311

References312

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado. Loss of plasticity313

in continual deep reinforcement learning. arXiv preprint arXiv:2303.07507, 2023.314

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.315

Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Information316

Processing Systems, 34, 2021.317

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.318

Reincarnating reinforcement learning: Reusing prior computation to accelerate progress. In319

Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural320

Information Processing Systems, 2022.321

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In322

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 39–48,323

2016.324

Jordan Ash and Ryan P Adams. On warm-starting neural network training. Advances in Neural325

Information Processing Systems, 33:3884–3894, 2020.326

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-327

ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:328

253–279, 2013.329

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement330

learning. In International conference on machine learning, pages 449–458. PMLR, 2017.331

9

Tudor Berariu, Wojciech Czarnecki, Soham De, Jorg Bornschein, Samuel Smith, Razvan Pascanu, and332

Claudia Clopath. A study on the plasticity of neural networks. arXiv preprint arXiv:2106.00042,333

2021.334

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,335

Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics336

transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.337

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,338

Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence339

modeling. Advances in neural information processing systems, 34:15084–15097, 2021.340

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge341

transfer. arXiv preprint arXiv:1511.05641, 2015.342

Will Dabney, André Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G Bellemare, and343

David Silver. The value-improvement path: Towards better representations for reinforcement344

learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages345

7160–7168, 2021.346

Shibhansh Dohare, Richard S Sutton, and A Rupam Mahmood. Continual backprop: Stochastic347

gradient descent with persistent randomness. arXiv preprint arXiv:2108.06325, 2021.348

Kefan Dong, Yuping Luo, Tianhe Yu, Chelsea Finn, and Tengyu Ma. On the expressivity of neural349

networks for deep reinforcement learning. In Hal Daumé III and Aarti Singh, editors, Proceedings350

of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine351

Learning Research, pages 2627–2637. PMLR, 13–18 Jul 2020.352

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G. Bellemare, and353

Aaron C. Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier.354

In Eleventh International Conference on Learning Representations, 2023.355

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron,356

Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance357

weighted actor-learner architectures. In International conference on machine learning, pages358

1407–1416. PMLR, 2018.359

Scott Fahlman and Christian Lebiere. The cascade-correlation learning architecture. Advances in360

neural information processing systems, 2, 1989.361

Amir Farahmand, Mohammad Ghavamzadeh, Shie Mannor, and Csaba Szepesvári. Regularized362

policy iteration. Advances in Neural Information Processing Systems, 21, 2008.363

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3364

(4):128–135, 1999.365

Florin Gogianu, Tudor Berariu, Mihaela C Rosca, Claudia Clopath, Lucian Busoniu, and Razvan366

Pascanu. Spectral normalisation for deep reinforcement learning: an optimisation perspective. In367

International Conference on Machine Learning, pages 3734–3744. PMLR, 2021.368

Caglar Gulcehre, Srivatsan Srinivasan, Jakub Sygnowski, Georg Ostrovski, Mehrdad Farajtabar, Matt369

Hoffman, Razvan Pascanu, and Arnaud Doucet. An empirical study of implicit regularization in370

deep offline rl. arXiv preprint arXiv:2207.02099, 2022.371

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image372

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,373

pages 770–778, 2016.374

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan375

Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in376

deep reinforcement learning. In Thirty-second AAAI conference on artificial intelligence, 2018.377

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,378

and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International379

Conference on Learning Representations, 2022.380

10

Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon Whiteson.381

Transient non-stationarity and generalisation in deep reinforcement learning. In International382

Conference on Learning Representations, 2021.383

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad384

Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based385

reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.386

Bryan Kolb and Robbin Gibb. Brain plasticity and behaviour in the developing brain. Journal of the387

Canadian Academy of Child and Adolescent Psychiatry, 20(4):265, 2011.388

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization389

inhibits data-efficient deep reinforcement learning. In International Conference on Learning390

Representations, 2021.391

Qiyang Li, Aviral Kumar, Ilya Kostrikov, and Sergey Levine. Efficient deep reinforcement learning392

requires regulating overfitting. In The Eleventh International Conference on Learning Representa-393

tions, 2023.394

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,395

David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv396

preprint arXiv:1509.02971, 2015.397

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.398

Machine learning, 8(3):293–321, 1992.399

Robert B Livingston. Brain mechanisms in conditioning and learning. Technical report, 1966.400

Clare Lyle, Mark Rowland, and Will Dabney. Understanding and preventing capacity loss in401

reinforcement learning. In International Conference on Learning Representations, 2022.402

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.403

Understanding plasticity in neural networks. arXiv preprint arXiv:2303.01486, 2023.404

Henry W Mahncke, Amy Bronstone, and Michael M Merzenich. Brain plasticity and functional405

losses in the aged: scientific bases for a novel intervention. Progress in brain research, 157:81–109,406

2006.407

Shie Mannor and Aviv Tamar. Towards deployable rl–what’s broken with rl research and a potential408

fix. arXiv preprint arXiv:2301.01320, 2023.409

Pedro Mateos-Aparicio and Antonio Rodríguez-Moreno. The impact of studying brain plasticity.410

Frontiers in cellular neuroscience, 13:66, 2019.411

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The412

sequential learning problem. In Psychology of learning and motivation, volume 24, pages 109–165.413

Elsevier, 1989.414

Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Timothy Nguyen, Razvan Pascanu, Dilan415

Gorur, and Mehrdad Farajtabar. Architecture matters in continual learning. arXiv preprint416

arXiv:2202.00275, 2022.417

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for418

generative adversarial networks. In International Conference on Learning Representations, 2018.419

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,420

Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control421

through deep reinforcement learning. nature, 518(7540):529–533, 2015.422

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim423

Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement424

learning. In International conference on machine learning, pages 1928–1937. PMLR, 2016.425

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In426

Icml, 2010.427

11

Charles A Nelson. Neural plasticity and human development. Current directions in psychological428

science, 8(2):42–45, 1999.429

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The430

primacy bias in deep reinforcement learning. In International Conference on Machine Learning,431

pages 16828–16847. PMLR, 2022.432

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge433

and data engineering, 22(10):1345–1359, 2009.434

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel435

Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al. A generalist436

agent. arXiv preprint arXiv:2205.06175, 2022.437

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray438

Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint439

arXiv:1606.04671, 2016.440

Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.441

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon442

Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,443

go, chess and shogi by planning with a learned model. Nature, 2021.444

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region445

policy optimization. In International conference on machine learning, pages 1889–1897. PMLR,446

2015.447

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,448

and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.449

In International Conference on Learning Representations, 2017.450

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-451

nomenon in deep reinforcement learning. arXiv preprint arXiv:2302.12902, 2023.452

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization453

and momentum in deep learning. In International conference on machine learning, pages 1139–454

1147. PMLR, 2013.455

Adrien Ali Taïga, William Fedus, Marlos C Machado, Aaron Courville, and Marc G Bellemare.456

Benchmarking bonus-based exploration methods on the arcade learning environment. arXiv457

preprint arXiv:1908.02388, 2019.458

Adaptive Agent Team, Jakob Bauer, Kate Baumli, Satinder Baveja, Feryal Behbahani, Avishkar459

Bhoopchand, Nathalie Bradley-Schmieg, Michael Chang, Natalie Clay, Adrian Collister, et al.460

Human-timescale adaptation in an open-ended task space. arXiv preprint arXiv:2301.07608, 2023.461

Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a running462

average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31,463

2012.464

Hado Van Hasselt. Double q-learning. Advances in neural information processing systems, 23, 2010.465

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-466

learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.467

Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph468

Modayil. Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648,469

2018.470

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz471

Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing472

systems, 30, 2017.473

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung474

Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in475

starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.476

12

0

1000

2000

3000

4000

5000

6000

Ep
iso

de
 re

tu
rn

Alien

0

500

1000

1500

Amidar

0

1000

2000

3000

Assault

0

5000

10000

15000

Asterix

250

500

750

1000

1250

1500
Asteroids

0.0

0.2

0.4

0.6

0.8

1.0
1e6 Atlantis

0

200

400

600

800

1000

1200

Ep
iso

de
 re

tu
rn

Bank heist

0

10000

20000

30000

Battle zone

0

5000

10000

15000

Beam rider

500

1000

1500

2000

Berzerk

0

20

40

60

Bowling

50

0

50

100
Boxing

0

100

200

300

400

Ep
iso

de
 re

tu
rn

Breakout

0

1000

2000

3000

4000

Centipede

0

1000

2000

3000

4000

5000
Chopper command

0

25000

50000

75000

100000

125000
Crazy climber

0

5000

10000

15000

20000

25000

30000
Defender

0

20000

40000

60000

Demon attack

25

20

15

10

5

0

Ep
iso

de
 re

tu
rn

Double dunk

0

250

500

750

1000

1250

Enduro

100

75

50

25

0

25
Fishing derby

0

10

20

30

Freeway

0

500

1000

1500

2000
Frostbite

0

5000

10000

15000

Gopher

0

100

200

300

400

Ep
iso

de
 re

tu
rn

Gravitar

0

5000

10000

15000

20000

Hero

25

20

15

10

5

0

Ice hockey

0

500

1000

1500

Jamesbond

0

2500

5000

7500

10000

12500

15000
Kangaroo

0

2000

4000

6000

8000

Krull

0

10000

20000

30000

Ep
iso

de
 re

tu
rn

Kung fu master

0.06

0.04

0.02

0.00

0.02

0.04

0.06
Montezuma revenge

0

1000

2000

3000

Ms pacman

0

2000

4000

6000

8000

10000

12000
Name this game

0

5000

10000

15000

20000

25000

Phoenix

1500

1250

1000

750

500

250

0

Pitfall

20

10

0

10

20

Ep
iso

de
 re

tu
rn

Pong

750

500

250

0

250

500

750
Private eye

0

5000

10000

15000
Qbert

0

5000

10000

15000

Riverraid

0

10000

20000

30000

40000

50000
Road runner

0

20

40

60

Robotank

0

5000

10000

15000

20000

25000

Ep
iso

de
 re

tu
rn

Seaquest

30000

25000

20000

15000

10000
Skiing

0

500

1000

1500

Solaris

0

1000

2000

3000

4000

5000
Space invaders

0

20000

40000

60000

Star gunner

10

8

6

4

2

0
Surround

0 50 100 150 200
Environment frames (millions)

25

20

15

10

5

0

Ep
iso

de
 re

tu
rn

Tennis

0 50 100 150 200
Environment frames (millions)

0

2000

4000

6000

8000

Time pilot

0 50 100 150 200
Environment frames (millions)

0

50

100

150

200
Tutankham

0 50 100 150 200
Environment frames (millions)

0

5000

10000

15000

Up n down

0 50 100 150 200
Environment frames (millions)

0

25

50

75

100

125

150
Venture

0 50 100 150 200
Environment frames (millions)

0

100000

200000

300000

400000
Video pinball

0 50 100 150 200
Environment frames (millions)

0

2500

5000

7500

10000

Ep
iso

de
 re

tu
rn

Wizard of wor

0 50 100 150 200
Environment frames (millions)

0

10000

20000

Yars revenge

0 50 100 150 200
Environment frames (millions)

0

5000

10000

15000
Zaxxon

Baseline
Injection @ 25
Injection @ 50
Injection @ 100

Figure 7: Performance of the Double DQN with and without plasticity injection after 25M, 50M,
and 100M frames on the full Atari 57 benchmark. The potential discontinuities in the plots such as
in Road runner are caused by the evaluation each 1M frames, i.e. the first moment the agent with
injection contributes to the plot is after learning for 1M frames.

13

Injection
Effect

Environments

Consistent
Improvement

Alien, Asteroids, Breakout, Chopper command, Enduro, Frostbite, Gopher,
Phoenix, Space invaders, Surround, Wizard of wor, Yars revenge (12 total)

Minor
Improvement

Amidar, Asterix, Atlantis, Bank heist, Beam rider, Berzerk, Boxing,
Defender, Fishing derby, Jamesbond, Krull, Ms pacman, Road runner,
Seaquest, Time pilot, Up n down, Video pinball, Zaxxon (18 total)

Negligible Battle zone, Bowling, Centipede, Crazy climber, Double dunk, Freeway,
Gravitar, Hero, Ice hockey, Kangaroo, Kung fu master, Montezuma revenge,
Name this game, Pitfall, Pong, Private eye, Qbert, Riverraid, Skiing,
Solaris, Star gunner, Tennis, Tutankham, Venture (24 total)

Negative Assault, Demon attack, Robotank (3 total)

Table 1: Summary of effects from applying plasticity injection to Double DQN on 57 Atari games.

A Complete Learning Curves477

Figure 7 presents the return plots over the course of Double DQN training for 200M frames on478

the whole set of 57 Atari games. We informally categorized environments into four buckets upon479

visual inspection of effects from plasticity injection in Table 1. The most notable negative example480

is Demon attack, while on Assault and Robotank the effect is negative but minor. In the rest of481

the 54 games, plasticity injection either improves performance or has a negligible effect, possibly482

depending on the injection timestep.483

B Ablations484

This appendix presents an ablation analysis of the various design choices made during the study of485

plasticity injection. The purpose of such ablations is to build intuition on the behavior of plasticity486

injection under different conditions so that an RL practitioner can use it in their application.487

Injection Variants. The proposed modification of the network architecture is not the only one488

possible. In Section 4, we initially described a version of plasticity injection without encoder sharing,489

that is, when the intervention is applied to the entire network (referred to as Injection, Whole Net490

in Figure 8). Another alternative is to create a whole new set of parameters and copy the encoder491

parameters of the old network without sharing it (denoted as Injection, Whole Net, Copy Enc). Lastly,492

for all three versions, there is the possibility of not freezing the old set of parameters (weights493

corresponding to the third, output correction term are always going to be frozen).494

Figure 8 (left) summarizes the findings:495

1. Creating a completely new encoder-head pair is the alternative with the lowest IQM scores;496

2. Variants with encoder sharing or copying have comparable performance; the Injection,497

Whole Net, Copy Enc version has a slightly lower performance than the rest. We conjecture498

that it might be due to the larger number of frozen parameters;499

3. Unfrozen variants generally perform not worse than their frozen counterparts. The unfrozen500

variants introduce more trainable parameters compared to the baseline, which require501

more computations during learning and increase the network expressivity. Since we were502

interested in a careful diagnosis of plasticity loss and extra expressivity may be a confounding503

factor, we decided to stick to the frozen version by default.504

Multiple Injections. Given the improved performance from plasticity injection in the previous505

experiments, a natural question is whether applying plasticity injection multiple times would improve506

performance even further. To investigate this question, we applied plasticity injection at 100M and507

150M frames, in addition to 50M frames, and plotted the IQM improvements with respect to a single508

injection at 50M frames. As shown in Figure 8 (right), additional injections do not improve the509

performance over a single injection in a setup with a standard network. We hypothesize that in our510

particular experimental setting, loss of plasticity can be largely mitigated with a single plasticity511

14

1.0 1.1 1.2 1.3
Injection

Injection, Whole Net
Injection, Whole Net, Copy Enc

Unfrozen Injection
Unfrozen Injection, Whole Net

Unfrozen Injection, Whole Net, Copy Enc
IQM

Human Normalized Score
0.25 0.5 1

Size Multiplier

0

10

%
 Im

pr
ov

em
en

t

Figure 8: Left: Comparison between variations of plasticity injection. Whole Net denotes injection
of both the encoder ϕ(·) and the head hθ(x); Copy Enc denotes copying the ϕ(·) at the moment of
injection without further sharing; Unfrozen denotes keeping parameters of the first term unfrozen.
Relying on a new encoder leads to a lower performance; the rest of the alternatives have comparable
scores. Right: Percentage improvements of the IQM score from multiple injections over a single
injection for varying network sizes. Multiple injections are beneficial for smaller networks. Note
that previous plots in Figure 5 show improvements when comparing one injection over no injections
while this plot compares multiple injections over one.

injection. To verify this hypothesis, we applied multiple injections while varying the network size512

(similarly to Section 5.2, to make the network 2x smaller, we divide the width of the hidden layers by513 √
2). Figure 8 (right) confirms that the level of improvement grows monotonically as the agent uses514

smaller networks. Since the results in Figure 5 suggests that the degree of plasticity loss increases with515

smaller networks, this result indicates that multiple rounds of plasticity injection can be beneficial in516

situations where the agent network is too small to maintain plasticity.517

No Output Correction. In the majority of the games, subtracting the initial copy of the newly intro-518

duced head hθ2(·) resulted in mostly similar learning curves as without the subtraction, although not519

always. In particular, the impact of the injection on Yars Revenge is smaller without compensating520

for the bias. Also, we observed a significant difference in high variance games (such as Berzerk521

and Hero). Note that removing effects on the predictions from introducing the new head would522

be possible by modifying the initialization [Brohan et al., 2022]. From the analysis viewpoint, we523

strove to have as clean experimental design as possible and wanted to remove initialization-specific524

confounders since initialization would affect network plasticity as well [Sutskever et al., 2013]. From525

the saving memory and computations viewpoint, it might be preferrable to do plasticity injection526

without introducing the third network.527

Optimizer. One might hypothesize that benefits from injection can be attributed to manipulations with528

the optimizer state. To test this hypothesis, we perform two ablations: the first resets statistics of the529

RMSProp optimizer [Tieleman et al., 2012] used by Double DQN after 50M steps, the second copies530

the optimizer state of the original head to the newly initialized head after the injection. Figure 9 (left)531

demonstrates that most of the effects from injection come from having additional weights rather than532

from interventions on the optimizer.533

Injection Timestep. In Section 5.2, we presented the results for a selection of environments while534

varying injection timestep. Figure 9 (right) suggests that across all games, changing the timestep by a535

1.04 1.12 1.20
Baseline
Injection

Injection + Copy Opt
Reset Opt

IQM

Human Normalized Score
1.04 1.12 1.20 1.28

Baseline
Injection @ 25
Injection @ 50

Injection @ 100
IQM

Human Normalized Score

Figure 9: Left: Comparison of an agent with injection, an agent with injection but copied optimizer
state for the newly initialized head (Injection + Copy Opt), and an agent that resets the optimizer
statistics of the last two layers (Reset Opt). The results suggest that effects from interventions on the
optimizer state are marginal compared to having new weights. Right: Aggregate performance for
agents with varying injection timesteps. Whilst Figures 7 and 10 suggest that loss of plasticity might
be happening at different paces across environments, the final IQM score is relatively robust with
respect to the injection moment.

15

M
on

te
zu

m
a

re
ve

ng
e

Ve
nt

ur
e

Fr
ee

wa
y

So
la

ris
Te

nn
is

Gr
av

ita
r

Bo
wl

in
g

Pr
iv

at
e

ey
e

Po
ng

Ro
bo

ta
nk

Ja
m

es
bo

nd
Ba

ttl
e

zo
ne

Ice
 h

oc
ke

y
Ka

ng
ar

oo
Pi

tfa
ll

Do
ub

le
 d

un
k

Be
am

 ri
de

r
Be

rz
er

k
Za

xx
on

Ti
m

e
pi

lo
t

W
iza

rd
 o

f w
or

At
la

nt
is

Su
rro

un
d

Ku
ng

 fu
 m

as
te

r
Am

id
ar

Ph
oe

ni
x

He
ro

Ch
op

pe
r c

om
m

an
d

Fr
os

tb
ite

As
sa

ul
t

St
ar

 g
un

ne
r

Up
 n

 d
ow

n
Sp

ac
e

in
va

de
rs

De
m

on
 a

tta
ck

Ya
rs

 re
ve

ng
e

Se
aq

ue
st

As
te

rix
Ri

ve
rra

id
Br

ea
ko

ut
As

te
ro

id
s

Vi
de

o
pi

nb
al

l
Al

ie
n

En
du

ro
Ba

nk
 h

ei
st

Cr
az

y
cli

m
be

r
Fi

sh
in

g
de

rb
y

De
fe

nd
er

M
s p

ac
m

an
Sk

iin
g

Bo
xi

ng
Na

m
e

th
is

ga
m

e
Tu

ta
nk

ha
m

Ro
ad

 ru
nn

er
Go

ph
er

Qb
er

t
Ce

nt
ip

ed
e

Kr
ul

l0

2

4

6

8

10

12

14

Figure 10: Per-game ratios of weight magnitude after learning for 200M frames and before experi-
encing any data. The ratios can vary up to 10 times between games.

factor of two yields comparable aggregate performance. Note though that we measure the IQM score536

after 200M frames, so the transient performance would differ depending on the timestep.537

Adaptive Criterion for Injection. As a step towards getting rid of the need to specify the injection538

timestep, we also explored the option of having a criterion for triggering the intervention. If the agent539

has the initial weight magnitude ∥w0∥ (w denotes here both encoder and head weights), we inject540

plasticity after the weight norm surpasses the 3∥w0∥ threshold. The IQM scores of the agent with541

injection after 50M steps and with this heuristic coincide, although the frame when the agent reaches542

the threshold differs per game significantly: for some environments, it can be as small as 20M (such543

as Enduro), for other environments, it can be beyond 200M (such as Robotank) implying that the544

agent will learn without injection. Figure 10 gives an overview of how much the weight norm grows545

over the course of training (suggesting how fast the agent reaches the 3∥w0∥ threshold on each game).546

We view devising an even more powerful criterion as a promising avenue for future work.547

L2 Regularization. The observations about the norm increase made us try adding L2 regularization548

to the Double DQN agent. A grid search over [10−7, 3 · 10−7, 10−6, 3 · 10−6, 10−5, 3 · 10−5]549

coefficients resulted in the best coefficient of 3 · 10−6 but leaving the aggregate score mostly the550

same; higher values resulted in significant performance deterioration. The result gives evidence that551

controlling the weight norm itself does not address plasticity loss but allows multiple interpretations.552

We speculate that L2 might be prematurely encouraging weights to have zero magnitude before553

obtaining high rewards (the effect would be especially profound in sparse reward settings) or that L2554

might have undesirable side effects of smoothing approximate value functions while the true value555

functions might be non-smooth [Dong et al., 2020]. We are puzzled about the inefficacy of L2 in556

our experiments and mixed results from applying it in RL in past works: the majority of deep RL557

algorithms do not use it [Mnih et al., 2015, Schulman et al., 2015, Lillicrap et al., 2015, Mnih et al.,558

2016, Bellemare et al., 2017], although not without exceptions [Schrittwieser et al., 2021]. Some559

works have explicitly reported negative effects from controlling the weight norm in deep RL [Nikishin560

et al., 2022], while others highlighted its benefits [Farahmand et al., 2008, Li et al., 2023]; more561

research in needed to understand its effect in RL.562

C Details about the Baselines563

In Section 5.3, we considered three alternative ways of dynamically addressing plasticity loss during564

training: resets, Shrink-and-Perturb (SnP), and naive width scaling. Resets re-initialize parameters of565

the last layers (using our notation, it corresponds to replacing hθ(·) with hθ′
1
(·))) and rely on a replay566

buffer to transfer knowledge before and after the intervention. Resets require the specification of the567

number of last layers and the application timestep. We ran a sweep over [1, 2] layers and two choices568

of timesteps: either once at 50M frames or trice at 50M, 100M, and 150M. Afterwards, we reported569

the results that attain the highest IQM score.570

16

Figure 11: A demonstration of the Assault game evolution when a high-performing agent found on
the Internet reaches a score of around 2800: before, the agent had to shoot only upwards; afterwards,
it has to shoot up, left, and right. We interpret that the failure to improve upon the 2800 score is
explained by exploration.

Shrink-and-Perturb modify all network weights w as w ← λw+σϵ at the given application timesteps,571

where ϵ is a random vector with the same dimensionality as w sampled from the standard Gaussian572

distribution. SnP has three hyperparameters: the shrink coefficient λ, the noise scale σ, and the573

application timesteps. We performed a grid search over λ in [0.1, 0.3, 1], σ in [0.01, 0.1, 1], and the574

same choices of timesteps as for resets.575

The best hyperparameters ended up being the ones that somewhat minimized the effect of both resets576

(1 layer, 1 application time) and SnP (λ = 1, σ = 0.01, 3 application times); other hyperparameters577

resulted in even worse performance. The paper on resets [Nikishin et al., 2022] demonstrates results578

on the Atari 100k benchmark [Kaiser et al., 2019] that focuses on a data-efficient regime with 105579

interactions only and contains a subset of 26 (out of 57) games. In this setting, the replay buffer has580

all experiences encountered during the agent’s lifetime; this data can be sufficient for recovering the581

performance after a reset. In the Atari 200M setting though, the replay buffer has only 4M frames582

which might not be enough to recover fast after a reset. We speculate that similar reasoning applies to583

SnP since it can be seen as a soft version of resets [D’Oro et al., 2023].584

For the width scaling method, we modify the last two layers by doubling their width. In detail,585

suppose the weight matrices are W1 ∈ RN×K and W2 ∈ RK×|A|, where |A| is the action space586

dimensionality. We create two new matrices W ′
1 ∈ RN×2K and W ′

2 ∈ R2K×|A| and fill the first K587

columns of W ′
1 with values of W1 and the first K rows of W ′

2 with values of W2. The remaining588

entries are sampled from the random initializer. We perform a modification to the bias term b′1 ∈ R2K589

by copying values from b1 ∈ RK and setting the rest to zero. The width is scaled once at 50M.590

Such a naive approach increases plasticity but its inability to improve over the standard Double DQN591

might be caused by adverse effects on the predictions after the intervention without output correction.592

D The Assault Game Analysis593

We searched for a high-scoring behavior demonstration in the Assault environment on YouTube3.594

The screenshots in Figure 11 demonstrate the change of the environment around the score of 2800:595

before, the enemies were appearing only above the controlled starship, while afterwards, they start596

to appear from the left and from the right. Before the transition, the algorithm learned that actions597

“shoot left” and “shoot right” were irrelevant, while afterwards, it has to start using these actions,598

suggesting that the performance plateau can be attributed to exploration challenges.599

We highlight that it was the suggested protocol for diagnosis that led to the insight: after seeing that600

the post-injection agent has the same performance plateau as the baseline, we decided to investigate601

the behavior in the game and realized that previously irrelevant actions became critical.602

3https://youtu.be/HwWJrb2PQQ0

17

https://youtu.be/HwWJrb2PQQ0

