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1 INFERENCE ON REAL-WORLD IMAGES

Despite being trained on images generated by diffusion-based models, the concept encoders gen-
eralize well to diverse, complex real-world images, including unseen types of object category,
material, and color from casual photo captures (Figures 1 to 4) and unseen types of artwork
style (Figure 5).
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Figure 1: Visual Concept Extraction and Recomposition Results on Real-world Images of various
objects.
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Figure 2: Additional Visual Concept Extraction and Recomposition Results on Real-world Images
of various objects.
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Figure 3: Visual Concept Extraction and Recomposition Results on Real-world Images of various
fruits.
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Figure 4: Visual Concept Extraction and Recomposition Results on Real-world Images of various
pieces of furniture.
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Figure 5: Visual Concept Extraction and Recomposition Results on Real-world Images of artwork.
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2 INTERPOLATION OF CONCEPT EMBEDDINGS

We further demonstrate concept interpolation results. By interpolating between two concept em-
beddings, our model can generate meaningful images depicting gradual changes from one concept
to another, such as the hybrid fruit of cherries and bananas shown in Figure 6. To interpolate be-
tween two input images, first, we extract CLIP features for both images, giving us two vectors of
size 12 × 1024. We interpolate the two vectors using Spherical interpolation (SLERP). Specif-
ically, given two normalized vectors Anorm and Bnorm of dimensions 12 × 1024, we compute
the dot product to find the cosine of the angle θ between them as cos(θ) = Anorm · Bnorm. For
12 interpolation points, each point i is calculated using αi = i

11 and the interpolated vector is
slerp(A,B, αi) =

sin((1−αi)θ)
sin(θ) Anorm+ sin(αiθ)

sin(θ) Bnorm. This ensures the resultant vectors maintain
a constant magnitude.

With a set of trained encoders, each encoder takes in the interpolated CLIP features, and their outputs
are combined with a training-time textual template to generate the interpolation results as shown in
Figures 6 and 7.
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Figure 6: Interpolation on Fruit dataset.
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Figure 7: Interpolation on Art dataset.
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3 THE EFFECT OF THE ANCHOR LOSS

During training time, the anchor loss (Equation (2)) encourages the encoder predictions to converge
to a meaningful subspace within the word embedding space Gal et al. (2023). This ensures that
these embeddings can be readily visualized by a pre-trained text-to-image generation model, and
improves the compositionality across different concept axes, as shown in Figure 12.

Empirically, we find that simply setting a small weight on this loss can effectively achieve this
objective, allowing the model to capture nuances along each axis, without collapsing to the word
embeddings. In Figure 8, we empirically show such examples, where we compare the concept
embeddings predicted by the color encoder to the text embedding of the training-time BLIP-2 label,
e.g. “blue” from Figure 8, and the former preserves the specific color of the input image while the
latter does not.
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Figure 8: The concept embeddings extracted by our concept encoders capture various shades of
colors instead of generic ‘blue’, ‘white’ etc. directly generated by the T2I model DeepFloyd.
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4 EXTENSION WITH NEW CONCEPT AXES

We show that we are able to extend to additional concept axes by training new concept encoders
without retraining the existing ones. In the experiments shown in Figures 9 and 10, given two
trained encoders for category and color and the corresponding training dataset, we train the
material encoder while keeping the other two frozen. We show that such procedural training
maintains the disentanglement of the frozen encoders while allowing the framework to extend to a
new concept axis.
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Figure 9: Concept Recomposition after adding a new material axis to the model trained with
category and color axes.
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Figure 10: Test-Time Generalization Results on images of furniture, where the material encoder
is additionally trained on top of the frozen category and color encoders.
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5 ADDITIONAL BASELINE COMPARISONS

In Figure 11, we provide additional qualitative examples accompanying the experiments in Table 2.
From these visual examples, we observed that the color nuances captured by ours are more accurate
compared to the BLIP-2 baseline. However, since the CLIP-based metric specified in Section 4.3
cannot fully capture the minute differences, the BLIP-2 baseline still achieves comparable scores to
our method despite this evident gap in visual results.

To quantify such visual differences in colors, we compare the color of a 16 × 16 centered patch
from the input image and the image generated by the method being evaluated, both of resolution
64 × 64, and report the L2 error of the mean color of the two patches. We report the average of
metric across all examples in Figure 11 in Table 1. Results suggest that our method captures colors
more accurately compared to the baselines.
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Figure 11: More qualitative results for ablations.

CIELAB ∆E* ↓
Cherry Mango Strawberry Apple

Ours 35.50 4.76 16.12 15.64
w/o Lanchor

k 101.34 86.34 85.31 122.01
w/o Encoder & Lanchor

k 85.86 82.46 82.07 127.80
Baseline w/ BLIP-2 79.90 25.20 47.30 73.62

Table 1: Quantitative Comparisons on Color Editing. To quantify the differences in color seen
in Figure 11, we use CIELAB ∆E*, the color-distance metric recommended by the International
Commision on Illumination (Fraser et al., 2004).
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Figure 12: Baselines Comparisons. Compared the text-based image editing methods, our method
achieves significantly better compositionality due to the disentangled concept representation, and
captures fine-grained color variations, which the baseline struggles to encode with language.

CLIP-Score ↑ Human Evaluation ↑
Edit Category Edit Color Edit Cat. Edit Clr.

Cat.&Clr. Cat. Clr. Cat.&Clr. Cat. Clr. Score Score

Null-text Inversion 0.258 0.249 0.249 0.259 0.265 0.223 0.287 0.316
InstructPix2Pix 0.267 0.277 0.226 0.270 0.245 0.268 0.233 0.648
Baseline w/ BLIP-2 0.313 0.294 0.248 0.287 0.271 0.237 0.448 0.379
Ours 0.308 0.297 0.238 0.302 0.287 0.236 0.968 0.840

w/o Lanchor
k 0.268 0.276 0.219 0.263 0.257 0.236 - -

w/o Encoder & Lanchor
k 0.288 0.300 0.214 0.242 0.213 0.265 - -

Table 2: Quantitative Comparisons on Visual Concept Editing. Compared to existing image
editing baselines (Brooks et al., 2023; Mokady et al., 2022), our method achieves better overall
CLIP score when editing either axis, and is particularly effective at retaining category-related
concepts as reflected in human evaluation. ‘Cat’ denotes Category and ‘Clr’ denotes Color.

6 DISCUSSION ON TEXTUAL INVERSION

As discussed in Section 3.1, compared to directly using text as inputs for image generation, using
techniques like Textual Inversion (Gal et al., 2022), our model is able to capture more nuanced
visual details of a particular image with continuous embeddings, instead of discrete words. This
can be illustrated in the empirical results in Figures 11 and 12 as well as the results in the main
paper, which show that our method preserves the nuances from input images more accurately than
the BLIP-2 baseline which uses texts for conditional generation.
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